Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar
-
摘要: 当前,国内外逆合成孔径雷达(ISAR)系统均朝着高载频、大带宽、多极化、分布式、网络化的方向发展,并牵引ISAR成像技术的发展和进步。从ISAR图像的角度来看,ISAR成像的发展变化主要可归纳为精细化成像以提升成像质量和多维度成像以丰富成像信息两个方面。该文首先从雷达回波脉冲压缩、雷达系统失真校正、目标高速运动补偿、距离向自聚焦、平动补偿、转动补偿、图像重构、图像后处理等方面综述雷达精细化成像方法,然后从极化、多频带融合、多站多视角成像、三维成像等方面综述雷达成像维度的扩展,最后从成像建模、复杂场景精细成像、实时成像、成像评价与图像应用等4个方面进行展望分析。Abstract: At present, the emphasis of Inverse Synthetic Aperture Radar (ISAR) systems on the characteristics of high carrier frequency, wide bandwidth, multi-polarization capability, distribution, and networking has led to the development and progress of ISAR imaging technology. The development and changes of ISAR imaging technology can be summarized into two aspects: fine imaging to improve the image quality and multidimensional imaging to enrich the image information. The methods of radar fine imaging (such as radar echo pulse compression, radar system distortion correction, high velocity motion compensation, range profile focusing, translational motion compensation, rotational motion compensation, image reconstruction, and image display) are reviewed firstly in this study. Next, the expansion of radar imaging dimensions is summarized, including full polarization fusion, multi-band fusion, multi-station and multi-view imaging, and three-dimensional imaging, etc. Finally, the imaging development trend of combining imaging modeling, fine imaging of complex scene, real-time imaging, image evaluation, and application is proposed.
-
1. 引言
近年来关于太赫兹的研究日趋增加,相对于微波频段雷达,太赫兹雷达以其更高的空间分辨率和角分辨率具有更大的优势受到了越来越多的重视[1,2]。太赫兹辐射的光子能量低,对穿透物不会造成损伤,并且可以穿过大多数介电物质,实现无损检测。太赫兹波具有穿透性,能够实现对隐蔽物体的有效检测,可应用于安检相关的领域。太赫兹频段相比于微波频段频率更高,更容易发射大带宽信号,具有更高的分辨率,具有海量的频谱资源,可用于超宽带超高速无线通信。太赫兹波段目标表面的细微结构、粗糙度等细节会显著影响其后向散射特性,实现更小尺寸目标的探测、更精确目标的运动与物理参数反演[3]。太赫兹(terahertz, THz)波段位于微波与红外波之间,其频率范围为0.1~10 THz (1 THz=1012 Hz),对应的波长为30 μm~3 mm。太赫兹频段目标散射特性是太赫兹雷达探测和成像应用的物理基础[4,5],同时也是太赫兹雷达系统进行链路设计、特征提取以及成像算法的重要依据。国内首都师范大学太赫兹实验室研制了太赫兹数字全息成像系统,对太赫兹电磁波的振幅、相位、频率及偏振等全部光学信息的3维空间分布进行精确测量[6]。针对太赫兹波段目标的散射特性,美国麻省LOWELL大学毫米波实验室利用1.56 THz源在紧缩场中对粗糙表面圆柱体的目标散射特性进行了研究[4]。天津大学太赫兹研究中心搭建了以0.2 THz返波管振荡器源、热释电探测器、小型自动旋转光学平台等组成的太赫兹波目标散射特性实验测试系统,并对粗糙铜面的散射特性等进行了研究[7,8]。对于介质[9]和涂覆目标的太赫兹散射,北京航空航天大学江月松等人考虑粗糙度修正表面的散射系数研究了基于经验公式的涂覆目标的太赫兹散射特性[10]。
本文区别于以往采用经验公式[10]以粗糙度修正散射系数的研究方法,把随机粗糙面的建模理念应用到太赫兹波段表面粗糙目标的建模中。首先模拟生成了分形粗糙面近似代替实际复杂的粗糙面,对生成的分形粗糙面进行坐标变换导入计算机辅助设计(Computer Aided Design, CAD)建模软件建立具有粗糙表面的目标模型;然后对表面粗糙目标按照入射波的频率以满足物理光学近似的要求进行剖分。根据菲涅尔反射系数求得表面电流进而计算涂覆粗糙目标的雷达散射截面(Radar Cross Section, RCS)。并针对不同频率以及不同涂覆厚度的表面粗糙涂覆目标,分别进行了仿真分析。
2. 表面粗糙目标模型
2.1 分形粗糙面
自1982年Mandelbrot首次提出“分形”的概念[11],指的是组成部分与整体以某种方式相形似,分形理论就在很多领域中得到应用。“分形”不同于通常意义上的长度、面积、体积等几何概念,分形内部的任何一个相对独立的部分,在一定程度上都应该是整体的再现和缩影,分形几何体内部存在无穷层次、具有见微知著、由点及面的自相似结构,即具有自相似性。由于粗糙面一般具有非线性的几何结构,因此采用非线性的方法模拟粗糙面更能反映其物理本质。自然界的许多物体,如地、海表面、植被和森林等都在一定尺度范围内存在统计意义上的自相似性,由此很多学者将分形理论应用于电磁散射领域中,用于粗糙面的模拟[12,13]。
1维带限Weierstrass-Mandelbrot分形函数的表达式为:
f(x)=√2δ[1−b(2D−4)]1/2[b(2D−4)N1−b(2D−4)(N2+1)]1/2⋅N2∑n=N1b(D−2)ncos(2πsbnx+φn) (1) 其中,
δ 为高度的均方根,b是空间基频,D为分形维数(1<D<2),s为标度因子(s=K0/2π , K0为空间波数),φn 为(0,2π) 上均匀分布的随机相位,该函数具有零均值。一般取b>1,b为有理数时,f(x)表现为周期函数;b为无理数时,f(x)为准周期函数。标度因子s决定频谱的位置,f(x)的无标度区间一般取(sbN1)−1 和(sbN2)−1 ,N=N2−N1+1 ,随着N的增加,越来越多的频率分量加到准周期。图1给出了1维分形粗糙面模型,当分维数D增加时,高频分量比重加大,低频分量作用减小,分形粗糙面的粗糙程度增大。根据瑞利判据,粗糙面相对于入射波的粗糙程度,除与粗糙面的高度函数有关还和入射波的频率有关。如普通的目标表面对于微波段来说是光滑的,但相对于太赫兹频段的波来说却是粗糙的。本文主要研究太赫兹波段下目标表面的微粗糙对其散射特性的影响。2.2 分形表面粗糙目标模型
目标表面粗糙度引起的表面起伏一般在其对应的光滑表面的法线方向[14]。因此,对于轴对称旋转目标而言,其表面的粗糙度可近似考虑为对应母线的起伏。将生成的1维分形粗糙面叠加到光滑目标模型对应的母线进行坐标变换,建立具有分形粗糙表面的目标模型。
对于如图2(a)所示的顶部为半球的粗糙钝锥模型,其母线可以表示为:
x={(r1+f(x))cosα,r1+Δhtanβ+f(x)cosβ,y>0y<0 (2) y={(r1+f(x))sinα,Δh+f(x)sinβ,y>0y<0 (3) 其中,r1为顶部半球半径,r2为底面半径,h为下部锥台高度,
β=atan((r2−r1)/h) 。将生成的圆锥母线导入CAD建模软件,对其绕Y轴旋转并进行坐标变换生成如图2(b)所示的具有分形粗糙表面的钝锥模型。2.3 算法理论
由Stratton-Chu积分公式,目标远区散射场利用物理光学可表示为[15]:
Es=−jk4πexp(−jkr)r∫sˆs×[ˆn×E−Z0ˆs×(ˆn×H)]exp(jkr⋅ˆs)ds (4) 其中,k和Z0分别为自由空间的波数和本征阻抗,
ˆs 为散射波的单位矢量,r为表面上一点的位置矢量,ˆn 为目标表面向外单位法矢量,E和H分别为边界上总的电场和总的磁场。涂覆介质表面的散射示意图如图3所示。其中
θi 为入射角,ˆi 和ˆs 分别为入射波和散射波的单位矢量,矢量ˆei∥ 和ˆer∥ 分别为入射电场、反射电场平行入射面的极化方向,矢量ˆe⊥ 为入射电场和反射电场垂直入射面的极化方向。Ei=E⊥ˆe⊥+E∥ˆe∥i,Es=R⊥E⊥ˆe⊥+R∥E∥ˆe∥r (5) 其中,
Ei 为边界上入射电场,Es 为边界上散射电场,E⊥ 和E∥ 分别为入射电场在ˆe⊥ 和ˆei∥ 方向的场分量,R⊥ 和R∥ 分别为涂覆介质表面在垂直极化和水平极化时的反射系数[16]。涂覆目标雷达散射截面的计算公式为:
σ=limR→∞4πR2|Es|2|Ei|2 (6) 3. 数值结果及讨论
3.1 验证算例
为了验证算法的正确性,先通过下面的模型算例加以说明。图4给出了3 GHz平面波TM极化入射下涂覆半球的双站雷达散射截面,其中半球的半径为0.5 m,涂覆厚度为d=2 cm,涂层介质相对介电常数为
εr=36.0 ,相对磁导率为μr=1.0 。RCS结果曲线可以看出物理光学法和多层快速多极子方法(MLFMA)吻合良好,验证了程序的正确性。图5给出了频率为3 THz的平面波入射下导体立方体的单站雷达散射截面,结果与文献[3]中采用多层快速多极子方法结果一致,可以看出物理光学方法用于计算THz频段目标散射的有效性。
3.2 数值结果
对于图2(b)所示的具有分形粗糙表面的钝锥模型,其顶部半球半径r1=1 mm,底面半径r2=3 mm,锥台高度h=12 mm,分形粗糙面的分维数D=1.5,b=1.5,均方根高度
δ=0.02mm 。涂覆材料相对介电常数εr=(4.0,−1.5) ,相对磁导率μr=(2.0,−1.0) ,涂覆层厚度d=0.03 mm。首先对钝锥导入CAD建模软件进行满足物理光学近似的网格剖分,根据菲涅尔反射系数得出钝锥表面电流分布进而计算其散射场。从图6中结果可以看出,对于模型尺寸相同的光滑钝锥与表面粗糙钝锥的单站雷达散射截面曲线走势基本一致,随着入射角的增大,RCS增大,垂直于锥面照射时达到最大峰值。图6(a)入射频率为30 GHz的情况下光滑钝锥与分形粗糙钝锥的RCS除了小角度基本上重合,可以看出在微波频段目标表面的微粗糙度对RCS的影响很小,可以忽略。图6(b)、图6(c)表明太赫兹波段下光滑钝锥和分形粗糙钝锥目标雷达散射截面出现差异,表面的分形粗糙度引起目标RCS曲线震荡起伏,且频率越高起伏越明显,曲线波动越大。因此在太赫兹波段,目标表面的粗糙度对其散射特性的影响需要考虑。
图7给出了入射波频率为3 THz的不同涂层厚度的粗糙表面目标的后向RCS。可以看出相对于表面为导体的情况,涂覆介质以后,钝锥目标的雷达散射截面几乎在所有角度都有明显减小,并且随着涂层厚度的增大,雷达散射截面持续减小。涂覆介质层对雷达散射截面的缩减有明显的作用,在一定范围内随着涂层厚度的增大,涂覆介质对电磁波的吸收增加表面粗糙钝锥的后向RCS减小。
图8给出了不同入射频率下钝锥单站RCS。随着频率的升高,表面粗糙钝锥的后向RCS多数角度下降,且频率越高RCS值下降得越多。随着频率的增大,入射波的波长变小,目标表面的粗糙度与入射波长的比值增大,粗糙度引起的漫散射效应增大,目标RCS受到表面粗糙度的影响,曲线峰值变得不明显。
图9给出了不同表面粗糙度的圆柱模型单站雷达散射截面,其半径为r=16.25 mm,高度为h=102 mm,入射波频率为0.3 THz。
图10给出了不同表面粗糙度的锥柱模型单站雷达散射截面,半径r=16.25 mm,顶部圆锥高度h1=48.5 mm,底部圆柱部分高度h2=102 mm,入射波频率为0.3 THz。从图9和图10给出的结果可以看出,随着均方根高度的增加,目标表面的粗糙度变大,相对于0.3 THz的入射波其波长仅有1 mm,目标更加粗糙,粗糙度对目标的散射结果影响增大。当粗糙度较小时,RCS曲线可以看作是在光滑模型散射结果叠加小起伏震荡;粗糙度增大以后由表面粗糙度引起的RCS起伏甚至在某些角度可以改变光滑模型的散射曲线。
4. 结论
本文参考分形粗糙面模拟随机环境的方法来建立具有分形粗糙表面目标,采用基于基尔霍夫近似的物理光学方法研究了涂覆目标的太赫兹散射特性。分析了不同的入射波频率以及不同涂层厚度的分形粗糙表面模型在太赫兹波段的散射特性。相对于微波频段波长远大于目标表面微米量级的粗糙度,粗糙度的影响可以不考虑,而在太赫兹波段,波长与粗糙度处于等量级,必须考虑到粗糙度对于目标散射结果的影响。目标表面有涂覆介质材料时,目标的雷达散射截面小于导体情况下的结果,且在一定的范围内涂覆层越厚,目标雷达散射截面吸收越明显。
-
-
[1] CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873 [2] 白雪茹. 空天目标逆合成孔径雷达成像新方法研究[D]. [博士论文], 西安电子科技大学, 2011.BAI Xueru. Study on new techniques for ISAR imaging of aerospace targets[D]. [Ph. D. dissertation], Xidian University, 2011. [3] CAMP W W, MAYHAN J T, and O’DONNELL R M. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites[J]. Lincoln Laboratory Journal, 2000, 12(2): 267–280. [4] 高敬坤. 阵列三维成像及雷达增强成像技术研究[D]. [博士论文], 国防科技大学, 2018.GAO Jingkun. Research on array-based 3D imaging and enhanced radar imaging techniques[D]. [Ph. D. dissertation], National University of Defense Technology, 2018. [5] 文树梁, 袁起, 秦忠宇. 宽带线性调频信号Stretch处理误差获取与补偿[J]. 系统工程与电子技术, 2005, 27(1): 36–39, 184. doi: 10.3321/j.issn:1001-506X.2005.01.011WEN Shuliang, YUAN Qi, and QIN Zhongyu. Error acquisition and compensation for wideband linear frequency modulated signal Stretch processing[J]. Systems Engineering and Electronics, 2005, 27(1): 36–39, 184. doi: 10.3321/j.issn:1001-506X.2005.01.011 [6] 林钱强, 张月, 陈曾平. 宽带雷达STRETCH处理系统失真补偿新方法[J]. 电子与信息学报, 2013, 35(6): 1477–1483. doi: 10.3724/SP.J.1146.2012.01357LIN Qianqiang, ZHANG Yue, and CHEN Zengping. A new compensation method of system distortion in wideband radar STRETCH processing[J]. Journal of Electronics &Information Technology, 2013, 35(6): 1477–1483. doi: 10.3724/SP.J.1146.2012.01357 [7] Liu Yang, HOU Qingkai, XU Shiyou, et al. System distortion analysis and compensation of DIFS signals for wideband imaging radar[J]. Science China Information Sciences, 2015, 58(2): 020304. [8] HU Pengjiang, XU Shiyou, and WU Wenzhen. Adaptive compensation for wideband radar system distortion based on cross range profiles[J]. Journal of Applied Remote Sensing, 2019, 13(1): 014520. [9] 杨剑, 许人灿, 鲍庆龙, 等. 基于熵最小准则的ISAR成像高速运动补偿实现方法[J]. 信号处理, 2009, 25(12): 1861–1866. doi: 10.3969/j.issn.1003-0530.2009.12.007YANG Jian, XU Rencan, BAO Qinglong, et al. The implemental methods of high velocity compensation in ISAR imaging based on entropy minimization[J]. Signal Processing, 2009, 25(12): 1861–1866. doi: 10.3969/j.issn.1003-0530.2009.12.007 [10] 黄小红, 邱兆坤, 王伟. 目标高速运动对宽带一维距离像的影响及补偿方法研究[J]. 信号处理, 2002, 18(6): 487–490. doi: 10.3969/j.issn.1003-0530.2002.06.001HUANG Xiaohong, QIU Zhaokun, and WANG Wei. Research on effect of wideband range profile imaging and compensating method for target moving with high velocity[J]. Signal Processing, 2002, 18(6): 487–490. doi: 10.3969/j.issn.1003-0530.2002.06.001 [11] 刘爱芳, 朱晓华, 刘中. 基于修正离散Chirp-Fourier变换的高速目标ISAR距离像补偿[J]. 航空学报, 2004, 25(5): 495–498. doi: 10.3321/j.issn:1000-6893.2004.05.015LIU Aifang, ZHU Xiaohua, LIU Zhong. ISAR range profile compensation of fast-moving target using modified discrete Chirp-Fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 495–498. doi: 10.3321/j.issn:1000-6893.2004.05.015 [12] 李文臣, 王雪松, 王国玉. 机动目标一维距离像RAT法线性化补偿[J]. 国防科技大学学报, 2008, 30(5): 38–42. doi: 10.3969/j.issn.1001-2486.2008.05.009LI Wenchen, WANG Xuesong, and WANG Guoyu. Linear compensation of range profile of maneuvering target via radon-ambiguity transform (RAT)[J]. Journal of National University of Defense Technology, 2008, 30(5): 38–42. doi: 10.3969/j.issn.1001-2486.2008.05.009 [13] WOOD J C and BARRY D T. Linear signal synthesis using the Radon-Wigner transform[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 2105–2111. doi: 10.1109/78.301845 [14] TIAN Biao, CHEN Zengping, XU Shiyou, et al. ISAR imaging compensation of high speed targets based on integrated cubic phase function[C]. SPIE 8917, MIPPR 2013: Multispectral Image Acquisition, Processing, and Analysis, Wuhan, China, 2013. [15] 曹敏. 空间目标高分辨雷达成像技术研究[D]. [博士论文], 国防科技大学, 2008.CAO Min. Research on high resolution radar imaging technology for space targets[D]. [Ph. D. dissertation], National University of Defense Technology, 2008. [16] TIAN Biao, LU Zhejun, LIU Yongxiang, et al. High velocity motion compensation of IFDS data in ISAR imaging based on adaptive parameter adjustment of matched filter and entropy minimization[J]. IEEE Access, 2018, 6: 34272–34278. doi: 10.1109/ACCESS.2018.2850055 [17] 李晋. 太赫兹雷达系统总体与信号处理方法研究[D]. [博士论文], 电子科技大学, 2010.LI Jin. Research on terahertz radar system and its signal processing[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2010. [18] 刘磊. 逆合成孔径雷达二维及三维成像方法研究[D]. [博士论文], 西安电子科技大学, 2016.LIU Lei. Study of two-dimensional and three-dimensional inverse synthetic aperture radar imaging methods[D]. [Ph. D. dissertation], Xidian University, 2016. [19] 刘磊, 周峰, 陶明亮, 等. 太赫兹逆合成孔径雷达相位误差分析和补偿方法[J]. 强激光与粒子束, 2013, 25(6): 1469–1474. doi: 10.3788/HPLPB20132506.1469LIU Lei, ZHOU Feng, TAO Mingliang, et al. Method of phase error analysis and compensation for terahertz inverse synthetic aperture radar[J]. High Power Laser and Particle Beams, 2013, 25(6): 1469–1474. doi: 10.3788/HPLPB20132506.1469 [20] SHAO Shuai, ZHANG Lei, LIU Hongwei, et al. Spatial-variant contrast maximization autofocus algorithm for ISAR imaging of maneuvering targets[J]. Science China Information Sciences, 2019, 62(4): 40303. doi: 10.1007/s11432-018-9707-2 [21] 林钱强, 唐鹏飞, 陈曾平. 宽带雷达中频直接采样与高速存储系统设计与实现[J]. 雷达学报, 2012, 1(3): 283–291. doi: 10.3724/SP.J.1300.2012.20054LIN Qianqiang, TANG Pengfei, and CHEN Zengping. Design and implementation of direct IF sampling and high-speed storage system for wideband radar[J]. Journal of Radars, 2012, 1(3): 283–291. doi: 10.3724/SP.J.1300.2012.20054 [22] LIN Qianqiang, CHEN Zengping, ZHANG Yue, et al. Coherent phase compensation method based on direct IF sampling in wideband radar[J]. Progress in Electromagnetics Research, 2013, 136: 753–764. doi: 10.2528/PIER12122203 [23] 林钱强, 郭芳, 陈曾平. ISAR成像的相参多普勒质心跟踪相位补偿方法[J]. 信号处理, 2013, 29(8): 1036–1042. doi: 10.3969/j.issn.1003-0530.2013.08.017LIN Qianqiang, GUO Fang, and CHEN Zengping. Coherent DCT phase compensation method for ISAR imaging[J]. Signal Processing, 2013, 29(8): 1036–1042. doi: 10.3969/j.issn.1003-0530.2013.08.017 [24] LIN Jianzhi, LI Weixing, ZHANG Yue, et al. A method for range alignment based on coherent echoes by wideband radar[C]. The 2012 4th International Conference on Signal Processing Systems, Singapore, 2012: 143–147. [25] 袁斌. 空天微动目标逆合成孔径雷达成像关键技术研究[D]. [博士论文], 国防科学技术大学, 2014.YUAN Bin. Research on inverse synthetic aperture radar imaging of aerospace targets with micro-motions[D]. [Ph. D. dissertation], National University of Defense Technology, 2014. [26] LIU Yang, CHEN Zengping, LI Na, et al. Wideband radar imaging for space debris based on direct IF sampling signals[C]. SPIE 9250, Electro-Optical Remote Sensing, Photonic Technologies, and Applications VIII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II, Amsterdam, Netherlands, 2014. [27] HU Jiemin, ZHOU Wei, FU Yaowen, et al. Uniform rotational motion compensation for ISAR based on phase cancellation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 636–640. doi: 10.1109/LGRS.2010.2098841 [28] WANG Yong and JIANG Yicheng. A novel algorithm for estimating the rotation angle in ISAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 608–609. doi: 10.1109/LGRS.2008.2000955 [29] MARTORELLA M. Novel approach for ISAR image cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 281–294. doi: 10.1109/TAES.2008.4517004 [30] ZHANG W C, CHEN Z P, and YUAN B. Rotational motion compensation for wide-angle ISAR imaging based on integrated cubic phase function[C]. IET International Radar Conference 2013, Xi’an, China, 2013: 14–16. [31] LIU Yang, ZOU Jiangwei, XU Shiyou, et al. Nonparametric rotational motion compensation technique for high-resolution ISAR imaging via golden section search[J]. Progress in Electromagnetics Research M, 2014, 36: 67–76. doi: 10.2528/PIERM14031905 [32] PARK S H, KIM H T, and KIM K T. Cross-range scaling algorithm for ISAR images using 2-D Fourier transform and polar mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 868–877. doi: 10.1109/TGRS.2010.2060731 [33] YEH C M, XU Jia, PENG Yingning, Wang X T. Cross-range scaling for ISAR based on image rotation correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 597–601. doi: 10.1109/LGRS.2009.2021990 [34] LI J, QIU C W, ZHANG L, et al. Time-frequency imaging algorithm for highspeed spinning targets in two dimensions[J]. IET Radar, Sonar & Navigation, 2010, 4(6): 806–817. [35] 句彦伟, 于力, 王洋. 基于时频分析的ISAR瞬时成像算法[J]. 现代雷达, 2009, 31(7): 46–50. doi: 10.3969/j.issn.1004-7859.2009.07.010JU Yanwei, YU Li, and WANG Yang. ISAR instantaneous imaging algorithm based on time-freuqency analysis[J]. Modern Radar, 2009, 31(7): 46–50. doi: 10.3969/j.issn.1004-7859.2009.07.010 [36] BARBAROSSA S and LEMOINE O. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation[J]. IEEE Signal Processing Letters, 1996, 3(4): 112–115. doi: 10.1109/97.489064 [37] LI J and LING H. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts[J]. IEE Proceedings - Radar, Sonar and Navigation, 2003, 150(4): 284. doi: 10.1049/ip-rsn:20030729 [38] 邢孟道. 基于实测数据的雷达成像方法研究[D]. [博士论文], 西安电子科技大学, 2002.XING Mengdao. Study of radar imaging methods based on real data[D]. [Ph. D. dissertation], Xidian University, 2002. [39] FAN Lijie, SHI Si, LIU Yang, et al. A novel range-instantaneous-Doppler ISAR imaging algorithm for maneuvering targets via adaptive Doppler spectrum extraction[J]. Progress in Electromagnetics Research C, 2015, 56: 109–118. doi: 10.2528/PIERC14122501 [40] ZHENG Jibin, SU Tao, ZHANG Long, et al. ISAR imaging of targets with complex motion based on the chirp rate-quadratic chirp rate distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7276–7289. doi: 10.1109/TGRS.2014.2310474 [41] ZHENG Jibin, SU Tao, ZHU Wentao, et al. ISAR imaging of targets with complex motions based on the keystone time-chirp rate distribution[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1275–1279. doi: 10.1109/LGRS.2013.2291992 [42] LI Yanyan, SU Tao, ZHENG Jibin, et al. ISAR imaging of targets with complex motions based on modified Lv’s distribution for cubic phase signal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10): 4775–4784. doi: 10.1109/JSTARS.2015.2460734 [43] WANG Yong, XU Rongqing, ZHANG Qingxiang, et al. ISAR Imaging of maneuvering target based on the quadratic frequency modulated signal model with time-varying amplitude[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(3): 1012–1024. doi: 10.1109/JSTARS.2016.2622721 [44] WANG Yong, KANG Jian, and JIANG Yicheng. ISAR imaging of maneuvering target based on the local polynomial wigner distribution and Integrated high-order ambiguity function for cubic phase signal model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2971–2991. doi: 10.1109/JSTARS.2014.2301158 [45] WANG Yong, RONG Jiajia, and HAN Tao. Novel approach for high resolution ISAR/InISAR sensors imaging of maneuvering target based on peak extraction technique[J]. IEEE Sensors Journal, 2019, 19(14): 5541–5558. doi: 10.1109/JSEN.2019.2905246 [46] ZHENG Jibin, LIU Hongwei, LIAO Guisheng, et al. ISAR imaging of targets with complex motions based on a noise-resistant parameter estimation algorithm without nonuniform axis[J]. IEEE Sensors Journal, 2016, 16(8): 2509–2518. doi: 10.1109/JSEN.2016.2516040 [47] BORISON S L, BOWLING S B, and CUOMO K M. Super-resolution methods for wideband radar[J]. The Lincoln Laboratory Journal, 1992, 5(3): 441–461. [48] ODENDAAL J W, BARNARD E, and PISTORIUS C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(10): 1386–1391. doi: 10.1109/8.320744 [49] RAO B D and HARI K V S. Performance analysis of root-music[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939–1949. doi: 10.1109/29.45540 [50] WANG Yuanxun and LING Hao. A frequency-aspect extrapolation algorithm for ISAR image simulation based on two-dimensional ESPRIT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1743–1748. doi: 10.1109/36.851973 [51] LOPEZ-DEKKER P and MALLORQUI J J. Capon- and APES-based SAR processing: Performance and practical considerations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2388–2402. doi: 10.1109/TGRS.2009.2038902 [52] BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133. [53] ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009 [54] 白婷. 基于压缩感知的ISAR成像方法[D]. [硕士论文], 西安电子科技大学, 2014.BAI Ting. ISAR imaging based on compressive sensing[D]. [Master dissertation], Xidian University, 2014. [55] 张龙, 张磊, 邢孟道. 一种基于改进压缩感知的低信噪比ISAR高分辨成像方法[J]. 电子与信息学报, 2010, 32(9): 2263–2267. doi: 10.3724/SP.J.1146.2009.01135ZHANG Long, ZHANG Lei, and XING Mengdao. A new method of high resolution ISAR imaging under low SNR based on improved compressive sensing[J]. Journal of Electronics &Information Technology, 2010, 32(9): 2263–2267. doi: 10.3724/SP.J.1146.2009.01135 [56] GAO Jingkun, DENG Bin, QIN Yuliang, et al. Enhanced radar imaging using a complex-valued convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 35–39. doi: 10.1109/LGRS.2018.2866567 [57] QIN Dan and GAO Xunzhang. Enhancing ISAR resolution by a generative adversarial network[J]. IEEE Geoscience and Remote Sensing Letters, in press. doi: 10.1109/LGRS.2020.2965743. [58] GAO Xunzhang, QIN Dan, and GAO Jingkun. Resolution enhancement for inverse synthetic aperture radar images using a deep residual network[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1588–1593. doi: 10.1002/mop.32186 [59] YE Jiaqi, QIN Dan, ZHANG Yifan, et al. RBM-based joint dictionary learning for ISAR resolution enhancement[J]. The Journal of Engineering, 2019, 2019(11): 7907–7911. [60] 刘洋. 空间目标高分辨ISAR成像技术研究[D]. [博士论文], 国防科技大学, 2015.LIU Yang. Research on key technology of high-resolution and precision radar imaging of space targets[D]. [Ph. D. dissertation], National University of Defense Technology, 2015. [61] 呼鹏江. 空天目标逆合成孔径雷达精细成像技术研究[D]. [博士论文], 国防科技大学, 2018.HU Pengjiang. Study on inverse synthetic aperture radar fine imaging of aerospace targets[D]. [Ph. D. dissertation], National University of Defense Technology, 2018. [62] 许志伟, 张磊, 邢孟道. 基于特征配准的ISAR图像方位定标方法[J]. 电子与信息学报, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590XU Zhiwei, ZHANG Lei, and XING Mengdao. A novel cross-range scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590 [63] WANG Yong, XU Zhuo, LIU Qiuchen, et al. Novel approach for ISAR cross-range scaling of maneuvering target[J]. IEEE Sensors Journal, 2019, 19(22): 10409–10418. doi: 10.1109/JSEN.2019.2926759 [64] ZHANG Lingxiao, WANG Baoshun, and HE Sisanl. Cross-range scaling for net-worked radar ISAR based on image rotation matching[J]. Computer Engineering & Science, 2015, 37(4): 796–801. [65] SUN Sibo, ZHANG Xinyu, ZHANG Guangpu, et al. Accurate ISAR scaling for both smooth and maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1537–1549. doi: 10.1109/TAES.2019.2895717 [66] ZHANG Shuanghui, LIU Yongxiang, LI Xiang, et al. Fast ISAR cross-range scaling using modified newton method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1355–1367. doi: 10.1109/TAES.2017.2785560 [67] 张昆帆, 裴喜龙, 党同心, 等. 基于频谱包络自相关的ISAR转角估计方法[J]. 系统工程与电子技术, 2014, 36(8): 1511–1516. doi: 10.3969/j.issn.1001-506X.2014.08.11ZHANG Kunfan, PEI Xilong, DANG Tongxin, et al. Estimating method for the rotation angle of ISAR image based on spectral envelope correlation[J]. Systems Engineering and Electronics, 2014, 36(8): 1511–1516. doi: 10.3969/j.issn.1001-506X.2014.08.11 [68] 管志强, 杨学岭, 刘硕, 等. 一种基于自调焦的ISAR图像增强方法[P]. 中国, CN109685747A, 2019.GUAN Zhiqiang, YANG Xueling, LIU Shuo, et al. An ISAR image enhancement method based on self-focusing[P]. CN, CN109685747A, 2019. [69] LIU Yang, LI Gang, SHI Si, et al. ISAR image visualization for aerospace targets[C]. SPIE 11428, MIPPR 2019: Multispectral Image Acquisition, Processing, and Analysis, Wuhan, China, 2020: 1142805. doi: 10.1117/12.2538204. [70] 李刚. 基于序列ISAR像的空间目标结构分析[D]. [博士论文], 国防科技大学, 2016.LI Gang. Research on key technology of structure analysis for space targets based on ISAR sequences[D]. [Ph. D. dissertation], National University of Defense Technology, 2016. [71] MARTORELLA M, PALMER J, BERIZZI F, et al. Polarimetric ISAR autofocusing[J]. IET Signal Processing, 2008, 2(3): 312–324. doi: 10.1049/iet-spr:20070121 [72] MARTORELLA M, CANTINI L, BERIZZI F, et al. Optimised image autofocusing for polarimetric ISAR[C]. The 2006 14th European Signal Processing Conference, Florence, Italy, 2006. [73] MARTORELLA M, BERIZZI F, PALMER J, et al. Image contrast and entropy based autofocusing for polarimetric ISAR[C]. 2007 International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 245–249. [74] MARTORELLA M, PALMER J, BATES B, et al. Polarimetric hot spot processing for ISAR image autofocusing[C]. 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1–5. doi: 10.1049/cp: 20070576. [75] MARTORELLA M, CACCIAMANO A, GIUSTI E, et al. CLEAN technique for polarimetric ISAR[J]. International Journal of Navigation and Observation, 2008, 2008: 325279. [76] WU Min, ZHANG Lei, XIA Xianggen, et al. Phase adjustment for polarimetric ISAR with compressive sensing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1592–1606. doi: 10.1109/TAES.2016.150078 [77] LIU Yang, LI Gang, TIAN Biao, et al. ISAR imaging at low SNR level based on polarimetric whitening filter[C]. SPIE 8917, MIPPR 2013: Multispectral Image Acquisition, Processing, and Analysis, Wuhan, China, 2013. [78] LIN Jianzhi, ZHANG Yue, LI Weixing, et al. Maximum likelihood-based range alignment for polarimetric inverse synthetic aperture radar[J]. Remote Sensing Letters, 2017, 8(2): 185–193. doi: 10.1080/2150704X.2016.1249297 [79] HU Pengjiang, LIU Yang, TIAN Biao, et al. Time division in a pulse polarimetric radar based ISAR fusion imaging technique[C]. 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, 2014: 556–560. [80] CUOMO K M, PIOU J E, and MAYHAN J T. Ultra-wideband coherent processing[J]. The Lincoln Laboratory Journal, 1997, 10(2): 203–222. [81] ZHANG Huanhuan and CHEN Rushan. Coherent processing and superresolution technique of multi-band radar data based on fast sparse Bayesian learning algorithm[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6217–6227. doi: 10.1109/TAP.2014.2361158 [82] TIAN Biao, CHEN Zengping, and XU Shiyou. Sparse subband fusion imaging based on parameter estimation of geometrical theory of diffraction model[J]. IET Radar, Sonar & Navigation, 2014, 8(4): 318–326. [83] ZOU Yongqiang, GAO Xunzhang, LI Xiang, et al. A matrix pencil algorithm based multiband iterative fusion imaging method[J]. Scientific Reports, 2016, 6: 19440. doi: 10.1038/srep19440 [84] BAI Xueru, ZHOU Feng, WANG Qi, et al. Sparse subband imaging of space targets in high-speed motion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4144–4154. doi: 10.1109/TGRS.2012.2227756 [85] TIAN Jihua, SUN Jinping, WANG Guohua, et al. Multiband radar signal coherent fusion processing with IAA and apFFT[J]. IEEE Signal Processing Letters, 2013, 20(5): 463–466. doi: 10.1109/LSP.2013.2251631 [86] 邹永强. 空间目标多频段ISAR融合成像关键技术研究[D]. [博士论文], 国防科学技术大学, 2016.ZOU Yongqiang. Research on multiband ISAR fusion imaging for space target[D]. [Ph. D. dissertation], National University of Defense Technology, 2016. [87] MA Juntao, GAO Meiguo, XIA Mingfei, et al. High-resolution ISAR imaging with sparse subband based on waveform fusion dictionary[C]. The 2017 7th IEEE International Conference on Electronics Information and Emergency Communication, Macau, China, 2017: 385–390. [88] ZHANG Ying, WANG Tingjing, ZHAO Huapeng, et al. Multiple radar subbands fusion algorithm based on support vector regression in complex noise environment[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 381–392. doi: 10.1109/TAP.2017.2769135 [89] ZHOU Feng and BAI Xueru. High-resolution sparse subband imaging based on bayesian learning with hierarchical priors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4568–4580. doi: 10.1109/TGRS.2018.2827072 [90] YE Fan, HE Feng, and Sun Zaoyu. Radar signal level fusion imaging[C]. IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2008, Boston, USA, 2008. [91] HU Pengjiang, XU Shiyou, WU Wenzhen, et al. Sparse subband ISAR imaging based on autoregressive model and smoothed ℓ0 algorithm[J]. IEEE Sensors Journal, 2018, 18(22): 9315–9323. doi: 10.1109/JSEN.2018.2869832 [92] LI Liya, YUAN Weiming, LIU Hongwei, et al. Radar automatic target recognition based on InISAR images[C]. The 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 497–502. [93] ZHANG Long, SU Tao, LIU Zheng, et al. High resolution ISAR imaging in receiver centered region area in bistatic radar[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013: 50. doi: 10.1186/1687-6180-2013-50 [94] MA Changzheng, Yeo T S, GUO Qiang, et al. Bistatic ISAR imaging incorporating interferometric 3-D imaging technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3859–3867. doi: 10.1109/TGRS.2012.2186304 [95] 沈阳, 陈永光, 李修和, 等. 多基地雷达反隐身分布式检测融合算法研究[J]. 电子学报, 2007, 35(3): 506–510. doi: 10.3321/j.issn:0372-2112.2007.03.025SHEN Yang, CHEN Yongguang, LI Xiuhe, et al. Study on fusion arithmetic of multi radar distributed detection system against stealthy targets[J]. Acta Electronica Sinica, 2007, 35(3): 506–510. doi: 10.3321/j.issn:0372-2112.2007.03.025 [96] 高昭昭. 高分辨ISAR成像新技术研究[D]. [博士论文], 西安电子科技大学, 2009.GAO Zhaozhao. New technologies of high resolution ISAR imaging[D]. [Ph. D. dissertation], Xidian University, 2009. [97] MARTORELLA M. Bistatic ISAR image formation in presence of bistatic angle changes and phase synchronisation errors[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008. [98] CHEN V C and MARTORELLA M. Bistatic ISAR[M]. CHEN V C and MARTORELLA M. Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications. New York: SciTech Publishing Inc, 2014. [99] 董健, 尚朝轩, 高梅国, 等. 双基地ISAR成像平面研究及目标回波模型修正[J]. 电子与信息学报, 2010, 32(8): 1855–1862. doi: 10.3724/SP.J.1146.2009.00706DONG Jian, SHANG Chaoxuan, GAO Meiguo, et al. The image plane analysis and echo model amendment of bistatic ISAR[J]. Journal of Electronics &Information Technology, 2010, 32(8): 1855–1862. doi: 10.3724/SP.J.1146.2009.00706 [100] 董健, 尚朝轩, 高梅国, 等. 空间目标双基地ISAR成像的速度补偿研究[J]. 中国电子科学研究院学报, 2010, 5(1): 78–85. doi: 10.3969/j.issn.1673-5692.2010.01.016DONG Jian, SHANG Chaoxuan, GAO Meiguo, et al. Research on bistatic ISAR speed compensation of space target[J]. Journal CAEIT, 2010, 5(1): 78–85. doi: 10.3969/j.issn.1673-5692.2010.01.016 [101] 郭宝锋, 尚朝轩, 高梅国, 等. 机动目标双基地ISAR越距离单元徙动校正算法[J]. 数据采集与处理, 2014, 29(4): 562–569. doi: 10.3969/j.issn.1004-9037.2014.04.011GUO Baofeng, SHANG Chaoxuan, GAO Meiguo, et al. Correction algorithm of migration through resolution cells in bistatic ISAR of maneuvering target[J]. Journal of Data Acquisition &Processing, 2014, 29(4): 562–569. doi: 10.3969/j.issn.1004-9037.2014.04.011 [102] 赵会朋, 王俊岭, 高梅国, 等. 基于轨道误差搜索的双基地ISAR包络对齐算法[J]. 系统工程与电子技术, 2017, 39(6): 1235–1243. doi: 10.3969/j.issn.1001-506X.2017.06.08ZHAO Huipeng, WANG Junling, GAO Meiguo, et al. Bistatic ISAR envelope alignment algorithm based on orbit error search[J]. Systems Engineering and Electronics, 2017, 39(6): 1235–1243. doi: 10.3969/j.issn.1001-506X.2017.06.08 [103] WANG Feng, XU Feng, and JIN Yaqiu. Simulation of multi-station ISAR imaging for monitoring a space target: A case of Envisat[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017. [104] 许志伟. ISAR图像的特征提取及应用研究[D]. [硕士论文], 西安电子科技大学, 2014.XU Zhiwei. A study of feature extraction and applications using inverse synthetic aperture radar images[D]. [Master dissertation], Xidian University, 2014. [105] 马俊涛, 高梅国, 胡文华, 等. 空间目标多站ISAR优化布站与融合成像方法[J]. 电子与信息学报, 2017, 39(12): 2834–2843. doi: 10.11999/JEIT170482MA Juntao, GAO Meiguo, HU Wenhua, et al. Optimum distribution of multiple location ISAR and multi-angles fusion imaging for space target[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2834–2843. doi: 10.11999/JEIT170482 [106] 王锐. 分布式全相参雷达参数估计及ISAR成像方法研究[D]. [博士论文], 北京理工大学, 2015.WANG Rui. Research on parameter estimation and ISAR imaging for distributed coherent radar[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2015. [107] 李军, 全英汇, 邢孟道, 等. 基于和差波束的三维ISAR成像技术[J]. 电波科学学报, 2010, 25(2): 281–286.LI Jun, QUAN Yinghui, XING Mengdao, et al. 3-D ISAR imaging technology based on sum-diff beam[J]. Chinese Journal of Radio Science, 2010, 25(2): 281–286. [108] 马长征, 张守宏. 超分辨在单脉冲雷达三维成像中的应用[J]. 西安电子科技大学学报, 1999, 26(3): 379–382.MA Changzheng and ZHANG Shouhong. Applications of super-resolution signal processing on monopulse radar three dimensional imaging[J]. Journal of Xidian University, 1999, 26(3): 379–382. [109] MAYHAN J T, BURROWS M L, CUOMO K M, et al. High resolution 3D “snapshot” ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630–642. doi: 10.1109/7.937474 [110] BHALLA R and LING Hao. Three-dimensional scattering center extraction using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(11): 1445–1453. doi: 10.1109/8.542068 [111] 任双桥, 刘永祥, 黎湘, 等. 基于多姿态角下一维距离像的雷达目标三维成像[J]. 电子学报, 2005, 33(6): 1088–1090. doi: 10.3321/j.issn:0372-2112.2005.06.032REN Shuangqiao, LIU Yongxiang, LI Xiang, et al. Radar target 3-D imaging based on multi-aspect range profiles[J]. Acta Electronica Sinica, 2005, 33(6): 1088–1090. doi: 10.3321/j.issn:0372-2112.2005.06.032 [112] 罗斌凤, 张群, 袁涛, 等. InISAR三维成像中的ISAR像失配准分析及其补偿方法[J]. 西安电子科技大学学报: 自然科学版, 2003, 30(6): 739–743.LUO Binfeng, ZHANG Qun, YUAN Tao, et al. Analysis and compensation of mismatching between two ISAR images in interferometric inverse synthetic aperture radar 3-D imaging[J]. Journal of Xidian University:Natural Science, 2003, 30(6): 739–743. [113] 张群, 马长征, 张涛, 等. 干涉式逆合成孔径雷达三维成像技术研究[J]. 电子与信息学报, 2001, 23(9): 890–898.ZHANG Qun, MA Changzheng, ZHANG Tao, et al. Research on 3-D imaging technique for interferometric inverse synthetic aperture radar[J]. Journal of Electronics & Information Technology, 2001, 23(9): 890–898. [114] 肖志河, 戴朝明, 巢增明, 等. 旋转目标干涉逆合成孔径三维成像技术[J]. 电子学报, 1999, 27(12): 19–22.XIAO Zhihe, DAI Chaoming, CHAO Zengming, et al. INISAR 3-D imaging technique for rotating targets[J]. Acta Electronica Sinica, 1999, 27(12): 19–22. [115] WANG Genyuan, XIA Xianggen, and CHEN V C. Three-dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436–447. doi: 10.1109/83.908519 [116] TIAN Biao, LIU Yang, XU Shiyou, et al. Interferometric inverse synthetic aperture radar imaging for space targets based on wideband direct sampling using two antennas[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083599. doi: 10.1117/1.JRS.8.083599 [117] 马长征, 张守宏. 舰船目标单脉冲雷达三维成像技术[J]. 电子与信息学报, 2000, 22(3): 385–391.MA Changzheng and ZHANG Shouhong. Three-dimensional imaging technique of ship targets with monopulse radar[J]. Journal of Electronics &Information Technology, 2000, 22(3): 385–391. [118] 黎海林, 丁磊. 单脉冲三维成像试验研究[J]. 飞行器测控学报, 2010, 29(3): 74–78.LI Hailin and DING Lei. Research on monopulse 3-D imaging tests[J]. Journal of Spacecraft TT &C Technology, 2010, 29(3): 74–78. [119] WANG Shanhu, YOU Hongjian, and FU Kun. BFSIFT: a novel method to find feature matches for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649–653. doi: 10.3724/SP.J.1146.2013.01645 [120] 左潇丽, 朱岱寅, 李俊强. 基于特征匹配的空间目标ISAR图像横向定标[J]. 电子设计工程, 2017, 25(18): 74–78. doi: 10.3969/j.issn.1674-6236.2017.18.018ZUO Xiaoli, ZHU Daiyin, and LI Junqiang. ISAR image cross-range scaling for space target based on feature registration[J]. Electronic Design Engineering, 2017, 25(18): 74–78. doi: 10.3969/j.issn.1674-6236.2017.18.018 [121] YANG Shan, JIANG Weidong, and TIAN Biao. ISAR image matching and 3D reconstruction based on improved SIFT method[C]. 2019 International Conference on Electronic Engineering and Informatics, Nanjing, China, 2019. [122] DI Guohui, SU Fulin, YANG Hongxin, et al. ISAR image scattering center association based on speeded-up robust features[J]. Multimedia Tools and Applications, 2020, 79(7): 5065–5082. [123] 王昕, 郭宝锋, 尚朝轩. 基于二维ISAR图像序列的雷达目标三维重建方法[J]. 电子与信息学报, 2013, 35(10): 2475–2480. doi: 10.3724/SP.J.1146.2012.01534WANG Xin, GUO Baofeng, and Shang Chaoxuan. 3D reconstruction of target geometry based on 2D data of inverse synthetic aperture radar images[J]. Journal of Electronics &Information Technology, 2013, 35(10): 2475–2480. doi: 10.3724/SP.J.1146.2012.01534 [124] LIU Lei, ZHOU Feng, and BAI Xueru. Method for scatterer trajectory association of sequential ISAR images based on Markov chain Monte Carlo algorithm[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1535–1542. [125] 毕严先, 魏少明, 王俊, 等. 基于多假设跟踪的散射点关联和三维重构方法[J]. 北京航空航天大学学报, 2016, 42(6): 1219–1227.BI Yanxian, WEI Shaoming, WANG Jun, et al. New method of scatterers association and 3D reconstruction based on multi-hypothesis tracking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1219–1227. [126] 孙静, 尚社, 许家栋. 基于双重隐马尔科夫模型的ISAR图像序列中散射中心关联算法[J]. 空间电子技术, 2013, 10(1): 48–52, 68. doi: 10.3969/j.issn.1674-7135.2013.01.010SUN Jing, SHANG She, and XU Jiadong. Scatters correlation from ISAR image sequences based on double hidden Markov model[J]. Space Electronic Technology, 2013, 10(1): 48–52, 68. doi: 10.3969/j.issn.1674-7135.2013.01.010 [127] ZHOU Yejian, ZHANG Lei, CAO Yunhe, et al. Attitude estimation and geometry reconstruction of satellite targets based on ISAR image sequence interpretation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1698–1711. doi: 10.1109/TAES.2018.2875503 [128] 刘烽, 许家栋. 雷达目标三维特征的提取与识别研究[J]. 现代雷达, 2005, 27(1): 18–21. doi: 10.3969/j.issn.1004-7859.2005.01.006LIU Feng and XU Jiadong. Research on target identification with ISAR image sequence[J]. Modern Radar, 2005, 27(1): 18–21. doi: 10.3969/j.issn.1004-7859.2005.01.006 [129] SU Fulin, LU Jing, and SU Yuan. A method of 3-D image reconstruction of target based on ISAR image sequences[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 123–126. [130] 彭石宝, 许稼, 彭应宁, 等. 基于逆合成孔径雷达图像序列的目标三维重建[J]. 航空兵器, 2010, (6): 37–40. doi: 10.3969/j.issn.1673-5048.2010.06.009PENG Shibao, XU Jia, PENG Yingning, et al. Three-dimensional target reconstruction with inverse synthetic aperture radar image sequence[J]. Aero Weaponry, 2010, (6): 37–40. doi: 10.3969/j.issn.1673-5048.2010.06.009 [131] TOMASI C and KANADE T. Shape and motion from image streams under orthography: A factorization method[J]. International Journal of Computer Vision, 1992, 9(2): 137–154. doi: 10.1007/BF00129684 [132] MCFADDEN F E. Three-dimensional reconstruction from ISAR sequences[C]. SPIE 4744, Radar Sensor Technology and Data Visualization, Orlando, USA, 2002: 58–67. [133] WANG Feng, XU Feng, and JIN Yaqiu. Three-dimensional reconstruction from a multiview sequence of sparse ISAR imaging of a space target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 611–620. doi: 10.1109/TGRS.2017.2737988 [134] LI Gang, ZOU Jiangwei, XU Shiyou, et al. A method of 3D reconstruction via ISAR Sequences based on scattering centers association for space rigid object[C]. SPIE 9252, Millimetre Wave and Terahertz Sensors and Technology VII, Amsterdam, Netherlands, 2014. [135] 杨山. 基于ISAR图像序列的目标三维重构技术研究[D]. [硕士论文], 国防科技大学, 2019.YANG Shan. Research on target three-dimensional reconstruction based on ISAR image sequences[D]. [Master dissertation], National University of Defense Technology, 2019. [136] ZHOU Yejian, ZHANG Lei, XING Chao, et al. Target three-dimensional reconstruction from the multi-view radar image sequence[J]. IEEE Access, 2019, 7: 36722–36735. doi: 10.1109/ACCESS.2019.2905130 [137] FORRESTER N T. Surface reconstruction from interferometric ISAR data[D]. [Master dissertation], Massachusetts Institute of Technology, 2014. [138] LIU Yabo, SONG Mingcong, WU Kun, et al. High-quality 3-D InISAR imaging of maneuvering target based on a combined processing approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1036–1040. doi: 10.1109/LGRS.2012.2227935 [139] WU Wenzhen, HU Pengjiang, XU Shiyou, et al. Image registration for InISAR based on joint translational motion compensation[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1597–1603. [140] 刘承兰, 贺峰, 高勋章, 等. 基于非线性最小二乘估计-坐标变换的斜视InISAR成像[J]. 中国科学: 技术科学, 2011, 54(12): 3332–3340. doi: 10.1007/s11431-011-4515-9LIU Chenglan, HE Feng, GAO Xunzhang et al. Squint-mode InISAR imaging based on nonlinear least square and coordinates transform[J]. Science China Technological Sciences, 2011, 54(12): 3332–3340. doi: 10.1007/s11431-011-4515-9 [141] TIAN Biao, ZOU Jiangwei, XU Shiyou, et al. Squint model interferometric ISAR imaging based on respective reference range selection and squint iteration improvement[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1366–1375. [142] MA Changzheng, YEO T S, ZHANG Qun, et al. Three-dimensional ISAR imaging based on antenna array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(2): 504–515. doi: 10.1109/TGRS.2007.909946 [143] MA Changzheng, YEO T S, TAN H S, et al. Three-dimensional ISAR imaging using a two-dimensional sparse antenna array[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 378–382. doi: 10.1109/LGRS.2008.916071 [144] JIAO Zekun, DING Chibiao, CHEN Longyong, et al. Three-dimensional imaging method for array ISAR based on sparse Bayesian inference[J]. Sensors, 2018, 18(10): 3563. doi: 10.3390/s18103563 [145] CAPUTI W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(2): 269–278. doi: 10.1109/TAES.1971.310366 [146] WEHNER D R. High Resolution Radar[M]. Norwood: Artech House, 1987. [147] TAIT P. Introduction to Radar Target Recognition[M]. London: Institution of Electrical Engineers, 2005: 264–272. [148] 张涛, 马长征, 张群, 等. 步进跟踪模式下的单脉冲雷达三维成像技术研究[J]. 电子与信息学报, 2001, 23(9): 912–918.ZHANG Tao, MA Changzheng, ZHANG Qun, et al. Monopulse radar three dimensional imaging techniques for targets in stepped tracking mode[J]. Journal of Electronics & Information Technology, 2001, 23(9): 912–918. [149] 邱晓晖, 赵阳, CHENG A H W, 等. ISAR成像最小熵自聚焦与相位补偿的一致性分析[J]. 电子与信息学报, 2007, 29(8): 1799–1801. doi: 10.3724/SP.J.1146.2006.00072QIU Xiaohui, ZHAO Yang, CHENG A H W, et al. Consistency study of minimum entropy auto-focusing with phase compensation in ISAR imaging[J]. Journal of Electronics &Information Technology, 2007, 29(8): 1799–1801. doi: 10.3724/SP.J.1146.2006.00072 期刊类型引用(4)
1. 杨帆,何嘉岳,杨瑶佳,金一飞,许慎恒,李懋坤. 界面电磁学的理论与应用. 微波学报. 2023(05): 52-61 . 百度学术
2. 王禄炀,兰峰,宋天阳,何贵举,潘一博,张雅鑫,陈智,杨梓强. 多功能动态波束调控的太赫兹编码超表面. 无线电通信技术. 2022(02): 247-252 . 百度学术
3. 周嵩林,唐隽文,刘罗颢,吴优,刘长昊,金一飞,杨帆,许慎恒,李懋坤. 基于电磁表面的阵列天线及应用概述. 通信学报. 2022(12): 13-23 . 百度学术
4. 李国英,嵇成高,于刚刚,关浩. 相控雷达成像测井仪器中收发天线系统设计. 测井技术. 2022(06): 696-700+706 . 百度学术
其他类型引用(1)
-