ZHANG Dalin, YI Wei, and KONG Lingjiang. Optimal joint allocation of multijammer resources for jamming netted radar system[J]. Journal of Radars, 2021, 10(4): 595–606. doi: 10.12000/JR21071
Citation: DAI Keren, TIE Yongbo, XU Qiang, et al. Early identification of potential landslide geohazards in alpine-canyon terrain based on SAR interferometry—a case study of the middle section of yalong river[J]. Journal of Radars, 2020, 9(3): 554–568. doi: 10.12000/JR20012

Early Identification of Potential Landslide Geohazards in Alpine-canyon Terrain Based on SAR Interferometry—a Case Study of the Middle Section of Yalong River (in English)

DOI: 10.12000/JR20012
Funds:  The Public Geological Survey Project of China Geological Survey (DD20190640), The National Natural Science Foundation of China (41801391), The Provincial Key R&D Program of the Sichuan Ministry of Science and Technology (2019YFS0074), Sichuan Science and Technology Plan Project (2019YJ0404), State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2018Z019)
More Information
  • Author Bio:

    DAI Keren was born in Sichuan, China in 1989. He is currently a professor and doctoral supervisor in Chengdu University of Technology and permanent researchers of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection. His main research interests include the early identification of landslide hazards in alpine-valley area by synthetic aperture radar interferometry and early warning, remote sensing landslide disaster assessment and cataloging, etc. In recent five years, he has published more than 10 papers in international remote sensing journals such as IEEE GRSM, RSE, INT J APPL EARTH OBS, etc. E-mail: daikeren17@cdut.edu.cn

    TIE Yongbo was born in Yunnan, China in 1979. He is currently a professor of engineer of Chengdu Geological Survey Center of China Geological Survey, doctoral supervisor, and candidate of the 12th academic leader in Sichuan province. His research direction is the formation mechanism and risk assessment of geological disasters. E-mail: tyb038@qq.com

    XU Qiang was born in Sichuan, China in 1968. He is currently a professor and doctoral supervisor, vice President of Chengdu University of Technology, Executive Vice Director of State Key Laboratory of Geohazard Prevention and Geoenvironment Protecion, winner of National Outstanding Youth Fund, Distinguished Professor of Cheungkong Scholars program of the Ministry of Education, National Outstanding professional Technology Talent, national May 1st labor Medal winner, the State Council special allowance experts. Specializing in the mechanism of geological hazards, early identification, monitoring and early warning and emergency response, the scientific research achievements completed as a core member won two national science and technology progress award, provincial and ministerial science and technology progress award, six prizes.E-mail: xq@cdut.edu.cn

    FENG Ye was born in Sichuan, China in 1992. He is now postgraduate student in Chengdu University of Technology. His main research fields are InSAR data processing and application. E-mail: 2018050049@stu.cdut.edu.cn

    ZHUO Guanchen was born in Fujian, China in 1995. He is now postgraduate student in Chengdu University of Technology. He is mainly engaged in surface deformation monitoring research based on synthetic aperture radar interferometry. E-mail: zhuoguanchenRS@foxmail.com

    SHI Xianlin was born in Sichuan, China in 1980. She is now Ph.D., associate professor, tutor for postgraduate students. Member of the Education Committee of the Society of Surveying, Mapping and Geographic Information of Sichuan province, won the second prize of Higher Education Teaching Achievement of Sichuan Province and the third prize of The Progress Award of Surveying, Mapping and Technology of Sichuan Province. Her research interests include remote sensing geology and space information intelligence services. E-mail: shixianlin06@cedut.edu.cn

  • Corresponding author: TIE Yongbo, tyb2009@qq.com; XU Qiang, xq@cdut.edu.cn
  • Received Date: 2020-03-01
  • Rev Recd Date: 2020-06-01
  • Available Online: 2020-06-19
  • Publish Date: 2020-06-01
  • Landslide disasters occur frequently in the western mountainous regions of China and are characterized by high concealment, suddenness, and strong destructiveness. Early identification of potential disaster hazards is the most effective prevention and mitigation measure. The western mountainous areas mostly have a wide range of alpine-canyon terrain, which is hard or even impossible to reach. Moreover, traditional early identification methods, such as manual inspection, are difficult to implement in these areas. As an emerging radar remote-sensing method, Interferometric Synthetic Aperture Radar (InSAR) can efficiently and accurately identify the hidden dangers of landslides. Based on the synthetic aperture radar data of the European Space Agency’s Sentinel-1, this study used time series InSAR technology to identify the potential landslide hazards in the alpine-canyon terrain along the Yajiang-Muli County of the Yalong River; eight potential geohazards were detected. On the basis of the historical data of landslide hazards and the interpretation of optical remote sensing data, the results of early identification were verified and analyzed, and the danger level of the disaster points was evaluated. The influence of geometric distortion in InSAR technology on the early identification of potential landslides in alpine-canyon terrain was also discussed. This case study can provide powerful data and technical support for local disaster prevention and mitigation and provide ideas and references for the early identification of the hidden dangers of landslides in mountain-valley areas.

     

  • [1]
    刘哲. 基于GIS的雅砻江流域麦地龙—卡拉段地质灾害危险性评价[D]. [硕士论文], 成都理工大学, 2015.

    LIU Zhe. Hazard assessment of geological disasters in the Yalong River basin from the Maidilong to Kala based on GIS[D]. [Master dissertation], Chengdu University of Technology, 2015.
    [2]
    常晓军, 魏伦武, 王德伟. 雅砻江流域地质灾害分布特征及其影响因素分析[J]. 灾害学, 2009, 24(3): 83–88. doi: 10.3969/j.issn.1000-811X.2009.03.017

    CHANG Xiaojun, WEI Lunwu, and WANG Dewei. Distribution characteristics and influencing factors of geological hazards in Yalong River basin[J]. Journal of Catastrophology, 2009, 24(3): 83–88. doi: 10.3969/j.issn.1000-811X.2009.03.017
    [3]
    王孔伟, 邓成进, 张帆. 中国西南雅砻江流域唐古栋滑坡及雨日堆积体形成机理分析[J]. 工程地质学报, 2012, 20(6): 955–970. doi: 10.3969/j.issn.1004-9665.2012.06.007

    WANG Kongwei, DENG Chengjin, and ZHANG Fan. Formation process of Tanggudong landslide and Yuri accumulation body in Yalong River valley in southwest China[J]. Journal of Engineering Geology, 2012, 20(6): 955–970. doi: 10.3969/j.issn.1004-9665.2012.06.007
    [4]
    梁瑞锋, 杨敏, 杨栓成, 等. 雅砻江流域卡拉段地质灾害分布特征与影响因素分析[J]. 人民珠江, 2016, 37(11): 13–17. doi: 10.3969/j.issn.1001-9235.2016.11.003

    LIANG Ruifeng, YANG Min, YANG Shuancheng, et al. Distribution characteristics and influencing factors analysis of geological disasters in Kala section along Yalong River[J]. Pearl River, 2016, 37(11): 13–17. doi: 10.3969/j.issn.1001-9235.2016.11.003
    [5]
    陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报: 信息科学版, 2019, 44(9): 1342–1354.

    LU Huiyan, LI Weile, XU Qiang, et al. Early detection of landslides in the upstream and downstream areas of the Baige Landslide, the Jinsha River based on optical remote sensing and InSAR technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1342–1354.
    [6]
    葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 949–956.

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949–956.
    [7]
    XIA Y. CR-based SAR-interferometry for landslide monitoring[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008. doi: 10.1109/IGARSS.2008.4779226.
    [8]
    王腾. 时间序列InSAR数据分析技术及其在三峡地区的应用[D]. [博士论文], 武汉大学, 2010.

    WANG Teng. Time series InSAR analysis over the Three Gorges Region: Techniques and applications[D]. [Ph. D. dissertation], Wuhan University, 2010.
    [9]
    XU Qiang, YUAN Yong, ZENG Yuping, et al. Some new pre-warning criteria for creep slope failure[J]. Science China Technological Sciences, 2011, 54(1): 210–220. doi: 10.1007/s11431-011-4640-5
    [10]
    戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报: 信息科学版, 2019, 44(12): 1778–1786, 1796.

    DAI Keren, ZHUO Guanchen, XU Qiang, et al. Tracing the pre-failure two-dimensional surface displacements of Nanyu landslide, Gansu province with radar interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1778–1786, 1796.
    [11]
    DONG Jie, ZHANG Lu, TANG Minggao, et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180–198. doi: 10.1016/j.rse.2017.11.022
    [12]
    张毅. 基于InSAR技术的地表变形监测与滑坡早期识别研究—以白龙江流域中游为例[D]. [博士论文], 兰州大学, 2018.

    ZHANG Yi. Detecting ground deformation and investigating landslides using InSAR technique—taking middle reach of Bailong River basin as an example[D]. [Ph. D. dissertation], Lanzhou University, 2018.
    [13]
    张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别—以四川丹巴为例[J]. 武汉大学学报: 信息科学版, 2018, 43(12): 2039–2049. doi: 10.13203/j.whugis20180181

    ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry—a case study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039–2049. doi: 10.13203/j.whugis20180181
    [14]
    张亚迪, 李煜东, 董杰, 等. 时序InSAR技术探测芒康地区滑坡灾害隐患[J]. 遥感学报, 2019, 23(5): 987–996.

    ZHANG Yadi, LI Yudong, DONG Jie, et al. Landslide hazard detection in Markam with time-series InSAR analyses[J]. Journal of Remote Sensing, 2019, 23(5): 987–996.
    [15]
    DAI Keren, CHEN Gang, XU Qiang, et al. Potential landslide early detection near Wenchuan by a qualitatively multi-baseline DInSAR method[C]. ISPRS Technical Commission III Midterm Symposium on "Developments, Technologies and Applications in Remote Sensing", Beijing, China, 2018: 253–256.
    [16]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 967–979. doi: 10.13203/j.whugis20190098

    LI Zhenhong, SONG Chuang, YU Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967–979. doi: 10.13203/j.whugis20190098
    [17]
    冷伦, 冷荣梅. 雅砻江垮山洪水和历史的教训[J]. 四川水利, 2002, 23(2): 42–44.

    LENG Lun and LENG Rongmei. Mountain slide flood in Yalong river and historical lesson[J]. Sichuan Water Conservancy, 2002, 23(2): 42–44.
    [18]
    伍超, 冉洪兴, 郑永红, 等. 雅砻江唐古栋垮山堵江溃决洪水过程研究[J]. 水动力学研究与进展, 1999, 11A: 646–652.

    WU Chao, RAN Hongxing, ZHENG Yonghong, et al. Hydrograph of the dam-break flood of the reservoir formed by mountain collapse in Ya Longjiang[J]. Journal of Hydrodynamics, 1999, 11A: 646–652.
    [19]
    武运泊. 雅砻江卡拉地区滑坡发育规律与成因机制分析[D]. [硕士论文], 成都理工大学, 2015.

    WU Yunbo. Analysis of development law and genetic mechanism of the landsides in Kala area, Yalong River[D]. [Master dissertation], Chengdu University of Technology, 2015.
    [20]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433–454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433–454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    [21]
    BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375–2383. doi: 10.1109/TGRS.2002.803792
    [22]
    DAI Keren, LI Zhenhong, TOMÁS R, et al. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry[J]. Remote Sensing of Environment, 2016, 186: 501–513. doi: 10.1016/j.rse.2016.09.009
    [23]
    COLESANTI C and WASOWSKI J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3/4): 173–199.
    [24]
    DAI Keren, LI Zhenhong, XU Qiang, et al. Entering the era of earth observation-based landslide warning systems: A novel and exciting framework[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 136–153. doi: 10.1109/MGRS.2019.2954395
  • Relative Articles

    [1]LIAO Xiaorong, SUN Guohao, ZHONG Suchuan, YU Xianxiang, LI Ming. Joint Optimization of Radar and Jammer Space-time Cooperative Beamforming for a Multitasking Dynamic Scene[J]. Journal of Radars, 2024, 13(3): 613-628. doi: 10.12000/JR23243
    [2]YANG Shixing, ZHANG Guoxin, LIANG Yunfei, YI Wei, KONG Lingjiang. Moving Targets Detection with Low-bit Quantization in Distributed Radar on Moving Platforms[J]. Journal of Radars, 2024, 13(3): 584-600. doi: 10.12000/JR23240
    [3]LIU Xin, ZHU Haibin, LIU Zongqiang, XUE Changhu, MU Yaxin, QU Xiaodong, YE Shengbo, XIA Zhenghuan, FANG Guangyou. The Design and Joint Positioning Method of an ultra-wideband Through-wall Radar System for Distributed Wireless Networking[J]. Journal of Radars, 2024, 13(4): 747-760. doi: 10.12000/JR23239
    [4]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [5]SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081
    [6]GUO Rui, ZHANG Yue, TIAN Biao, XIAO Yu, HU Jun, XU Shiyou, CHEN Zengping. Review of the Technology, Development and Applications of Holographic Staring Radar[J]. Journal of Radars, 2023, 12(2): 389-411. doi: 10.12000/JR22153
    [7]SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146
    [8]QI Cheng, XIE Junwei, ZHANG Haowei, DING Zihang, YANG Xiao. Element Configuration Optimization of Hybrid Distributed PA-MIMO Radar System Based on Target Detection[J]. Journal of Radars, 2023, 12(3): 576-589. doi: 10.12000/JR22159
    [9]YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036
    [10]ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206
    [11]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [12]SONG Xiaocheng, LI Zhi, REN Haiwei, YI Wei. Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars[J]. Journal of Radars, 2023, 12(3): 629-641. doi: 10.12000/JR22240
    [13]WANG Yuedong, GU Yijing, LIANG Yan, WANG Zengfu, ZHANG Huixia. Deep Game of Escorting Suppressive Jamming and Networked Radar Power Allocation[J]. Journal of Radars, 2023, 12(3): 642-656. doi: 10.12000/JR23023
    [14]XIAO Peng, YU Zhitong, CHEN Zhuoqi, CUI Xiangbin, ZHAO Bo, LANG Shinan, LI Meng, HU Luojia, HUANG Yan, LIU Min, WANG Cheng, CHEN Liang, LIU Lu, SUI Xiaohong, YUAN Chunzhu. Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(3): 479-498. doi: 10.12000/JR21196
    [15]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [16]ZHANG Guoxin, YI Wei, KONG Lingjiang. Direct Position Determination for Massive MIMO System with One-bit Quantization[J]. Journal of Radars, 2021, 10(6): 970-981. doi: 10.12000/JR21062
    [17]GAO Xiangying, ZHAO Yongjun, LIU Zhixin, LIU Chengcheng. Robust Source Localization Using TDOA and FDOA with Receiver Location Errors [J]. Journal of Radars, 2020, 9(5): 916-924. doi: 10.12000/JR20039
    [18]PEI Jiazheng, HUANG Yong, DONG Yunlong, HE You, CHEN Xiaolong. Track-Before-Detect Algorithm Based on Improved Auxiliary Particle PHD Filter under Clutter Background[J]. Journal of Radars, 2019, 8(3): 355-365. doi: 10.12000/JR18060
    [19]Yang Haifeng, Xie Wenchong, Wang Yongliang. Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform[J]. Journal of Radars, 2017, 6(3): 267-274. doi: 10.12000/JR16142
    [20]Shi Chen-guang, Wang Fei, Zhou Jian-jiang, Chen Jun. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization (in English)[J]. Journal of Radars, 2014, 3(4): 465-473. doi: 10.3724/SP.J.1300.2014.13140
  • Cited by

    Periodical cited type(13)

    1. 胡继军,韩伟,张国玉,周希娃,贺杨婷,廖春兰. 基于多站数据融合的参数精估计方法. 遥测遥控. 2024(02): 109-123 .
    2. 赵宏宇,武忠国,李廷鹏,杨晓帆,陈冬冬. 射频信号合成与数字域信号合成的等效性分析. 电子信息对抗技术. 2024(03): 21-26 .
    3. 廖晓容,孙国皓,钟苏川,余显祥,李明. 面向多任务动态场景的雷达与干扰空时协同波束联合优化方法. 雷达学报. 2024(03): 613-628 . 本站查看
    4. 邹玮琦,牛朝阳,刘伟,王艳云,湛嘉祺. 面向组网雷达干扰任务的多机伴随式编队航迹预规划方法. 系统工程与电子技术. 2024(08): 2807-2819 .
    5. 刘溥熙,赵欣怡,尤明,田栢苓,马龙. 面向组网雷达干扰任务的多无人机协同动态决策方法研究. 战术导弹技术. 2024(06): 14-25 .
    6. 袁野,杨剑,刘辛雨,易伟,孔令讲. 基于任务效用最大化的多雷达协同任务规划算法. 雷达学报. 2023(03): 550-562 . 本站查看
    7. 王跃东,顾以静,梁彦,王增福,张会霞. 伴随压制干扰与组网雷达功率分配的深度博弈研究. 雷达学报. 2023(03): 642-656 . 本站查看
    8. 时晨光,董璟,周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法. 雷达学报. 2023(03): 590-601 . 本站查看
    9. 齐铖,谢军伟,张浩为,丁梓航,杨潇. 基于目标检测的混合分布式PA-MIMO雷达系统阵元优化部署. 雷达学报. 2023(03): 576-589 . 本站查看
    10. 纪慧颖,潘明海,张元时,喻庆豪. 基于遗传-蚁群融合算法的干扰资源分配方法. 系统工程与电子技术. 2023(07): 2098-2107 .
    11. 陆德江,王星,陈游,胡星. 联合多种资源协同干扰组网雷达系统的自适应调度方法. 系统工程与电子技术. 2023(09): 2744-2754 .
    12. 梁猛,檀雷,陈飞,梁斌,杨帅. 协同干扰技术应用研究. 航天电子对抗. 2023(04): 44-48+64 .
    13. 李健涛,王轲昕,刘凯,张天贤. 基于深度强化学习的干扰资源分配方法. 现代雷达. 2023(10): 44-51 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.3 %其他: 17.3 %其他: 0.9 %其他: 0.9 %China: 0.3 %China: 0.3 %Hanoi: 0.0 %Hanoi: 0.0 %India: 0.0 %India: 0.0 %Kao-sung: 0.0 %Kao-sung: 0.0 %Korea Republic of: 0.3 %Korea Republic of: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 0.8 %[]: 0.8 %上海: 0.7 %上海: 0.7 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东莞: 0.0 %东莞: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %京畿道: 0.5 %京畿道: 0.5 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %信阳: 0.1 %信阳: 0.1 %元朗新墟: 0.0 %元朗新墟: 0.0 %克孜勒苏: 0.0 %克孜勒苏: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.2 %北京: 12.2 %北海: 0.1 %北海: 0.1 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 1.7 %南京: 1.7 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %商丘: 0.1 %商丘: 0.1 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.0 %天津: 0.0 %威尔明顿: 0.1 %威尔明顿: 0.1 %官坑: 0.1 %官坑: 0.1 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.0 %崇左: 0.0 %巴中: 0.3 %巴中: 0.3 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %徐州: 0.1 %徐州: 0.1 %恩施: 0.0 %恩施: 0.0 %成都: 1.0 %成都: 1.0 %成都市新都区: 0.0 %成都市新都区: 0.0 %新乡: 0.4 %新乡: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 0.0 %昆明: 0.0 %昭通: 0.1 %昭通: 0.1 %杭州: 1.3 %杭州: 1.3 %株洲: 0.0 %株洲: 0.0 %武汉: 0.7 %武汉: 0.7 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.0 %沈阳: 0.0 %沧州: 0.1 %沧州: 0.1 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.3 %玉林: 0.3 %益山: 0.3 %益山: 0.3 %石家庄: 0.4 %石家庄: 0.4 %红河: 0.3 %红河: 0.3 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.2 %绍兴: 0.2 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国新泽西锡考克斯: 0.3 %美国新泽西锡考克斯: 0.3 %芒廷维尤: 14.5 %芒廷维尤: 14.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %苏州市: 0.1 %苏州市: 0.1 %衡水: 0.2 %衡水: 0.2 %西宁: 33.2 %西宁: 33.2 %西安: 1.0 %西安: 1.0 %西安市: 0.0 %西安市: 0.0 %西藏林芝: 0.1 %西藏林芝: 0.1 %贵港: 0.2 %贵港: 0.2 %运城: 0.4 %运城: 0.4 %连云港: 0.0 %连云港: 0.0 %郑州: 1.5 %郑州: 1.5 %金华: 0.0 %金华: 0.0 %长沙: 0.2 %长沙: 0.2 %雅加达: 0.2 %雅加达: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.0 %驻马店: 0.0 %鹰潭: 0.1 %鹰潭: 0.1 %其他其他ChinaHanoiIndiaKao-sungKorea Republic ofViet Nam[]上海上饶东京东莞丹东丽水京畿道佛山保定信阳元朗新墟克孜勒苏包头北京北海华盛顿州南京南宁南平南昌南通厦门台北台州合肥呼和浩特哈尔滨商丘圣彼得堡大庆大连天津威尔明顿官坑宝鸡宣城宿迁岳阳崇左巴中巴中市巴州区常州广州张家口张家口市徐州恩施成都成都市新都区新乡无锡昆明昭通杭州株洲武汉汕头沈阳沧州泸州洛阳济南深圳温州湖州湘潭漯河潍坊玉林益山石家庄红河纽约绍兴美国伊利诺斯芝加哥美国新泽西锡考克斯芒廷维尤芝加哥苏州苏州市衡水西宁西安西安市西藏林芝贵港运城连云港郑州金华长沙雅加达青岛驻马店鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5516) PDF downloads(474) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint