Volume 12 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
JIANG Weidong, XUE Lingyan, and ZHANG Xinyu. Data separability metric to evaluate radar target recognition[J]. Journal of Radars, 2023, 12(4): 860–881. doi: 10.12000/JR23125
Citation: JIANG Weidong, XUE Lingyan, and ZHANG Xinyu. Data separability metric to evaluate radar target recognition[J]. Journal of Radars, 2023, 12(4): 860–881. doi: 10.12000/JR23125

Data Separability Metric to Evaluate Radar Target Recognition

DOI: 10.12000/JR23125
Funds:  The National Natural Science Foundation of China (61921001)
More Information
  • Corresponding author: ZHANG Xinyu, zhangxinyu90111@163.com
  • Received Date: 2023-07-11
  • Rev Recd Date: 2023-07-27
  • Available Online: 2023-08-02
  • Publish Date: 2023-08-14
  • The performance of machine learning-based radar target recognition models is determined by the respective model and data to be analyzed. Currently, radar target recognition performance evaluation is based on accuracy metrics, but this method does not include the evaluation metrics regarding the impact of data quality on recognition performance. Data separability describes the degree of mixture of samples from different categories. Furthermore, the data separability metric is independent of the model recognition process. By incorporating it into the recognition evaluation process, recognition difficulty can be quantified, and a benchmark for recognition results can be provided in advance. Therefore, in this paper, we propose a data separability metric based on the rate-distortion theory. Extensive experiments on multiple simulated datasets demonstrated that the proposed metric can compare the separability of multivariate Gaussian datasets. Furthermore, by combining it with the Gaussian mixture model, the designed metric method could overcome the limitation of the rate-distortion function, capture the data’s local separable characteristics, and improve the evaluation accuracy of the overall data separability. Subsequently, we applied the proposed metric to evaluate the recognition difficulty in real datasets, the results of which validated its strong correlation with average recognition accuracy. In the experiments on evaluating the effectiveness of convolutional neural network modules, we first quantified and analyzed the separability trend of the feature extracted by each module during the testing phase. Further, we incorporated the proposed metric as a feature separability loss during the training phase to participate in the network optimization process, guiding the network to extract a more separable feature. This paper provides a new perspective for evaluating and improving the neural network recognition performance in terms of feature separability.

     

  • loading
  • [1]
    付强, 何峻. 自动目标识别评估方法及应用[M]. 北京, 科学出版社, 2013: 16–19.

    FU Qiang and HE Jun. Automatic Target Recognition Evaluation Method and its Application[M]. Beijing, Science Press, 2013: 16–19.
    [2]
    郁文贤. 自动目标识别的工程视角述评[J]. 雷达学报, 2022, 11(5): 737–752. doi: 10.12000/JR22178

    YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178
    [3]
    HOSSIN M and SULAIMAN M N. A review on evaluation metrics for data classification evaluations[J]. International Journal of Data Mining & Knowledge Management Process (IJDKP), 2015, 5(2): 1–11. doi: 10.5281/zenodo.3557376
    [4]
    ZHANG Chiyuan, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization[J]. Communications of the ACM, 2021, 64(3): 107–115. doi: 10.1145/3446776
    [5]
    OPREA M. A general framework and guidelines for benchmarking computational intelligence algorithms applied to forecasting problems derived from an application domain-oriented survey[J]. Applied Soft Computing, 2020, 89: 106103. doi: 10.1016/J.ASOC.2020.106103
    [6]
    YU Shuang, LI Xiongfei, FENG Yuncong, et al. An instance-oriented performance measure for classification[J]. Information Sciences, 2021, 580: 598–619. doi: 10.1016/J.INS.2021.08.094
    [7]
    FERNÁNDEZ A, GARCÍA S, GALAR M, et al. Learning from Imbalanced Data Sets[M]. Cham: Springer, 2018: 253–277.
    [8]
    BELLO M, NÁPOLES G, VANHOOF K, et al. Data quality measures based on granular computing for multi-label classification[J]. Information Sciences, 2021, 560: 51–57. doi: 10.1016/J.INS.2021.01.027
    [9]
    CANO J R. Analysis of data complexity measures for classification[J]. Expert Systems with Applications, 2013, 40(12): 4820–4831. doi: 10.1016/J.ESWA.2013.02.025
    [10]
    METZNER C, SCHILLING A, TRAXDORF M, et al. Classification at the accuracy limit: Facing the problem of data ambiguity[J]. Scientific Reports, 2022, 12(1): 22121. doi: 10.1038/S41598-022-26498-Z
    [11]
    徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学: 信息科学, 2021, 51(12): 1967–1978. doi: 10.1360/SSI-2021-0254

    XU Zongben. Ten fundamental problems for artificial intelligence: Mathematical and physical aspects[J]. SCIENTIA SINICA Informationis, 2021, 51(12): 1967–1978. doi: 10.1360/SSI-2021-0254
    [12]
    MISHRA A K. Separability indices and their use in radar signal based target recognition[J]. IEICE Electronics Express, 2009, 6(14): 1000–1005. doi: 10.1587/ELEX.6.1000
    [13]
    GUAN Shuyue and LOEW M. A novel intrinsic measure of data separability[J]. Applied Intelligence, 2022, 52(15): 17734–17750. doi: 10.1007/S10489-022-03395-6
    [14]
    BRUN A L, BRITTO A S JR, OLIVEIRA L S, et al. A framework for dynamic classifier selection oriented by the classification problem difficulty[J]. Pattern Recognition, 2018, 76: 175–190. doi: 10.1016/J.PATCOG.2017.10.038
    [15]
    CHARTE D, CHARTE F, and HERRERA F. Reducing data complexity using autoencoders with class-informed loss functions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9549–9560. doi: 10.1109/TPAMI.2021.3127698
    [16]
    LORENA A C, GARCIA L P F, LEHMANN J, et al. How complex is your classification problem?: A survey on measuring classification complexity[J]. ACM Computing Surveys, 2020, 52(5): 107. doi: 10.1145/3347711
    [17]
    FERRARO M B and GIORDANI P. A review and proposal of (fuzzy) clustering for nonlinearly separable data[J]. International Journal of Approximate Reasoning, 2019, 115: 13–31. doi: 10.1016/J.IJAR.2019.09.004
    [18]
    SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/J.1538-7305.1948.TB01338.X
    [19]
    COVER T M and THOMAS J A. Elements of Information Theory[M]. New York: Wiley, 1991: 301–332.
    [20]
    MADIMAN M, HARRISON M, and KONTOYIANNIS I. Minimum description length vs. maximum likelihood in lossy data compression[C]. 2004 International Symposium on Information Theory, Chicago, USA, 2004: 461.
    [21]
    MA Yi, DERKSEN H, HONG Wei, et al. Segmentation of multivariate mixed data via lossy data coding and compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1546–1562. doi: 10.1109/TPAMI.2007.1085
    [22]
    MACDONALD J, WÄLDCHEN S, HAUCH S, et al. A rate-distortion framework for explaining neural network decisions[J]. arXiv: 1905.11092, 2019.
    [23]
    HAN Xiaotian, JIANG Zhimeng, LIU Ninghao, et al. Geometric graph representation learning via maximizing rate reduction[C]. ACM Web Conference, Lyon, France, 2022: 1226–1237.
    [24]
    CHOWDHURY S B R and CHATURVEDI S. Learning fair representations via rate-distortion maximization[J]. Transactions of the Association for Computational Linguistics, 2022, 10: 1159–1174. doi: 10.1162/TACL_A_00512
    [25]
    LICHMAN M E A. Uci machine learning reposit[EB/OL]. https://archive.ics.uci.edu/datasets, 2023.
    [26]
    HO T K and BASU M. Complexity measures of supervised classification problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 289–300. doi: 10.1109/34.990132
    [27]
    LEYVA E, GONZÁLEZ A, and PÉREZ R. A set of complexity measures designed for applying meta-learning to instance selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(2): 354–367. doi: 10.1109/TKDE.2014.2327034
    [28]
    GARCIA L P F, DE CARVALHO A C P L F, and LORENA A C. Effect of label noise in the complexity of classification problems[J]. Neurocomputing, 2015, 160: 108–119. doi: 10.1016/J.NEUCOM.2014.10.085
    [29]
    AGGARWAL C C, HINNEBURG A, and KEIM D A. On the surprising behavior of distance metrics in high dimensional space[C]. 8th International Conference on Database Theory, London, UK, 2001: 420–434.
    [30]
    MILLER K, MAURO J, SETIADI J, et al. Graph-based active learning for semi-supervised classification of SAR data[C]. SPIE 12095, Algorithms for Synthetic Aperture Radar Imagery XXIX, Orlando, United States, 2022: 120950C.
    [31]
    雷禹, 冷祥光, 孙忠镇, 等. 宽幅SAR海上大型运动舰船目标数据集构建及识别性能分析[J]. 雷达学报, 2022, 11(3): 347–362. doi: 10.12000/JR21173

    LEI Yu, LENG Xiangguang, SUN Zhongzhen, et al. Construction and recognition performance analysis of wide-swath SAR maritime large moving ships dataset[J]. Journal of Radars, 2022, 11(3): 347–362. doi: 10.12000/JR21173
    [32]
    HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303. doi: 10.1007/s11432-019-2772-5
    [33]
    KEYDEL E R, LEE S W, and MOORE J T. MSTAR extended operating conditions: A tutorial[C]. SPIE 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996: 228–242.
    [34]
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
    [35]
    ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(897) PDF downloads(213) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint