Volume 11 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043
Citation: TAN Kaiwen, ZHANG Limin, YAN Wenjun, et al. A semi-supervised emitter identification method for imbalanced category[J]. Journal of Radars, 2022, 11(4): 713–727. doi: 10.12000/JR22043

A Semi-supervised Emitter Identification Method for Imbalanced Category

doi: 10.12000/JR22043
Funds:  The National Natural Science Foundation of China (91538201)
More Information
  • Corresponding author: ZHANG Limin, iamzlm@163.com; YAN Wenjun, wj_yan@foxmail.com
  • Received Date: 2022-03-11
  • Accepted Date: 2022-04-28
  • Rev Recd Date: 2022-05-05
  • Available Online: 2022-05-09
  • Publish Date: 2022-05-17
  • This paper proposes an SEI method based on cost-sensitive learning and semisupervised generative adversarial networks to address the problem of incomplete sample labels and imbalanced data category distribution in Specific Emitter Identification (SEI), which leads to a decline in inaccuracy. Through semisupervised training, the method optimizes the network parameters of the generator and discriminator, adds a multiscale topological block to ResNet to fuse the multi-dimensional resolution features of the time-domain signal, and attributes additional labels to the generated samples to directly use the discriminator to complete the classification. Simultaneously, a cost-sensitive loss is designed to alleviate the imbalance of gradient propagation caused by the dominant samples and improve the recognition performance of the classifier on the class-imbalanced dataset. The experimental results on four types of imbalanced datasets show that in the presence of 40% unlabeled samples, the average recognition accuracy for five emitters is improved by 5.34% and 2.69%, respectively, compared with the cross-entropy loss and focus loss. This provides a new idea for solving the problem of SEI under the conditions of insufficient data labels and an unbalanced distribution of data.

     

  • loading
  • [1]
    XING Yuexiu, HU Aiqun, ZHANG Junqing, et al. Design of a robust radio-frequency fingerprint identification scheme for multimode LFM radar[J]. IEEE Internet of Things Journal, 2020, 7(10): 10581–10593. doi: 10.1109/JIOT.2020.3003692
    [2]
    SANKHE K, BELGIOVINE M, ZHOU Fan, et al. No radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 165–178. doi: 10.1109/TCCN.2019.2949308
    [3]
    POLAK A C, DOLATSHAHI S, and GOECKEL D L. Identifying wireless users via transmitter imperfections[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(7): 1469–1479. doi: 10.1109/JSAC.2011.110812
    [4]
    SUN Jinlong, SHI Wenjuan, YANG Zhutian, et al. Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10348–10356. doi: 10.1109/TVT.2019.2925562
    [5]
    潘一苇, 杨司韩, 彭华, 等. 基于矢量图的特定辐射源识别方法[J]. 电子与信息学报, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329

    PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification using signal trajectory image[J]. Journal of Electronics &Information Technology, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329
    [6]
    DIGNE F, BAUSSARD A, KHENCHAF A, et al. Classification of radar pulses in a naval warfare context using Bézier curve modeling of the instantaneous frequency law[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1469–1480. doi: 10.1109/TAES.2017.2671578
    [7]
    GUO Shanzeng, AKHTAR S, and MELLA A. A method for radar model identification using time-domain transient signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3132–3149. doi: 10.1109/TAES.2021.3074129
    [8]
    URETEN O and SERINKEN N. Bayesian detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2005, 41(6): 373–374. doi: 10.1049/el:20057769
    [9]
    GONG Jialiang, XU Xiaodong, and LEI Yingke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898–2913. doi: 10.1109/TIFS.2020.2978620
    [10]
    YAO Yanyan, YU Lu, and CHEN Yiming. Specific emitter identification based on square integral bispectrum features[C]. 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 2020: 1311–1314.
    [11]
    ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908
    [12]
    YUAN Yingjun, HUANG Zhitao, WU Hao, et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. IET Communications, 2014, 8(13): 2404–2412. doi: 10.1049/iet-com.2013.0865
    [13]
    PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425–54434. doi: 10.1109/ACCESS.2019.2913759
    [14]
    秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084

    QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084
    [15]
    SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665
    [16]
    SA Kejin, LANG Dapeng, WANG Chenggang, et al. Specific emitter identification techniques for the internet of things[J]. IEEE Access, 2020, 8: 1644–1652. doi: 10.1109/ACCESS.2019.2962626
    [17]
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446
    [18]
    QIAN Yunhan, QI Jie, KUAI Xiaoyan, et al. Specific emitter identification based on multi-level sparse representation in automatic identification system[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2872–2884. doi: 10.1109/TIFS.2021.3068010
    [19]
    WU Qingyang, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54(24): 1405–1407. doi: 10.1049/el.2018.6404
    [20]
    WANG Xuebao, HUANG Gaoming, MA Congshan, et al. Convolutional neural network applied to specific emitter identification based on pulse waveform images[J]. IET Radar, Sonar & Navigation, 2020, 14(5): 728–735. doi: 10.1049/iet-rsn.2019.0456
    [21]
    何遵文, 侯帅, 张万成, 等. 通信特定辐射源识别的多特征融合分类方法[J]. 通信学报, 2021, 42(2): 103–112. doi: 10.11959/j.issn.1000-436x.2021028

    HE Zunwen, HOU Shuai, ZHANG Wancheng, et al. Multi-feature fusion classification method for communication specific emitter identification[J]. Journal on Communications, 2021, 42(2): 103–112. doi: 10.11959/j.issn.1000-436x.2021028
    [22]
    ZHOU Huaji, JIAO Licheng, ZHENG Shilian, et al. Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework[J]. China Communications, 2020, 17(10): 157–169. doi: 10.23919/JCC.2020.10.011
    [23]
    ABDI L and HASHEMI S. To combat multi-class imbalanced problems by means of over-sampling techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 238–251. doi: 10.1109/TKDE.2015.2458858
    [24]
    BUNKHUMPORNPAT C, SINAPIROMSARAN K, and LURSINSAP C. DBSMOTE: Density-based synthetic minority over-sampling technique[J]. Applied Intelligence, 2012, 36(3): 664–684. doi: 10.1007/s10489-011-0287-y
    [25]
    KANG Qi, CHEN Xiaoshuang, LI Sisi, et al. A noise-filtered under-sampling scheme for imbalanced classification[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4263–4274. doi: 10.1109/TCYB.2016.2606104
    [26]
    HOU Yun, LI Li, LI Bailin, et al. An anti-noise ensemble algorithm for imbalance classification[J]. Intelligent Data Analysis, 2019, 23(6): 1205–1217. doi: 10.3233/IDA-184354
    [27]
    KRAWCZYK B, WOŹNIAK M, and SCHAEFER G. Cost-sensitive decision tree ensembles for effective imbalanced classification[J]. Applied Soft Computing, 2014, 14: 554–562. doi: 10.1016/j.asoc.2013.08.014
    [28]
    DUAN Wei, JING Liang, and LU Xiangyang. Imbalanced data classification using cost-sensitive support vector machine based on information entropy[J]. Advanced Materials Research, 2014, 989/994: 1756–1761. doi: 10.4028/www.scientific.net/AMR.989-994.1756
    [29]
    ZHANG Zhongliang, LUO Xinggang, GARCÍA S, et al. Cost-sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers[J]. Applied Soft Computing, 2017, 56: 357–367. doi: 10.1016/j.asoc.2017.03.016
    [30]
    DHAR S and CHERKASSKY V. Development and evaluation of cost-sensitive universum-SVM[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 806–818. doi: 10.1109/TCYB.2014.2336876
    [31]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [32]
    RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. arXiv: 1511.06434[cs.LG], 2015. https://arxiv.org/abs/1511.06434.
    [33]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [34]
    ZHANG Linbin, ZHANG Caiguang, QUAN Sinong, et al. A class imbalance loss for imbalanced object recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2778–2792. doi: 10.1109/JSTARS.2020.2995703
    [35]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
    [36]
    KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573–3587. doi: 10.1109/TNNLS.2017.2732482
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(738) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint