Citation: | WANG Xianmei, LIU Xiangbo, REN Yuzheng, et al. Review of research on artificial intelligence-driven joint radar communication[J]. Journal of Radars, 2025, 14(4): 1071–1091. doi: 10.12000/JR24252 |
[1] |
YANG Ping, XIAO Yue, XIAO Ming, et al. 6G wireless communications: Vision and potential techniques[J]. IEEE Network, 2019, 33(4): 70–75. doi: 10.1109/MNET.2019.1800418.
|
[2] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
|
[3] |
ZHANG J A, RAHMAN M L, WU Kai, et al. Enabling joint communication and radar sensing in mobile networks—a survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 306–345. doi: 10.1109/COMST.2021.3122519.
|
[4] |
LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi: 10.1109/COMST.2022.3149272.
|
[5] |
XIAO Zhiqiang and ZENG Yong. An overview on integrated localization and communication towards 6G[J]. Science China Information Sciences, 2022, 65(3): 131301. doi: 10.1007/s11432-020-3218-8.
|
[6] |
霍曼, 邓中卫. 国外军用飞机航空电子系统发展趋势[J]. 航空电子技术, 2004, 35(4): 5–10. doi: 10.3969/j.issn.1006-141X.2004.04.002.
HUO Man and DENG Zhongwei. Development trend of foreign military avionics[J]. Avionics Technology, 2004, 35(4): 5–10. doi: 10.3969/j.issn.1006-141X.2004.04.002.
|
[7] |
QUAN Siji, QIAN Weiping, GUO J, et al. Radar-communication integration: An overview[C]. The 7th IEEE/International Conference on Advanced Infocomm Technology, Fuzhou, China, 2014: 98–103. doi: 10.1109/ICAIT.2014.7019537.
|
[8] |
FENG Zhiyong, FANG Zixi, WEI Zhiqing, et al. Joint radar and communication: A survey[J]. China Communications, 2020, 17(1): 1–27. doi: 10.23919/JCC.2020.01.001.
|
[9] |
LIU Keqin and ZHAO Qing. Indexability of restless bandit problems and optimality of whittle index for dynamic multichannel access[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5547–5567. doi: 10.1109/TIT.2010.2068950.
|
[10] |
HIEU N Q, HOANG D T, LUONG N C, et al. iRDRC: An intelligent real-time dual-functional radar-communication system for automotive vehicles[J]. IEEE Wireless Communications Letters, 2020, 9(12): 2140–2143. doi: 10.1109/LWC.2020.3014972.
|
[11] |
ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120.
|
[12] |
LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
|
[13] |
WANG Min, CHEN Peng, CHEN Zhimin, et al. Reinforcement learning-based UAVs resource allocation for radar-communication integrated system[C]. 2021 IEEE International Conference on Radar, Haikou, Hainan, China, 2021: 2212–2215. doi: 10.1109/Radar53847.2021.10028618.
|
[14] |
MU Junsheng, GONG Yi, ZHANG Fangpei, et al. Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks[J]. IEEE Communications Letters, 2021, 25(10): 3301–3304. doi: 10.1109/LCOMM.2021.3098748.
|
[15] |
YANG Liu, WEI Yifei, FENG Zhiyong, et al. Deep reinforcement learning-based resource allocation for integrated sensing, communication, and computation in vehicular network[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18608–18622. doi: 10.1109/TWC.2024.3470873.
|
[16] |
ZHAI Weitong, WANG Xiangrong, CAO Xianbin, et al. Reinforcement learning based dual-functional massive MIMO systems for multi-target detection and communications[J]. IEEE Transactions on Signal Processing, 2023, 71: 741–755. doi: 10.1109/TSP.2023.3252885.
|
[17] |
FRI C and ELOUAHBI R. Machine learning and deep learning applications in E-learning systems: A literature survey using topic modeling approach[C]. 2020 6th IEEE Congress on Information Science and Technology, Agadir-Essaouira, Morocco, 2020: 267–273. doi: 10.1109/CiSt49399.2021.9357253.
|
[18] |
THOMAS R N and GUPTA R. A survey on machine learning approaches and its techniques[C]. 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, India, 2020: 1–6. doi: 10.1109/SCEECS48394.2020.190.
|
[19] |
JANIESCH C, ZSCHECH P, and HEINRICH K. Machine learning and deep learning[J]. Electronic Markets, 2021, 31(3): 685–695. doi: 10.1007/s12525-021-00475-2.
|
[20] |
JAGANNATH J, POLOSKY N, JAGANNATH A, et al. Machine learning for wireless communications in the Internet of things: A comprehensive survey[J]. Ad Hoc Networks, 2019, 93: 101913. doi: 10.1016/j.adhoc.2019.101913.
|
[21] |
XIE Junfeng, YU F R, HUANG Tao, et al. A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 393–430. doi: 10.1109/COMST.2018.2866942.
|
[22] |
FENG Xu, NGUYEN K A, and LUO Zhiyuan. A survey of deep learning approaches for WiFi-based indoor positioning[J]. Journal of Information and Telecommunication, 2022, 6(2): 163–216. doi: 10.1080/24751839.2021.1975425.
|
[23] |
TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485.
|
[24] |
刘闯, 杜自成, 王伟. 多功能综合射频技术在地面无人战车上的应用[J]. 火控雷达技术, 2020, 49(4): 23–26. doi: 10.19472/j.cnki.1008-8652.2020.04.005.
LIU Chuang, DU Zicheng, and WANG Wei. Application of multifunctional integrated RF technology on ground unmanned combat vehicles[J]. Fire Control Radar Technology, 2020, 49(4): 23–26. doi: 10.19472/j.cnki.1008-8652.2020.04.005.
|
[25] |
CIFTLER B S, ALWARAFY A, and ABDALLAH M. Distributed DRL-based downlink power allocation for hybrid RF/VLC networks[J]. IEEE Photonics Journal, 2022, 14(3): 8632510. doi: 10.1109/JPHOT.2021.3139678.
|
[26] |
朱伟强, 王克让, 许华健, 等. 多功能综合一体化技术发展综述[J]. 航天电子对抗, 2020, 36(3): 1–10. doi: 10.16328/j.htdz8511.2020.03.001.
ZHU Weiqiang, WANG Kerang, XU Huajian, et al. Development of multifunctional integration technology[J]. Aerospace Electronic Warfare, 2020, 36(3): 1–10. doi: 10.16328/j.htdz8511.2020.03.001.
|
[27] |
GUPTA D, KIRICHENKO D E, DOTSENKO V V, et al. Modular, multi-function digital-RF receiver systems[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 883–890. doi: 10.1109/TASC.2010.2095399.
|
[28] |
FILIP A and SHUTIN D. Cramér-Rao bounds for L-band digital aeronautical communication system type 1 based passive multiple-input multiple-output radar[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 348–358. doi: 10.1049/iet-rsn.2015.0202.
|
[29] |
FIORANELLI F, LE KERNEC J, and SHAH S A. Radar for health care: Recognizing human activities and monitoring vital signs[J]. IEEE Potentials, 2019, 38(4): 16–23. doi: 10.1109/MPOT.2019.2906977.
|
[30] |
ORLANDO V A. The mode S beacon radar system[J]. The Lincoln Laboratory Journal, 1989, 2(3): 345–362.
|
[31] |
HUANG Yuhong. Challenges and opportunities of sub-6 GHz integrated sensing and communications for 5G-Advanced and beyond[J]. Chinese Journal of Electronics, 2024, 33(2): 323–325. doi: 10.23919/cje.2023.00.251.
|
[32] |
STROHMEIER M, SCHÄFER M, LENDERS V, et al. Realities and challenges of nextgen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111–118. doi: 10.1109/MCOM.2014.6815901.
|
[33] |
王飞, 于超鹏, 熊伟. 面向机载综合监视系统的ADS-B技术综述[J]. 航空工程进展, 2024, 15(2): 142–151. doi: 10.16615/j.cnki.1674-8190.2024.02.16.
WANG Fei, YU Chaopeng, and XIONG Wei. ADS-B technology overview for the airborne integrated surveillance system[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 142–151. doi: 10.16615/j.cnki.1674-8190.2024.02.16.
|
[34] |
FORTINO G and PATHAN M. Integration of cloud computing and body sensor networks[J]. Future Generation Computer Systems, 2014, 35: 57–61. doi: 10.1016/j.future.2014.02.001.
|
[35] |
JIANG Xikang, ZHANG Lin, and LI Lei. Multi-task learning radar transformer (MLRT): A personal identification and fall detection network based on IR-UWB radar[J]. Sensors, 2023, 23(12): 5632. doi: 10.3390/s23125632.
|
[36] |
SLIZOV V and ANISHCHENKO L. Evaluating the effectiveness of using the 4-radar system for the contactless fall detection[C]. 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology, Yekaterinburg, Russian Federation, 2022: 048–051. doi: 10.1109/USBEREIT56278.2022.9923404.
|
[37] |
HIEU N Q, HOANG D T, NIYATO D, et al. Transferable deep reinforcement learning framework for autonomous vehicles with joint radar-data communications[J]. IEEE Transactions on Communications, 2022, 70(8): 5164–5180. doi: 10.1109/TCOMM.2022.3182034.
|
[38] |
YAO Yu, ZHAO Junhui, LI Zeqing, et al. Jamming and eavesdropping defense scheme based on deep reinforcement learning in autonomous vehicle networks[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1211–1224. doi: 10.1109/TIFS.2023.3236788.
|
[39] |
KHAWAR A, ABDELHADI A, and CLANCY C. Target detection performance of spectrum sharing MIMO radars[J]. IEEE Sensors Journal, 2015, 15(9): 4928–4940. doi: 10.1109/JSEN.2015.2424393.
|
[40] |
XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509.
|
[41] |
刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
|
[42] |
GUERRA A, GUIDI F, DARDARI D, et al. Reinforcement learning for UAV autonomous navigation, mapping and target detection[C]. 2020 IEEE/ION Position, Location and Navigation Symposium, Portland, USA, 2020: 1004–1013. doi: 10.1109/PLANS46316.2020.9110163.
|
[43] |
LUONG N C, LU Xiao, HOANG D T, et al. Radio resource management in joint radar and communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 780–814. doi: 10.1109/COMST.2021.3070399.
|
[44] |
QIAN Junhui, LOPS M, ZHENG Le, et al. Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3504–3519. doi: 10.1109/TSP.2018.2831624.
|
[45] |
GRIFFITHS H, COHEN L, WATTS S, et al. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85–102. doi: 10.1109/JPROC.2014.2365517.
|
[46] |
MA O, CHIRIYATH A R, HERSCHFELT A, et al. Cooperative radar and communications coexistence using reinforcement learning[C]. 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 947–951. doi: 10.1109/ACSSC.2018.8645080.
|
[47] |
FARSAD N and GOLDSMITH A. Neural network detection of data sequences in communication systems[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5663–5678. doi: 10.1109/TSP.2018.2868322.
|
[48] |
HE Hengtao, WEN Chaokai, JIN Shi, et al. A model-driven deep learning network for MIMO detection[C]. 2018 IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 584–588. doi: 10.1109/GlobalSIP.2018.8646357.
|
[49] |
GUO Xianzhen, SHI Qin, LIU Liang, et al. User-assisted networked sensing in OFDM cellular network with erroneous anchor position information[C]. 2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Korea, 2024: 8556–8560. doi: 10.1109/ICASSP48485.2024.10445920.
|
[50] |
ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, Philadelphia, USA, 2003: 611–614. doi: 10.1109/MWSYM.2003.1211013.
|
[51] |
HASSANIEN A, HIMED B, and RIGLING B D. A dual-function MIMO radar-communications system using frequency-hopping waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1721–1725. doi: 10.1109/RADAR.2017.7944485.
|
[52] |
LV Xin, WANG Jinqi, JIANG Zhisheng, et al. A joint radar-communication system based on OCDM-OFDM scheme[C]. 2018 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2018: 1–3. doi: 10.1109/ICMMT.2018.8563361.
|
[53] |
GAUDIO L, KOBAYASHI M, BISSINGER B, et al. Performance analysis of joint radar and communication using OFDM and OTFS[C]. 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757044.
|
[54] |
WEN C K, SHIH W T, and JIN Shi. Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018, 7(5): 748–751. doi: 10.1109/LWC.2018.2818160.
|
[55] |
KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11 ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference, Boston, USA, 2015: 1–5. doi: 10.1109/VTCFall.2015.7390996.
|
[56] |
CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266.
|
[57] |
LI Bo, PETROPULU A P, and TRAPPE W. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562–4575. doi: 10.1109/TSP.2016.2569479.
|
[58] |
PULKKINEN P and KOIVUNEN V. Model-based online learning for resource sharing in joint radar-communication systems[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022: 4103–4107. doi: 10.1109/ICASSP43922.2022.9747269.
|
[59] |
SELVI E, BUEHRER R M, MARTONE A, et al. Reinforcement learning for adaptable bandwidth tracking radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3904–3921. doi: 10.1109/TAES.2020.2987443.
|
[60] |
THORNTON C E, KOZY M A, BUEHRER R M, et al. Deep reinforcement learning control for radar detection and tracking in congested spectral environments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1335–1349. doi: 10.1109/TCCN.2020.3019605.
|
[61] |
THORNTON C E, BUEHRER R M, MARTONE A F, et al. Experimental analysis of reinforcement learning techniques for spectrum sharing radar[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 67–72. doi: 10.1109/RADAR42522.2020.9114698.
|
[62] |
ZHENG Le, LOPS M, and WANG Xiaodong. Adaptive interference removal for uncoordinated radar/communication coexistence[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 45–60. doi: 10.1109/JSTSP.2017.2785783.
|
[63] |
LIU Fan, MASOUROS C, LI Ang, et al. MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681–3695. doi: 10.1109/TSP.2018.2833813.
|
[64] |
VAN HUYNH N, NGUYEN D N, HOANG D T, et al. “Jam me if you can:” Defeating jammer with deep dueling neural network architecture and ambient backscattering augmented communications[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2603–2620. doi: 10.1109/JSAC.2019.2933889.
|
[65] |
SHAN Zhao, LIU Pengfei, WANG Lei, et al. A cognitive multi-carrier radar for communication interference avoidance via deep reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1561–1578. doi: 10.1109/TCCN.2023.3306854.
|
[66] |
OTTER D W, MEDINA J R, and KALITA J K. A survey of the usages of deep learning for natural language processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604–624. doi: 10.1109/TNNLS.2020.2979670.
|
[67] |
HE Hengtao, WEN Chaokai, JIN Shi, et al. Model-driven deep learning for MIMO detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 1702–1715. doi: 10.1109/TSP.2020.2976585.
|
[68] |
HUYNH-THE T, PHAM Q V, NGUYEN T V, et al. Deep learning for coexistence radar-communication waveform recognition[C]. 2021 International Conference on Information and Communication Technology Convergence, Jeju Island, Korea, 2021: 1725–1727. doi: 10.1109/ICTC52510.2021.9620950.
|
[69] |
LIU Chenguang, CHEN Yunfei, and YANG Shuanghua. Deep learning based detection for communications systems with radar interference[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6245–6254. doi: 10.1109/TVT.2022.3158692.
|
[70] |
JIANG Wangjun, MA Dingyou, WEI Zhiqing, et al. ISAC-NET: Model-driven deep learning for integrated passive sensing and communication[J]. IEEE Transactions on Communications, 2024, 72(8): 4692–4707. doi: 10.1109/TCOMM.2024.3375818.
|
[71] |
WU Yongzhi, LEMIC F, HAN Chong, et al. Sensing integrated DFT-spread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2023, 71(1): 595–610. doi: 10.1109/TCOMM.2022.3225920.
|
[72] |
RAVITEJA P, HONG Y, VITERBO E, et al. Effective diversity of OTFS modulation[J]. IEEE Wireless Communications Letters, 2020, 9(2): 249–253. doi: 10.1109/LWC.2019.2951758.
|
[73] |
O’SHEA T and HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563–575. doi: 10.1109/TCCN.2017.2758370.
|
[74] |
ZHU Zhengyu, GONG Mengfei, SUN Gangcan, et al. AI-enabled STAR-RIS aided MISO ISAC secure communications[J]. Tsinghua Science and Technology, 2025, 30(3): 998–1011. doi: 10.26599/TST.2024.9010086.
|
[75] |
XU Jiarui, JERE S, SONG Yifei, et al. Learning at the speed of wireless: Online real-time learning for AI-enabled MIMO in NextG[J]. IEEE Communications Magazine, 2025, 63(1): 92–98. doi: 10.1109/MCOM.001.2300529.
|
[76] |
ELBIR A M and MISHRA K V. Deep learning design for joint antenna selection and hybrid beamforming in massive MIMO[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019: 1585–1586. doi: 10.1109/APUSNCURSINRSM.2019.8888753.
|
[77] |
YANG Ruming, ZHU Zhiming, ZHANG Jiexin, et al. Deep learning-based joint transmit beamforming for dual-functional radar-communication system[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 15198–15211. doi: 10.1109/TWC.2024.3427368.
|
[78] |
LIANG Jiachao and HUANG Yongwei. Online learning network methods for a joint transmit waveform and receive beamforming design for a DFRC system[C]. 2023 IEEE Statistical Signal Processing Workshop, Hanoi, Vietnam, 2023: 482–486. doi: 10.1109/SSP53291.2023.10207956.
|
[79] |
ZHAO Yifei, WANG Zixin, WANG Zhibin, et al. Learning to beamform for dual-functional MIMO radar-communication systems[C]. IEEE International Conference on Communications, Rome, Italy, 2023: 3572–3577. doi: 10.1109/ICC45041.2023.10279159.
|
[80] |
YUAN Weijie, LIU Fan, MASOUROS C, et al. Bayesian predictive beamforming for vehicular networks: A low-overhead joint radar-communication approach[J]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1442–1456. doi: 10.1109/TWC.2020.3033776.
|
[81] |
LIU Chang, YUAN Weijie, LI Shuangyang, et al. Learning-based predictive beamforming for integrated sensing and communication in vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(8): 2317–2334. doi: 10.1109/JSAC.2022.3180803.
|
[82] |
ZHAO Chonghao, WU Gang, and XIONG Wenhui. Decentralized multiagent reinforcement learning-based cooperative perception with dual-functional radar-communication V2V links[C]. 2023 IEEE International Conference on Communications Workshops, Rome, Italy, 2023: 1100–1105. doi: 10.1109/ICCWorkshops57953.2023.10283653.
|
[83] |
CHOI J, VA V, GONZALEZ-PRELCIC N, et al. Millimeter-wave vehicular communication to support massive automotive sensing[J]. IEEE Communications Magazine, 2016, 54(12): 160–167. doi: 10.1109/MCOM.2016.1600071CM.
|
[84] |
PULKKINEN P and KOIVUNEN V. Model-based online learning for joint radar-communication systems operating in dynamic interference[C]. The 30th European Signal Processing Conference, Belgrade, Serbia, 2022: 992–996. doi: 10.23919/EUSIPCO55093.2022.9909601.
|
[85] |
GRONAUER S and DIEPOLD K. Multi-agent deep reinforcement learning: A survey[J]. Artificial Intelligence Review, 2022, 55(2): 895–943. doi: 10.1007/s10462-021-09996-w.
|
[86] |
LEE J, CHENG Yanyu, NIYATO D, et al. Intelligent resource allocation in joint radar-communication with graph neural networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11120–11135. doi: 10.1109/TVT.2022.3187377.
|
[87] |
SELVI E, BUEHRER R M, MARTONE A, et al. On the use of Markov decision processes in cognitive radar: An application to target tracking[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 537–542. doi: 10.1109/RADAR.2018.8378616.
|
[88] |
ZHANG Xi and ZHU Qixuan. Federated learning based integrated sensing, communications, and powering over 6G massive-MIMO mobile networks[C]. IEEE Conference on Computer Communications Workshops, Vancouver, Canada, 2024: 1–6. doi: 10.1109/INFOCOMWKSHPS61880.2024.10620738.
|
[89] |
CHU N H, HOANG D T, NGUYEN D N, et al. Joint speed control and energy replenishment optimization for UAV-assisted IoT data collection with deep reinforcement transfer learning[J]. IEEE Internet of Things Journal, 2023, 10(7): 5778–5793. doi: 10.1109/JIOT.2022.3151201.
|