引用排行

(被引数据来源于全网,每月更新)
1
多传感器多目标跟踪是信息融合领域的热点问题,其通过融合多个局部传感器数据,提高目标跟踪精度和稳定性。多传感器多目标跟踪按融合体系可分为分布式、集中式、混合式3类,其中分布式融合结构对网络通信带宽要求低、可靠性和稳定性强,广泛应用于军事、民用领域。该文聚焦分布式多传感器多目标跟踪涉及的目标跟踪、传感器配准、航迹关联、数据融合4项关键技术,主要分析了各关键技术的理论原理与适用条件,重点介绍了不完整测量条件下的空间配准与航迹关联,并给出仿真结果。最后,该文总结了现有分布式多传感器多目标跟踪关键技术存在的问题,并指出了其未来发展趋势。 多传感器多目标跟踪是信息融合领域的热点问题,其通过融合多个局部传感器数据,提高目标跟踪精度和稳定性。多传感器多目标跟踪按融合体系可分为分布式、集中式、混合式3类,其中分布式融合结构对网络通信带宽要求低、可靠性和稳定性强,广泛应用于军事、民用领域。该文聚焦分布式多传感器多目标跟踪涉及的目标跟踪、传感器配准、航迹关联、数据融合4项关键技术,主要分析了各关键技术的理论原理与适用条件,重点介绍了不完整测量条件下的空间配准与航迹关联,并给出仿真结果。最后,该文总结了现有分布式多传感器多目标跟踪关键技术存在的问题,并指出了其未来发展趋势。
2
硬件差异会形成辐射源的独有指纹,并附加在无线电信号上,利用辐射源的这一独特属性可进行射频指纹识别。在非合作条件下,由于信道环境未知、信号调制方案等先验知识匮乏,基于特征工程的射频指纹识别方法面临巨大挑战,而基于深度学习的射频指纹识别方法,尤其是能够直接处理Raw I/Q的方法表现出了很大潜力,但是该方向的研究成果较为零散,妨碍了研究者对关键问题的把握。该文首先从先验知识的利用上,对基于深度学习的射频指纹识别方法进行了分类对比,将问题聚焦到基于Raw I/Q和深度学习的射频指纹识别方法。然后,该文重点对使用Raw I/Q进行射频指纹识别的深度神经网络模型进行了分类和讨论,并对射频指纹识别相关的开源数据集、数据表示方法和数据增强方法进行了整理和归纳。最后,该文讨论了基于深度学习的射频指纹识别方法所面临的难题和值得关注的研究方向,以期对射频指纹识别的研究与应用有所帮助。 硬件差异会形成辐射源的独有指纹,并附加在无线电信号上,利用辐射源的这一独特属性可进行射频指纹识别。在非合作条件下,由于信道环境未知、信号调制方案等先验知识匮乏,基于特征工程的射频指纹识别方法面临巨大挑战,而基于深度学习的射频指纹识别方法,尤其是能够直接处理Raw I/Q的方法表现出了很大潜力,但是该方向的研究成果较为零散,妨碍了研究者对关键问题的把握。该文首先从先验知识的利用上,对基于深度学习的射频指纹识别方法进行了分类对比,将问题聚焦到基于Raw I/Q和深度学习的射频指纹识别方法。然后,该文重点对使用Raw I/Q进行射频指纹识别的深度神经网络模型进行了分类和讨论,并对射频指纹识别相关的开源数据集、数据表示方法和数据增强方法进行了整理和归纳。最后,该文讨论了基于深度学习的射频指纹识别方法所面临的难题和值得关注的研究方向,以期对射频指纹识别的研究与应用有所帮助。
3
合成孔径雷达(SAR)图像舰船目标检测一直受到学者广泛关注,恒虚警率(CFAR)检测算法作为雷达图像经典目标检测算法被广泛应用于SAR图像舰船目标检测中。然而经典CFAR检测性能容易受到相干斑噪声影响,基于滑窗的检测结果对滑窗的尺寸选择非常敏感,难以保证杂波背景中不存在目标像素,并且计算效率较低。针对上述问题,该文提出了一种新的基于超像素无窗快速CFAR的SAR图像舰船目标检测算法。首先,利用基于密度的快速噪声空间聚类(DBSCAN)超像素生成方法生成SAR图像的超像素。在SAR数据服从混合瑞利分布的假设下,定义了超像素相异度。然后利用超像素精确估计每个像素的杂波参数,即使在多目标情况下,也可以克服传统CFAR滑动窗口的缺点。此外,基于SAR图像变异系数,提出了一种基于变异系数的局部超像素对比度来优化CFAR检测,以此消除大量杂波虚警,如陆地区域人造目标。对5幅SAR图像的实验结果表明,与其他方法相比,该文方法对不同场景SAR图像海面舰船目标检测都十分稳健。 合成孔径雷达(SAR)图像舰船目标检测一直受到学者广泛关注,恒虚警率(CFAR)检测算法作为雷达图像经典目标检测算法被广泛应用于SAR图像舰船目标检测中。然而经典CFAR检测性能容易受到相干斑噪声影响,基于滑窗的检测结果对滑窗的尺寸选择非常敏感,难以保证杂波背景中不存在目标像素,并且计算效率较低。针对上述问题,该文提出了一种新的基于超像素无窗快速CFAR的SAR图像舰船目标检测算法。首先,利用基于密度的快速噪声空间聚类(DBSCAN)超像素生成方法生成SAR图像的超像素。在SAR数据服从混合瑞利分布的假设下,定义了超像素相异度。然后利用超像素精确估计每个像素的杂波参数,即使在多目标情况下,也可以克服传统CFAR滑动窗口的缺点。此外,基于SAR图像变异系数,提出了一种基于变异系数的局部超像素对比度来优化CFAR检测,以此消除大量杂波虚警,如陆地区域人造目标。对5幅SAR图像的实验结果表明,与其他方法相比,该文方法对不同场景SAR图像海面舰船目标检测都十分稳健。
4
相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有P值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。 相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有P值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。
5
多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。 多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。
6
间歇采样转发式干扰机通过对其接收到的雷达发射信号进行采样、存储、处理和多次转发,在雷达接收端形成逼真的假目标干扰效果。为提升上述干扰场景下的雷达探测性能,该文提出了一种新的信号差分特征提取方法,在此基础上,利用目标回波和干扰信号在差分特征空间的差异设计判决准则,从而在有效辨识并抑制干扰的同时实现目标检测。仿真结果表明:该方法干扰抑制效果显著,相比于3种典型的时频域滤波算法等效信噪比改善4.2 dB以上。 间歇采样转发式干扰机通过对其接收到的雷达发射信号进行采样、存储、处理和多次转发,在雷达接收端形成逼真的假目标干扰效果。为提升上述干扰场景下的雷达探测性能,该文提出了一种新的信号差分特征提取方法,在此基础上,利用目标回波和干扰信号在差分特征空间的差异设计判决准则,从而在有效辨识并抑制干扰的同时实现目标检测。仿真结果表明:该方法干扰抑制效果显著,相比于3种典型的时频域滤波算法等效信噪比改善4.2 dB以上。
7
海洋表面是一种高度不规则和时空不重复的复杂动态体系。海杂波是雷达电磁信号照射到海面产生的大量散射体回波的叠加,受风力、洋流、海浪等的影响呈现非均匀性和非平稳性。海杂波信号对海上目标的探测具有一定的干扰作用,尤其是高海情条件下,海浪起伏更加剧烈,目标信号极易淹没在强海杂波信号中,严重限制着雷达对海上目标的检测能力。海杂波及目标电磁散射特性研究是提升复杂海洋环境下目标检测能力的基础,以电磁波与实际复杂动态海面及目标电磁散射机理为基础,形成实际海洋环境下目标回波数据,对海杂波及目标雷达回波特征分析,实测数据集的补充,均存在重大意义。为了让更多相关研究者获得基于物理机理的复杂海环境与目标回波仿真方法近些年的发展和未来趋势,该文总结了回波仿真的3类方法,并针对海面与目标仿真场景特点,分析了3类方法的优劣和适应性,给出了部分仿真结果;还介绍了一些基于实测的回波数据集,可方便学者对回波特性进行分析;最后对复杂海面与目标回波仿真方法和特性研究的发展趋势进行了展望。 海洋表面是一种高度不规则和时空不重复的复杂动态体系。海杂波是雷达电磁信号照射到海面产生的大量散射体回波的叠加,受风力、洋流、海浪等的影响呈现非均匀性和非平稳性。海杂波信号对海上目标的探测具有一定的干扰作用,尤其是高海情条件下,海浪起伏更加剧烈,目标信号极易淹没在强海杂波信号中,严重限制着雷达对海上目标的检测能力。海杂波及目标电磁散射特性研究是提升复杂海洋环境下目标检测能力的基础,以电磁波与实际复杂动态海面及目标电磁散射机理为基础,形成实际海洋环境下目标回波数据,对海杂波及目标雷达回波特征分析,实测数据集的补充,均存在重大意义。为了让更多相关研究者获得基于物理机理的复杂海环境与目标回波仿真方法近些年的发展和未来趋势,该文总结了回波仿真的3类方法,并针对海面与目标仿真场景特点,分析了3类方法的优劣和适应性,给出了部分仿真结果;还介绍了一些基于实测的回波数据集,可方便学者对回波特性进行分析;最后对复杂海面与目标回波仿真方法和特性研究的发展趋势进行了展望。
8
大气变化是地基干涉合成孔径雷达(GB-InSAR)形变监测的主要干扰因素。由于监测环境的地形复杂,水汽、湿度和温度的空间异质性,基于均匀大气介质假设的校正方法可能导致大气校正精度较低。该文提出了一种两阶段半经验模型,用于估计和校正复杂大气条件下特大滑坡GB-InSAR监测过程中出现的大气相位误差。该方法兼顾线性大气相位和非线性大气相位,首先根据测区的范围和高程对观测到的大气相位进行建模,校正与地形相关的线性大气相位。然后,考虑复杂大气条件和方位向大视场角度场景下出现的空间域非均匀大气情况,选取稳定永久散射体(PS)通过插值的方式获取所有PS点的大气相位,校正非线性大气相位。采用该方法对三峡库区新铺和藕塘特大滑坡的地基大视场雷达图像进行处理,相比于常规方法减小大气相位误差最大约2 mm。能有效校正特大滑坡监测场景下出现的非均匀大气相位,满足特大滑坡广域范围监测需求。 大气变化是地基干涉合成孔径雷达(GB-InSAR)形变监测的主要干扰因素。由于监测环境的地形复杂,水汽、湿度和温度的空间异质性,基于均匀大气介质假设的校正方法可能导致大气校正精度较低。该文提出了一种两阶段半经验模型,用于估计和校正复杂大气条件下特大滑坡GB-InSAR监测过程中出现的大气相位误差。该方法兼顾线性大气相位和非线性大气相位,首先根据测区的范围和高程对观测到的大气相位进行建模,校正与地形相关的线性大气相位。然后,考虑复杂大气条件和方位向大视场角度场景下出现的空间域非均匀大气情况,选取稳定永久散射体(PS)通过插值的方式获取所有PS点的大气相位,校正非线性大气相位。采用该方法对三峡库区新铺和藕塘特大滑坡的地基大视场雷达图像进行处理,相比于常规方法减小大气相位误差最大约2 mm。能有效校正特大滑坡监测场景下出现的非均匀大气相位,满足特大滑坡广域范围监测需求。
9
星源照射双/多基地合成孔径雷达(SAR),采用卫星发射,卫星、临近空间、飞机、地面等平台接收,实现对地海面场景和目标的高分辨成像。该技术具有可成像范围广、隐蔽性好、抗干扰能力强等优点,且可以通过波束调控实现扫描、聚束、滑动聚束等多种组合成像模式,从而获取更加丰富的成像信息,具有十分广阔的民用和军事应用前景。目前,国内外针对星源照射双/多基地SAR成像技术开展了多年的研究,积累了诸多研究成果。该文分别从系统组成、构型方法、回波模型、成像方法、收发同步与试验验证等方面对该技术进行阐述与分析,同时对相关的研究工作进行较系统的回顾,并展望了星源照射双/多基地SAR成像技术未来的发展方向。 星源照射双/多基地合成孔径雷达(SAR),采用卫星发射,卫星、临近空间、飞机、地面等平台接收,实现对地海面场景和目标的高分辨成像。该技术具有可成像范围广、隐蔽性好、抗干扰能力强等优点,且可以通过波束调控实现扫描、聚束、滑动聚束等多种组合成像模式,从而获取更加丰富的成像信息,具有十分广阔的民用和军事应用前景。目前,国内外针对星源照射双/多基地SAR成像技术开展了多年的研究,积累了诸多研究成果。该文分别从系统组成、构型方法、回波模型、成像方法、收发同步与试验验证等方面对该技术进行阐述与分析,同时对相关的研究工作进行较系统的回顾,并展望了星源照射双/多基地SAR成像技术未来的发展方向。
10
针对现有联合设计的通感一体化波形对运动目标探测性能不足的问题,该文提出了一种具有多普勒容忍性的通感一体化波形联合设计方案。首先,基于脉冲串模糊函数,推导了构造多普勒容忍波形等价于波形在相关区内具有极低的积分旁瓣电平。基于此,构建了以最小化一体化波形的加权积分旁瓣电平为优化准则,以发射波形的能量、峰均功率比以及与通信波形之间的相位差为约束条件的优化问题,从而实现具有多普勒容忍性的通感一体化波形的构造。由于该优化问题的非凸性,该文提出一种基于优化最小化的迭代优化算法对其进行求解。数值仿真实验表明,相比传统一体化波形,该文提出的一体化波形具有更高的多普勒容忍性和更低的误符号率,在保证通信质量的前提下显著提升了通感一体化系统对运动目标的探测性能。 针对现有联合设计的通感一体化波形对运动目标探测性能不足的问题,该文提出了一种具有多普勒容忍性的通感一体化波形联合设计方案。首先,基于脉冲串模糊函数,推导了构造多普勒容忍波形等价于波形在相关区内具有极低的积分旁瓣电平。基于此,构建了以最小化一体化波形的加权积分旁瓣电平为优化准则,以发射波形的能量、峰均功率比以及与通信波形之间的相位差为约束条件的优化问题,从而实现具有多普勒容忍性的通感一体化波形的构造。由于该优化问题的非凸性,该文提出一种基于优化最小化的迭代优化算法对其进行求解。数值仿真实验表明,相比传统一体化波形,该文提出的一体化波形具有更高的多普勒容忍性和更低的误符号率,在保证通信质量的前提下显著提升了通感一体化系统对运动目标的探测性能。
11
全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。
12
超分辨波达方位角估计是车载毫米波雷达实现目标精准定位及跟踪需要解决的关键问题。针对车载场景中常见的阵列孔径受限、少快拍、低信噪比以及信源相干的情况,该文提出了一种基于距离多普勒域原子范数最小化(RD-ANM)的车载毫米波雷达动目标超分辨DOA估计方法:首先,构建了基于动目标雷达回波的距离多普勒域阵列接收信号;其次,设计了动目标多普勒耦合相位补偿矢量,用以削弱目标运动对DOA估计的影响;最后,提出了基于原子范数框架的多目标超分辨DOA估计方法。相较于车载毫米波雷达现使用的DOA估计算法,该文算法能够在基于低信噪比条件和单快拍处理前提下获得较高的测角分辨率和估计精度,以及拥有不牺牲阵列孔径对相干信号进行处理的稳健性能。理论分析、数值仿真以及实测实验验证了该文算法的有效性。 超分辨波达方位角估计是车载毫米波雷达实现目标精准定位及跟踪需要解决的关键问题。针对车载场景中常见的阵列孔径受限、少快拍、低信噪比以及信源相干的情况,该文提出了一种基于距离多普勒域原子范数最小化(RD-ANM)的车载毫米波雷达动目标超分辨DOA估计方法:首先,构建了基于动目标雷达回波的距离多普勒域阵列接收信号;其次,设计了动目标多普勒耦合相位补偿矢量,用以削弱目标运动对DOA估计的影响;最后,提出了基于原子范数框架的多目标超分辨DOA估计方法。相较于车载毫米波雷达现使用的DOA估计算法,该文算法能够在基于低信噪比条件和单快拍处理前提下获得较高的测角分辨率和估计精度,以及拥有不牺牲阵列孔径对相干信号进行处理的稳健性能。理论分析、数值仿真以及实测实验验证了该文算法的有效性。
13
合成孔径雷达三维成像技术(3D SAR)能通过孔径维度扩展实现三维成像能力,但数据维度大、系统实现难、成像分辨率低。压缩感知稀疏重构技术在简化3D SAR系统、提升成像质量等方面展现出巨大潜力,但面临计算复杂度高、参数设置困难、弱稀疏场景适应差等新问题,制约了其实际应用。针对上述问题,该文结合卷积神经网络的特征学习及迭代算法的深度展开理论,提出了基于自学习稀疏先验的3D SAR成像方法。首先,探讨了常规3D SAR稀疏成像中矩阵向量线性表征模型的局限性,引入成像算子提升成像算法处理效率。其次,讨论了迭代算法映射网络的深度展开模型和实现方式,包括网络拓扑结构设计、算法参数的优化约束及网络的训练方法。最后,通过仿真数据和地面实验,证明了所提方法在提升成像精度的同时,其运行时间较传统稀疏成像算法降低一个数量级。 合成孔径雷达三维成像技术(3D SAR)能通过孔径维度扩展实现三维成像能力,但数据维度大、系统实现难、成像分辨率低。压缩感知稀疏重构技术在简化3D SAR系统、提升成像质量等方面展现出巨大潜力,但面临计算复杂度高、参数设置困难、弱稀疏场景适应差等新问题,制约了其实际应用。针对上述问题,该文结合卷积神经网络的特征学习及迭代算法的深度展开理论,提出了基于自学习稀疏先验的3D SAR成像方法。首先,探讨了常规3D SAR稀疏成像中矩阵向量线性表征模型的局限性,引入成像算子提升成像算法处理效率。其次,讨论了迭代算法映射网络的深度展开模型和实现方式,包括网络拓扑结构设计、算法参数的优化约束及网络的训练方法。最后,通过仿真数据和地面实验,证明了所提方法在提升成像精度的同时,其运行时间较传统稀疏成像算法降低一个数量级。
14
基于有向边界框的合成孔径雷达(SAR)舰船目标检测器能输出精准的边界框,但仍存在模型计算复杂度高、推理速度慢、存储消耗大等问题,导致其难以在星载平台上部署。基于此该文提出了结合特征图和检测头分支知识蒸馏的无锚框轻量化旋转检测方法。首先,结合目标的长宽比和方向角信息提出改进高斯核,使生成的热度图能更好地刻画目标形状。然后在检测器预测头部引入前景区域增强分支,使网络更关注前景特征且抑制背景杂波的干扰。在训练轻量化网络时,将像素点间的相似度构建为热度图蒸馏知识。为解决特征蒸馏中正负样本不平衡问题,将前景注意力区域作为掩模引导网络蒸馏与目标相关的特征。另外,该文提出全局语义模块对像素进行上下文信息建模,能够结合背景知识加强目标精确表征。基于HRSID数据集的实验结果表明所提方法在模型参数仅有9.07 M的轻量化条件下,mAP能达到80.71%,且检测帧率满足实时应用需求。 基于有向边界框的合成孔径雷达(SAR)舰船目标检测器能输出精准的边界框,但仍存在模型计算复杂度高、推理速度慢、存储消耗大等问题,导致其难以在星载平台上部署。基于此该文提出了结合特征图和检测头分支知识蒸馏的无锚框轻量化旋转检测方法。首先,结合目标的长宽比和方向角信息提出改进高斯核,使生成的热度图能更好地刻画目标形状。然后在检测器预测头部引入前景区域增强分支,使网络更关注前景特征且抑制背景杂波的干扰。在训练轻量化网络时,将像素点间的相似度构建为热度图蒸馏知识。为解决特征蒸馏中正负样本不平衡问题,将前景注意力区域作为掩模引导网络蒸馏与目标相关的特征。另外,该文提出全局语义模块对像素进行上下文信息建模,能够结合背景知识加强目标精确表征。基于HRSID数据集的实验结果表明所提方法在模型参数仅有9.07 M的轻量化条件下,mAP能达到80.71%,且检测帧率满足实时应用需求。
15
由于多输入多输出(MIMO)系统具有波形、空间分集和多路复用等优势,MIMO探通一体化(DFRC)系统通过共享软硬件资源以同时实现目标探测和保密通信功能受到了极大关注。该文针对基于预编码矩阵调制的MIMO探通一体化系统,提出了基于交替方向乘子(ADMM)的一体化信号矩阵设计方法。通过用户和窃听用户参考密码本约束下最大化方向图峰值主瓣旁瓣电平比(PMSR),保证了探测方向图性能的同时防止通信信息被窃听。针对预编码矩阵通信解调问题,提出了基于交替方向惩罚(ADPM)的排序学习优化解调方法,提升了一体化波形信息解调效率。数值仿真验证了所提设计方法实现探通一体化的有效性,与已有算法相比可实现多用户通信和更高的PMSR。 由于多输入多输出(MIMO)系统具有波形、空间分集和多路复用等优势,MIMO探通一体化(DFRC)系统通过共享软硬件资源以同时实现目标探测和保密通信功能受到了极大关注。该文针对基于预编码矩阵调制的MIMO探通一体化系统,提出了基于交替方向乘子(ADMM)的一体化信号矩阵设计方法。通过用户和窃听用户参考密码本约束下最大化方向图峰值主瓣旁瓣电平比(PMSR),保证了探测方向图性能的同时防止通信信息被窃听。针对预编码矩阵通信解调问题,提出了基于交替方向惩罚(ADPM)的排序学习优化解调方法,提升了一体化波形信息解调效率。数值仿真验证了所提设计方法实现探通一体化的有效性,与已有算法相比可实现多用户通信和更高的PMSR。
16
随着信息技术的发展和空战模式的改变,机载雷达告警接收机(RWR)成为现代战机不可缺少的电子战系统。为了更好地理解机载RWR,该文从接收机体制角度考虑,将机载RWR的系统架构划分成两个阶段,对每个阶段的特点和组成进行了分析。接着详细阐述了机载RWR的信号处理流程,并且梳理了与信号分选、信号识别和威胁评估相关的技术。最后,从实际运用出发,系统总结了机载RWR在复杂电磁环境中和应对新体制雷达中面临的挑战以及未来的发展需求。 随着信息技术的发展和空战模式的改变,机载雷达告警接收机(RWR)成为现代战机不可缺少的电子战系统。为了更好地理解机载RWR,该文从接收机体制角度考虑,将机载RWR的系统架构划分成两个阶段,对每个阶段的特点和组成进行了分析。接着详细阐述了机载RWR的信号处理流程,并且梳理了与信号分选、信号识别和威胁评估相关的技术。最后,从实际运用出发,系统总结了机载RWR在复杂电磁环境中和应对新体制雷达中面临的挑战以及未来的发展需求。
17
多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。 多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。
18
针对集中式MIMO雷达同时跟踪多批机动目标场景,该文提出一种低截获背景下的快速功率分配算法。首先,将目标机动过程建模为自适应当前统计(ACS)模型,并采用粒子滤波对各目标状态进行估计。其次,对条件克拉默-拉奥下界(PC-CRLB)进行推导,并基于目标运动特性和电磁特性构建目标综合威胁度评估模型。随后,将目标跟踪误差评估指数和雷达未被截获概率的加权和作为优化目标,建立了关于发射功率的优化模型,利用目标函数单调递减性质,提出了一种基于序列松弛的求解算法进行模型求解。最后,通过仿真验证所提算法的有效性和时效性。结果表明,所提算法能够有效提高目标跟踪精度和雷达系统低截获性能,相比采用内点法求解运算速度提高近50%。 针对集中式MIMO雷达同时跟踪多批机动目标场景,该文提出一种低截获背景下的快速功率分配算法。首先,将目标机动过程建模为自适应当前统计(ACS)模型,并采用粒子滤波对各目标状态进行估计。其次,对条件克拉默-拉奥下界(PC-CRLB)进行推导,并基于目标运动特性和电磁特性构建目标综合威胁度评估模型。随后,将目标跟踪误差评估指数和雷达未被截获概率的加权和作为优化目标,建立了关于发射功率的优化模型,利用目标函数单调递减性质,提出了一种基于序列松弛的求解算法进行模型求解。最后,通过仿真验证所提算法的有效性和时效性。结果表明,所提算法能够有效提高目标跟踪精度和雷达系统低截获性能,相比采用内点法求解运算速度提高近50%。
19
传统的组网雷达功率分配一般在干扰模型给定的情况下进行优化,而干扰机资源优化是在雷达功率分配方式给定情况下,这样的研究缺乏博弈和交互。考虑到日益严重的雷达和干扰机相互博弈的作战场景,该文提出了伴随压制干扰下组网雷达功率分配深度博弈问题,其中智能化的目标压制干扰采用深度强化学习(DRL)训练。首先在该问题中干扰机和组网雷达被映射为两个智能体,根据干扰模型和雷达检测模型建立了压制干扰下组网雷达的目标检测模型和最大化目标检测概率优化目标函数。在组网雷达智能体方面,由近端策略优化(PPO)策略网络生成雷达功率分配向量;在干扰机智能体方面,设计了混合策略网络来同时生成波束选择动作和功率分配动作;引入领域知识构建更加有效的奖励函数,目标检测模型、等功率分配策略和贪婪干扰功率分配策略3种领域知识分别用于生成组网雷达智能体和干扰机智能体的导向奖励,从而提高智能体的学习效率和性能。最后采用交替训练方法来学习两个智能体的策略网络参数。实验结果表明;当干扰机采用基于DRL的资源分配策略时,采用基于DRL的组网雷达功率分配在目标检测概率和运行速度两种指标上明显优于基于粒子群的组网雷达功率分配和基于人工鱼群的组网雷达功率分配。 传统的组网雷达功率分配一般在干扰模型给定的情况下进行优化,而干扰机资源优化是在雷达功率分配方式给定情况下,这样的研究缺乏博弈和交互。考虑到日益严重的雷达和干扰机相互博弈的作战场景,该文提出了伴随压制干扰下组网雷达功率分配深度博弈问题,其中智能化的目标压制干扰采用深度强化学习(DRL)训练。首先在该问题中干扰机和组网雷达被映射为两个智能体,根据干扰模型和雷达检测模型建立了压制干扰下组网雷达的目标检测模型和最大化目标检测概率优化目标函数。在组网雷达智能体方面,由近端策略优化(PPO)策略网络生成雷达功率分配向量;在干扰机智能体方面,设计了混合策略网络来同时生成波束选择动作和功率分配动作;引入领域知识构建更加有效的奖励函数,目标检测模型、等功率分配策略和贪婪干扰功率分配策略3种领域知识分别用于生成组网雷达智能体和干扰机智能体的导向奖励,从而提高智能体的学习效率和性能。最后采用交替训练方法来学习两个智能体的策略网络参数。实验结果表明;当干扰机采用基于DRL的资源分配策略时,采用基于DRL的组网雷达功率分配在目标检测概率和运行速度两种指标上明显优于基于粒子群的组网雷达功率分配和基于人工鱼群的组网雷达功率分配。
20
密集转发干扰与雷达发射信号高度相关,兼具压制式和欺骗式干扰效果,使雷达系统难以检测到真实目标,严重威胁雷达作战能力。针对这一问题,该文提出一种基于支持向量机(SVM)的捷变频雷达密集转发干扰智能抑制方法。通过对随机样本集进行离线训练获得最优SVM模型,智能化识别并分类目标和干扰;然后,采用平滑滤波进一步抑制目标所在距离单元内的干扰信号;最后,基于压缩感知(CS)理论进行二维高分辨重构,估计出目标参数信息。仿真实验与实测数据处理结果表明,所提算法在不同场景下均能够有效抑制密集转发干扰,准确检测出真实目标。 密集转发干扰与雷达发射信号高度相关,兼具压制式和欺骗式干扰效果,使雷达系统难以检测到真实目标,严重威胁雷达作战能力。针对这一问题,该文提出一种基于支持向量机(SVM)的捷变频雷达密集转发干扰智能抑制方法。通过对随机样本集进行离线训练获得最优SVM模型,智能化识别并分类目标和干扰;然后,采用平滑滤波进一步抑制目标所在距离单元内的干扰信号;最后,基于压缩感知(CS)理论进行二维高分辨重构,估计出目标参数信息。仿真实验与实测数据处理结果表明,所提算法在不同场景下均能够有效抑制密集转发干扰,准确检测出真实目标。
  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 末页
  • 共:3页