Status and Prospects of Electromagnetic Scattering Echoes Simulation from Complex Dynamic Sea Surfaces and Targets
-
摘要: 海洋表面是一种高度不规则和时空不重复的复杂动态体系。海杂波是雷达电磁信号照射到海面产生的大量散射体回波的叠加,受风力、洋流、海浪等的影响呈现非均匀性和非平稳性。海杂波信号对海上目标的探测具有一定的干扰作用,尤其是高海情条件下,海浪起伏更加剧烈,目标信号极易淹没在强海杂波信号中,严重限制着雷达对海上目标的检测能力。海杂波及目标电磁散射特性研究是提升复杂海洋环境下目标检测能力的基础,以电磁波与实际复杂动态海面及目标电磁散射机理为基础,形成实际海洋环境下目标回波数据,对海杂波及目标雷达回波特征分析,实测数据集的补充,均存在重大意义。为了让更多相关研究者获得基于物理机理的复杂海环境与目标回波仿真方法近些年的发展和未来趋势,该文总结了回波仿真的3类方法,并针对海面与目标仿真场景特点,分析了3类方法的优劣和适应性,给出了部分仿真结果;还介绍了一些基于实测的回波数据集,可方便学者对回波特性进行分析;最后对复杂海面与目标回波仿真方法和特性研究的发展趋势进行了展望。
-
关键词:
- 电磁散射 /
- 海杂波 /
- 海面回波分析 /
- 合成孔径雷达(SAR)成像 /
- 目标识别
Abstract: The ocean surface is a complicated dynamic system with considerable irregularity and nonrepetition in space and time. Sea clutter is the superposition of a large number of scatterer echoes generated by the radar electromagnetic signal irradiated to the sea surface, which is affected by wind, currents, waves, etc. and shows nonuniformity and nonsmoothness. The sea clutter signal has a certain interference effect on the detection of sea targets, especially under high sea conditions when the waves are furious, and the target signal is readily drowned out by the strong sea clutter signal, severely limiting the radar’s detection capability on sea targets. The investigation of sea clutter and target electromagnetic scattering properties serves as the foundation for improving the target detection capability in difficult marine environments. The formation of target echo data in the actual marine environment is of great significance for the analysis of sea clutter and target radar echo characteristics, as well as the supplementation of the actual measurement data set based on electromagnetic waves and the actual complex dynamic sea surface and target electromagnetic scattering mechanism. This study summarizes three key categories of echo simulation methods, analyzes the benefits, disadvantages, and adaptability of several categories of methods for the characteristics of the sea surface and target simulation scenarios, and provides some simulation results in order to make recent advancements and future trends of physics-based complex sea environment and target echo simulation methods more accessible to relevant researchers. It also introduces some echo datasets based on real measurements, which can facilitate scholars’ analysis of echo characteristics. Lastly, the trend toward developing complex sea surface and target echo simulation methods and characteristics for research is presented.-
Key words:
- EM scattering /
- Sea clutter /
- Sea echo analysis /
- SAR imaging /
- Target detection and recognition
-
1. 引言
由于脉冲雷达发射的大功率信号在城市环境下容易干扰电台等其他通讯设备,可以借助通信信号来探测目标。近年来出现的多载波调制(Multi-Carrier Modulation, MCM)技术[1]引起了人们的关注,由此发展而来的正交频分复用(Orthogonal Frequency Division Multiplex, OFDM)[2]技术采用多路正交子载波进行信号调制,具有频率分集和波形分集的潜力,在通信、雷达一体化的发展背景下有着重要的研究价值。
相位编码OFDM信号具有多普勒高分辨力,用于雷达动目标检测时可以更精确地估计目标速度。不同的相位编码信号具有不同的自相关特性。霍夫曼编码可以降低信号自相关函数的整体旁瓣水平,但其包络峰均比(Peak-to-Mean Envelope Power Ratio, PMEPR)明显增大[3]。研究表明,barker码序列具有较好的综合性能[4],本文将以13位barker码作为相位编码序列。
最近10年,国内外在OFDM信号特性与波形设计上取得了较好的研究成果[5–7],因此OFDM雷达的信号处理问题受到了研究者的关注。张卫等人[8]利用Keystone变换在信号子载波域、快时间域和慢时间域进行联合解耦合处理,解决了目标的跨距离-多普勒单元走动问题,进而可估计出匀速运动下的多目标参数信息,但计算量较大;Lellouch等人[9]利用回波与发射信号的载频相位信息得到了点目标距离及径向速度估计,但要求目标在一个距离门内运动,即不发生越距离单元走动现象。除此以外,还需进一步研究OFDM雷达回波处理中面临的一些特殊问题,如速度补偿和多普勒解模糊。
在信号处理领域,最大似然估计是一种渐进有效估计量,但是对于多测量的非线性模型而言其计算量较大,不利于实际应用。为了提高计算效率,本文借鉴文献[10]中MIMO雷达信号处理的思路,结合OFDM信号多载波正交结构的特点,对信号进行通道分离,形成多通道信号。通过相关处理得到不同子载波上的距离像;利用Keystone变换进行速度补偿并解多普勒模糊,对同一载波的相同距离单元进行脉冲多普勒处理,得到每个子载波对应的多普勒频谱;进一步在子载波域作相参积累,得到距离-多普勒2维谱。通过谱峰搜索和CLEAN技术[11]的运用,从中提取出峰值位置对应的时延和多普勒参数。将其作为初值,结合观测数据的似然函数,利用牛顿迭代法获得更精确的参数估计,本文称之为近似最大似然估计。近似最大似然估计量可构成复合假设检验的重要环节,提升检测器的目标检测性能。论文组织结构如下:第2节给出了相位编码OFDM信号的回波模型;第3节给出了目标距离和速度参数的最大似然估计模型;为了提高目标运动参数估计的运算效率,第4节提出一种基于通道分离的近似最大似然估计算法;第5节利用仿真实验验证了算法的性能;第6节是总结。
2. 相位编码OFDM信号模型
设雷达发射相位编码OFDM信号为:
sT(t)=ej2πfctN−1∑n=0u(t−nTr)rect(t−nTrTr) (1) 其中,
rect(t)={1,0≤t≤10,else 表示窗函数,fc 为雷达信号的工作频率,N是脉冲个数,Tr 是脉冲重复周期,u(t) 为相位编码OFDM信号的复包络:u(t)=K−1∑k=0M−1∑m=0ak,mej2πkΔftrect(t−mtctc) (2) 其中,K是载波个数,第k个子载波上的相位编码序列
ak,m 由M个码元组成,tc 为码元宽度,B是信号总带宽,为了满足子载波间的正交性,子载波间隔Δf=B/K=1/tc 。对目标散射的回波进行下变频处理,可获得相应的OFDM基带信号:
sr(t)=A0e−j2πfctsT(t−τ) (3) 其中,
A0 为目标散射强度,τ=2(R−vt)c= τ0−2vtc 是匀速运动目标对应于t 时刻的时延。τ0=2Rc 表示t=0 时刻的目标距离时延,v 是目标的径向速度。若满足条件2vtc≪tc ,则式(3)可以简化为:sr(t)≈N−1∑n=0K−1∑k=0M−1∑m=0A0ak,mrect(t−nTr−τ0Tr)⋅rect(t−nTr−τ0−mtctc)e−j2π(fc+kΔf)τ0⋅ej2πkΔftej2π(fd+fdk)te−j2πkΔfnTr (4) 其中,子载波间的多普勒频差
fdk=2vkcΔf 。记全时间t=nTr+˜t ,其中快时间˜t∈[0,Tr) ,则式(4)表示为:\begin{align} {s_{\rm r}}(\tilde t,n) =& \sum\limits_{k = 0}^{K - 1} \sum\limits_{m = 0}^{M - 1} {A_0}{a_{k,m}} {\rm{rect}}\left(\frac{{\tilde t - {\tau _0}}}{{{T_{\rm r}}}}\right)\\ & \cdot{\rm{rect}}\left( \frac{{\tilde t - {\tau _0} - m{t_{\rm c}}}}{{{t_{\rm c}}}}\right){{\rm{e}}^{{\rm{ - j}}2{\rm{{{π}} }}({f_{\rm c}} + k\Delta f){\tau _0}}}\\ & \cdot {{\rm{e}}^{{\,\rm{j}}2{\rm{{{π}} }}k\Delta f\tilde t} \;{{\rm{e}}^{{\,\rm{j}}2{\rm{{{π}} }}({f_{\rm d}} + {f_{{\rm d}k}}) (\tilde t + n{T_{\rm r}})}} \end{align} (5) 其中,第2个指数项表示不同子载波的回波信号具有不同的频率偏移;由第3个指数项可以看出,子载波分别与慢时间和快时间相耦合。
在加性高斯白噪声背景下,观测信号可以表示为:
y(˜t,n)=sr(˜t,n)+w(˜t,n) (6) 其中,
E(w(˜t,n))=0 ,Var(w(˜t,n))=σ2 。3. 最大似然估计
针对式(6)在快时间域采样,采样时刻为
˜t=mtc+pTs ,其中,Ts=1KΔf ,p∈[0,K−1] ,m∈[0,M−1] 。由于fdk˜t≪1 ,式(5)进一步化简sr(p,m,n)=K−1∑k=0A0ak,mrect(mtc+pTs−τ0Tr)⋅rect(pTs−τ0tc)e−j2π(fc+kΔf)τ0⋅ej2π(fd+kΔf)(mtc+pTs)ej2π(fd+fdk)nTr (7) 令
A=A0e−j2πfcτ0 ,则采样信号为:Y=AS+W (8) 其中,
S=[s0,···,sN−1]T ,Y=[y0,···,yN−1]T yn=[y(˜t0,n),···,y(˜tMK−1,n)]T sn=K−1∑k=0ak,m ej2π(fd+fdk)nTr ⋅e−j2πkΔfτ0[ej2π(fd+kΔf)˜t0,···, ej2π(fd+kΔf)˜tMK−1]T 记待估参数向量
u=[A,v,R]T ,噪声的协方差矩阵R=σ2I,则观测数据Y对应的似然函数为:p(Y|u)=N−1∏n=01πMK|R|−1e−(yn−Asn)HR−1(yn−Asn) (9) 式(8)是关于A的条件线性模型,其最大似然估计为:
ˆA=N−1∑n=0sHnR−1yn/N−1∑n=0sHnR−1sn (10) 将其代入式(9),则距离和速度参数的最大似然估计为:
[ˆR,ˆv]=argmin[R,v]N−1∑n=0(yn−ˆAsn)HR−1(yn−ˆAsn)=argmax[R,v]|N−1∑n=0sHnR−1yn|2/|N−1∑n=0sHnR−1yn|2N−1∑n=0sHnR−1snN−1∑n=0sHnR−1sn=(σ2KN)−1argmax[R,v]|N−1∑n=0K−1∑p=0M−1∑m=0K−1∑k=0y(p,m,n)⋅a∗k,mej2πkΔfτ0e−j2π(fd+kΔf)(mtc+pTs)⋅e−j2π(fd+fdk)nTr|2 (11) 针对该模型,通过由粗到精的网格搜索可以得到参数的估计值。记速度搜索范围为
[−vmax,vmax] ,距离搜索范围为[0,Rmax] ,则搜索次数对应为U=ceil(2vmax/Δv)+1 和V=ceil(Rmax/ΔR)+1 。其中,ceil(x) 表示不小于x 的最小整数,Δv 和ΔR 表示搜索步长。算法计算复杂度为O(UVKNlog2(KN)) 。令
∑K−1k=0|ak,m|2=1 ,由文献[12]可知,待估参数的Cramer-Rao下限为:CRLB(v)=c2σ2N/c2σ2N(32(πfcTrA0)2(32(πfcTrA0)2⋅[N2(N−1)(2N−1)/6−N2(N−1)2/4]) (12) CRLB(R)=3c2σ2/(8(πΔfA0)2N(K2−1)) (13) 4. 基于通道分离的近似最大似然估计
直接利用式(11)求最大似然估计时计算量较大,在此考虑提高运算效率的参数估计方法。式(11)中相位项
e−j2πfdknTr 和ej2πkΔf(mtc+pTs) 的子载波k分别与慢时间和快时间相耦合。针对不同的子载波,多脉冲联合处理时目标将在距离单元和多普勒单元上走动。鉴于此,文献[8]利用Keystone变换在信号子载波域、快时间域和慢时间域进行联合解耦合处理,解决了目标的跨距离多普勒单元走动问题,计算量约为3K3Nlog2(KN) 。事实上,式(11)中的相位项ej2πkΔfpTs 体现了不同子载波的回波信号具有不同的频率偏移,因此可以将多载波正交结构的OFDM雷达信号进行分离,通过多通道接收的方式增大距离分辨单元,避免目标的跨距离单元走动和3维Keystone变换。当|fd+fdk|<Δf/2 时,对式(5)进行通道分离,即用参考信号ej2πkΔf˜t 与回波混频并经过低通滤波处理,得到各子载波通道上的信号x(˜t,n,k)=M−1∑m=0A0ak,mrect(˜t−τ0Tr)⋅rect(˜t−τ0−mtctc)e−j2π(fc+kΔf)τ0⋅ej2πfd˜tej2π(fd+fdk)nTr (14) 其中,快时间域的采样时刻
˜t=mtc+pTs 。用相位编码信号作为参考对式(14)作相关处理,得到第i个距离单元上的信号
zk(˜t,n,i)=M−1∑m,l=0A0ak,ma∗k,lrect(˜t−τ0Tr−|τ0−itc|)⋅rect(˜t−τ0˜t−|τ0−(i+l−m)tc|)⋅e−j2π(fc+kΔf)τ0ej2πfd˜tej2π(fd+fdk)nTr (15) 此时,信号的距离分辨单元
ΔR=c/(2Δf) 相对较大,目标不易产生跨距离单元走动。当最大多普勒频差小于多普勒分辨单元,即((2v)/c)(K−1)Δf< 1/(NTr) 时,子载波和慢时间之间的耦合可以忽略,本文称之为低速运动,否则,称之为高速运动。此时,可利用Keystone变换消除子载波k与慢时间n之间的耦合,即(fd+fdk)n=fdh ,实现多普勒维对齐。解耦合后的信号gk(˜t,h,i)=zk(˜t,fcfc+kΔfh,i)≈M−1∑m,l=0A0ak,ma∗k,lrect(˜t−τ0Tr−|τ0−itc|)⋅rect(˜t−τ0˜t−|τ0−(i+l−m)tc|)⋅e−j2π(fc+kΔf)τ0ej2πfd˜tej2πfdhTr (16) 经Keystone变换后的信号在慢时间域可能出现多普勒速度模糊现象(
fd=˜fd+r/Tr ,其中|˜fd|<1/(2Tr) ,折叠因子r∈{−8,−7,···,7,8} ),则式(16)改为:gk(˜t,h,i)≈M−1∑m,l=0A0ak,ma∗k,lrect(˜t−τ0Tr−|τ0−itc|)⋅rect(˜t−τ0˜t−|τ0−(i+l−m)tc|)⋅e−j2π(fc+kΔf)τ0ej2πfd˜tej2π˜fdhTr⋅ej2πrfcfc+kΔfh (17) 经过折叠因子补偿后的信号
fk(˜t,h,i)=gk(˜t,h,i)e−j2πrfcfc+kΔfh (18) 对式(18)进行脉冲多普勒处理,即关于慢时间作相参积累,可得第k个子载波上的多普勒频谱
Fk(˜t,u,i)=M−1∑m,l=0A0ak,ma∗k,lrect(˜t−τ0Tr−|τ0−itc|)⋅rect(˜t−τ0˜t−|τ0−(i+l−m)tc|)⋅sin(πs)sin(πs/N)ejπN−1Nse−j2π(fc+kΔf)τ0⋅ej2πfd˜t (19) 其中,
s=u−˜fdNTr ,u∈[0,N−1] 。进一步,关于k作相参积累可得距离-多普勒谱:
F(˜t,u,i)=M−1∑m,l=0A0ak,ma∗k,lrect(˜t−τ0Tr−|τ0−itc|)⋅rect(˜t−τ0˜t−|τ0−(i+l−m)tc|)⋅sin(πs)sin(πs/N)sin(πp)sin(πp/K)⋅ejπN−1NsejπK−1Kpe−j2πfcτ0ej2πfd˜t (20) 其中,
p=q+KΔfτ0 ,q∈[0,K−1] 。上述基于通道分离和Keystone相结合的方法是对式(11)模型的简化处理。为了进一步提高算法的估计精度,将得到的参数值作为初值,根据式(11)进行牛顿迭代,得到近似最大似然估计量。算法计算量约为
KNlog2(KN)+Nlog2N+2Klog2K+K2N 。上述模型均是以单目标为例进行讨论的。在多目标情况,可以利用CFAR检测器在距离-多普勒谱域进行谱峰搜索,根据最大峰值对应的参数估计值重构相应的子信号
b(˜t,n)=K−1∑k=0ej2πkΔfˆτ0e−j2π(ˆfd+kΔf)˜te−j2π(ˆfd+ˆfdk)nTr (21) 利用CLEAN技术从原信号中减去重构的子信号,然后对剩余信号继续上述的操作,直到CFAR检测不出峰值为止。算法处理流程如图1所示。
5. 仿真实验
仿真参数设置如表1所示。根据表中数据并结合前文的分析可知,目标产生速度模糊的阈值是
vuna=15m/s ,出现跨距离单元走动的速度临界值是vt≈4.68m/s ,速度分辨率Δvr=0.06m/s ,且满足(2vTr)/c≪tc 。由于|fd+fdk|≪Δf/2 ,多普勒频偏导致的子载频间串扰可忽略不计。在高斯白噪声背景下,2个目标距离为R1=10.0km ,R2=1.8 km ,R3=17.0km ,径向速度v1=20m/s ,v2=24m/s ,v3= 34 m/s,对应的目标散射强度分别为A01=5 ,A02=2 ,A03=1 。虚警率Pfa=10−3 ,蒙特卡洛仿真100次。表 1 仿真参数Table 1. Simulation parameters参数 数值 工作频率 fc (GHz) 5 带宽B (MHz) 64 脉冲重复周期 Tr (ms) 2 脉冲数N 250 载波数K 64 信号经过通道分离和相关处理后,在子载波-多普勒平面的投影如图2所示。由图2可以看出,目标的多普勒频移随子载波的变化而变化,因此不能直接进行子载波域的相参积累。
经过Keystone变换和CLEAN处理后,相应子载波-多普勒平面的投影如图3所示。可见,多普勒频移与子载波之间的耦合得到校正。
对Keystone变换的数据在子载波域进行相参积累,获得信号的距离-多普勒2维谱如图4所示。其中图4(a)是聚焦于第1个目标的结果,图4(b)是剔除前两个目标后聚焦于第3个目标的结果。结果表明,本文所述的补偿方法能在快时间域、慢时间域以及子载波域将目标的回波能量积累起来,有利于目标检测和后续的参数估计。
下面考察近似最大似然估计量的性能。当
v=20m/s ,SNRi 在0~20 dB之间变化时,分别利用文献[8]所述的联合Keystone变换法、通道分离与Keystone变换组合法以及本文所提的近似最大似然估计法进行速度估计,估计量的均方根误差(RMSE)曲线如图5(a)所示。图5(b)给出了各种算法对应的计算量随脉冲数的变化情况。由图5(a)可知,文献[8](点划线)与基于通道分离和Keystone相结合的方法(实线)的速度估计的RMSE曲线变化趋势类似。在相同的估计精度下,与上述两种方法相比,本文基于通道分离的近似最大似然估计法(点线)的输入信噪比
SNRi 改善约4 dB。同时,本文算法得到的RMSE非常接近Cramer-Rao下限。由图5(b)可知,在相同脉冲数下,本文算法的计算量较文献[8]的算法大幅降低。由于使用了牛顿迭代法,与基于通道分离和Keystone相结合的方法相比,计算量有所增加,但仍然远小于文献[8]中算法的计算量。因此,本文提出的基于通道分离的近似最大似然估计算法在估计精度和计算复杂度上具有综合优势。6. 总结
本文将OFDM通信信号应用在雷达动目标探测中,在通信、雷达一体化的发展背景下有着重要的应用前景。本文参考多载频MIMO雷达通道分离得到目标高分辨距离信息的方法,将OFDM信号的多载波正交结构与脉冲多普勒处理相结合,并借助Keystone变换解决了多普勒偏移问题。为了得到更好的估计精度,利用牛顿迭代法对似然函数进行优化,得到了基于通道分离的近似最大似然估计方法。仿真结果验证了算法的综合性能。今后还可针对机动目标相干化处理以及参数估计问题展开研究,扩展OFDM雷达的应用范围。
-
表 1 串行FDTD方法及并行FDTD方法计算一个样本耗时对比
Table 1. Comparison of the simulation time of a sample by the FDTD method and the parallel FDTD method
极化方式 网格数 串行时间(s) 并行时间(s) 加速比X HH 131072 250854.42 3067.72 81.77 VV 131072 273862.33 3289.24 83.26 表 2 仿真算例运行时间(秒)
Table 2. Simulation time (s)
模型 SBR CUDA-SBR 加速比x 舰船+海面双站 994.6 46.3 27.4 舰船+海面单站 776.1 25.7 30.2 表 3 仿真算例的运行时间(秒)
Table 3. Running time of the simulation example (s)
模型 三角面片数量 SBR OpenGL-SBR 双站:飞行器yoz面 158376 72.72 7.13 双站:飞行器xoz面 158376 81.84 8.82 单站:飞行器yoz面 158376 56.78 5.07 单站:飞行器xoy面 158376 57.09 5.12 表 4 大型航母编队计算时间(秒)
Table 4. Simulation times for large carrier formations (s)
模型 三角面片数量 SBR 一个角度下平均
计算时间单站:大型航母编队 979025 137.250 0.7625 双站:大型航母编队 979025 47.927 / 表 5 IPIX雷达主要性能参数
Table 5. The key parameters of IPIX radar
参数 数值 雷达频率 9.4 GHz 中频 150 MHz 脉冲宽度 20~5000 ns 发射峰值功率 8 kW 发射信号波长 3 cm 多普勒频移 34 Hz/节 脉冲重复频率(PRF) 0~2000 Hz 距离分辨率 30 m 半功率点波瓣宽度 0.9° 雷达天线高度 30 m 极化方式 HH, VV, HV, VH 擦地角 <1° 采样距离间隔 15 m 表 6 OTB MS3的主要特性
Table 6. The main characteristics of OTB MS3
参数 数值 纬度 34∘36′55.32″ 经度 20^\circ 17'20.11''{\text{E}} 地面高度 53 m 天线高度 56 m 离海距离 1.2 km 方位角范围 208°~ 80°N (SSW-ENE) 距离 (CNR > 15 dB)1.25~4.50 km 擦地角 (< 15 km)3.00°~0.16° 擦地角 (CNR > 15 dB)3.0°~0.7° 表 7 雷达参数
Table 7. The key parameters of radar
技术指标 参数 工作频段 X 载频范围 9.3~9.5 GHz 带宽 25 MHz 脉冲重复频率 1.6 K, 3.0 K, 5.0 K和10.0 K 天线极化方式 HH 天线长度 1.8 m 天线工作模式 凝视、圆周扫描 天线水平波束宽度 1.2° 天线垂直波束宽度 22° 表 8 U10=10 m/s不同条件下海杂波幅度最佳拟合模型统计分布
Table 8. Best-fit model statistics distribution for sea clutter amplitude at U10=10 m/s
入射角 极化 入射频率(GHz) X波段10 GHz Ku波段15 GHz 30° HH WB WB VV WB WB 45° HH WB WB VV K K 60° HH WB WB VV K K 80° HH RL RL VV RL RL -
[1] WARD K, TOUGH R, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd edition[M]. London: The Institution of Engineering and Technology, 2013. [2] SHUI Penglang, LIU Ming, and XU Shuwen. Shape-parameter-dependent coherent radar target detection in K-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 451–465. doi: 10.1109/TAES.2015.140109 [3] FARINA A, RUSSO A, and STUDER F A. Coherent radar detection in log-normal clutter[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1986, 133(1): 39–53. doi: 10.1049/ip-f-1.1986.0009 [4] RANGASWAMY M, WEINER D D, and OZTURK A. Non-Gaussian random vector identification using spherically invariant random processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111–124. doi: 10.1109/7.249117 [5] 郭立新, 魏仪文, 柴水荣. 目标与复杂地海面复合电磁散射研究现状综述[J]. 电波科学学报, 2020, 35(1): 69–84. doi: 10.13443/j.cjors.2019090204GUO Lixin, WEI Yiwen, and CHAI Shuirong. A review on the research of composite electromagnetic scattering from target and rough surface[J]. Chinese Journal of Radio Science, 2020, 35(1): 69–84. doi: 10.13443/j.cjors.2019090204 [6] WANG Xiande, GAN Y B, and LI Lewei. Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case[J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2: 319–322. doi: 10.1109/LAWP.2003.822200 [7] ALTUNCU Y, YAPAR A, and AKDUMAN I. On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1435–1443. doi: 10.1109/TGRS.2006.870436 [8] ALTUNCU Y. A numerical method for electromagnetic scattering by 3-D dielectric objects buried under 2-D locally rough surfaces[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3634–3643. doi: 10.1109/TAP.2015.2438859 [9] YE Hongxia and JIN Yaqiu. Fast iterative approach to difference scattering from the target above a rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 108–115. doi: 10.1109/TGRS.2005.859955 [10] 秦三团. 随机粗糙面与目标复合电磁散射的快速算法研究[D]. [博士论文], 西安电子科技大学, 2011: 1–127.QIN Santuan. Research on fast algorithm for electromagnetic scattering from the random rough surface and the target[D]. [Ph. D. dissertation], Xidian University, 2011: 1–127. [11] ZHANG Min, ZHU Lei, ZHOU Ping, et al. Time-domain techniques for transient scattering from dielectric bodies and sea surface governed by Jonswap's sea spectra[J]. Chinese Physics Letters, 2009, 26(8): 084101. doi: 10.1088/0256-307X/26/8/084101 [12] WANG Rui, GUO Lixin, LI Juan, et al. Investigation on transient electromagnetic scattering from a randomly rough surface and the perfect electric conductor target with an arbitrary cross section above it[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(5): 665–675. doi: 10.1007/s11433-009-0043-z [13] 王安琪. 粗糙面及其与目标复合电磁散射的矩量法研究[D]. [博士论文], 西安电子科技大学, 2013: 1–127.WANG Anqi. Method of moment investigation on the electromagnetic scattering from the rough surface and the composite scattering from the rough surface and the target[D]. [Ph. D. dissertation], Xidian University, 2013: 1–127. [14] EL-SHENAWEE M. Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest descent fast multipole method[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(4): 802–809. doi: 10.1109/TAP.2003.811096 [15] EL-SHENAWEE M. The multiple interaction model for nonshallow scatterers buried beneath 2-d random rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(4): 982–987. doi: 10.1109/TGRS.2002.1006396 [16] EL-SHENAWEE M, RAPPAPORT C, and SILEVITCH M. Monte Carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: Mine detection application using the steepest-descent fast multipole method[J]. Journal of the Optical Society of America A, 2001, 18(12): 3077–3084. doi: 10.1364/JOSAA.18.003077 [17] KUBICKÉ G, BOURLIER C, and SAILLARD J. Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method[J]. Waves in Random and Complex Media, 2010, 20(1): 156–178. doi: 10.1080/17455030903476712 [18] GUO Lixin, WANG Anqi, and MA Jun. Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel mom based on pc clusters[J]. Progress in Electromagnetics Research, 2009, 89: 149–166. doi: 10.2528/PIER08121002 [19] LI Zhongxin. Bistatic scattering from rough dielectric soil surface with a conducting object partially buried by using the GFBM/SAA method[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(7): 2072–2080. doi: 10.1109/TAP.2006.877187 [20] YU Liang, GUO Lixin, and WU Zhensen. The fast EPILE combined with FBM for electromagnetic scattering from dielectric targets above and below the dielectric rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3892–3905. doi: 10.1109/TGRS.2011.2139219 [21] WANG Anqi, GUO Lixin, and CHAI Cao. Fast numerical method for electromagnetic scattering from an object above a large-scale layered rough surface at large incident angle: Vertical polarization[J]. Applied Optics, 2011, 50(4): 500–508. doi: 10.1364/AO.50.000500 [22] WANG C F and GAN Y B. Electromagnetic scattering from a circular target above or below rough surface[J]. Progress in Electromagnetics Research, 2003, 40: 207–227. doi: 10.2528/PIER02111901 [23] PINO M R, LANDESA L, RODRIGUEZ J L, et al. The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(6): 961–969. doi: 10.1109/8.777118 [24] PINO M R, BURKHOLDER R J, and OBELLEIRO F. Spectral acceleration of the generalized forward-backward method[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(6): 785–797. doi: 10.1109/TAP.2002.1017658 [25] ÇOLAK D, BURKHOLDER R J, and NEWMAN E H. Multiple sweep method of moments analysis of electromagnetic scattering from 3D targets on ocean-like rough surfaces[J]. Microwave and Optical Technology Letters, 2007, 49(1): 241–247. doi: 10.1002/mop.22074 [26] COLAK D, BURKHOLDER R J, and NEWMAN E H. Multiple sweep method of moments (MSMM) analysis of electromagnetic scattering from targets on ocean-like rough surfaces[C]. Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, USA, 2007: 2024–2127. [27] GUO Lixin, LIANG Yu, and WU Zhensen. A study of electromagnetic scattering from conducting targets above and below the dielectric rough surface[J]. Optics Express, 2011, 19(7): 5785–5801. doi: 10.1364/OE.19.005785 [28] HAO Jingwei and SHENG Xinqing. Accurate and efficient simulation model for the scattering from a ship on a sea-like surface[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2375–2379. doi: 10.1109/LGRS.2017.2765342 [29] HE Weijia, YANG Zeng, HUANG Xiaowei, et al. Solving electromagnetic scattering problems with tens of billions of unknowns using GPU accelerated massively parallel MLFMA[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5672–5682. doi: 10.1109/TAP.2022.3161520 [30] AN Yuyuan, WANG Quanquan, YU Guangli, et al. Analysis of electromagnetic scattering from an object above rough surface by using characteristic basis functions and ACA scheme[C]. 2012 International Conference on Microwave and Millimeter Wave Technology, Shenzhen, China, 2012: 1–3. [31] BAO Ran, WANG Anqi, and HUANG Zhixiang. Fast simulations of electromagnetic scattering from rough surface over a frequency band using asymptotic waveform evaluation technique: Horizontal polarization[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(11): 1379–1388. doi: 10.1080/09205071.2018.1437083 [32] LAI Zhihong, KIANG J F, and MITTRA R. A domain decomposition finite difference time domain (DD-FDTD) method for solving the scattering problem from very large rough surfaces[C]. 2014 International Symposium on Antennas and Propagation Conference Proceedings, Kaohsiung, China, 2015: 15–16. [33] LI Juan, GUO Lixin, JIAO Yongchang, et al. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method[J]. Optics Express, 2011, 19(2): 1091–1100. doi: 10.1364/OE.19.001091 [34] LI Juan, GUO Lixin, and ZENG Hao. FDTD investigation on electromagnetic scattering from two-layered rough surfaces under UPML absorbing condition[J]. Chinese Physics Letters, 2009, 26(3): 034101. doi: 10.1088/0256-307X/26/3/034101 [35] LI Juan, GUO Lixin, and ZENG Hao. FDTD method investigation on the polarimetric scattering from 2-D rough surface[J]. Progress in Electromagnetics Research, 2010, 101: 173–188. doi: 10.2528/PIER09120104 [36] SUN Wenbo, PAN Huiying, and VIDEEN G. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface[J]. Applied Optics, 2009, 48(31): 6015–6025. doi: 10.1364/AO.48.006015 [37] KUANG Lei and JIN Yaqiu. Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(8): 2302–2312. doi: 10.1109/TAP.2007.901846 [38] HASTINGS F D, SCHNEIDER J B, and BROSCHAT S L. A monte-carlo FDTD technique for rough surface scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(11): 1183–1191. doi: 10.1109/8.475089 [39] LI Juan, GUO Lixin, and ZENG Hao. FDTD investigation on the electromagnetic scattering from a target above a randomly rough sea surface[J]. Waves in Random and Complex Media, 2008, 18(4): 641–650. doi: 10.1080/17455030802302134 [40] GUO Lixin, LI Juan, and ZENG Hao. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach[J]. Journal of the Optical Society of America A, 2009, 26(11): 2383–2392. doi: 10.1364/JOSAA.26.002383 [41] LI Juan, GUO Lixin, ZENG Hao, et al. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary[J]. Journal of the Optical Society of America A, 2009, 26(6): 1494–1502. doi: 10.1364/JOSAA.26.001494 [42] FUNG A K, SHAH M R, and TJUATJA S. Numerical simulation of scattering from three-dimensional randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 986–994. doi: 10.1109/36.312887 [43] TURKEL E and YEFET A. Fourth order method for Maxwell equations on a staggered mesh[C]. IEEE Antennas and Propagation Society International Symposium, Montreal, Canada, 1997: 2156–2159. [44] KRUMPHOLZ M and KATEHI L P B. MRTD: New time-domain schemes based on multiresolution analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(4): 555–571. doi: 10.1109/22.491023 [45] COLE J B. A high-accuracy realization of the Yee algorithm using non-standard finite differences[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(6): 991–996. doi: 10.1109/22.588615 [46] SHAO Zhenhai, SHEN Zhongxiang, HE Qiuyang, et al. A generalized higher order finite-difference time-domain method and its application in guided-wave problems[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3): 856–861. doi: 10.1109/TMTT.2003.808627 [47] 任新成, 朱小敏, 郭立新. 土壤表面与部分埋藏多目标复合散射的时域有限差分方法[J]. 计算物理, 2019, 36(5): 569–576. doi: 10.19596/j.cnki.1001-246x.7920REN Xincheng, ZHU Xiaomin, and GUO Lixin. Finite difference time domain method for composite electromagnetic scattering from soil surface and partly buried multiple targets[J]. Chinese Journal of Computational Physics, 2019, 36(5): 569–576. doi: 10.19596/j.cnki.1001-246x.7920 [48] CAO Le and WEI Bing. Near-Field coupling characteristics analysis of radome over Half-Space under HPEM[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1637–1644. doi: 10.1109/TEMC.2015.2445376 [49] LIU Q H. The PSTD algorithm: A time-domain method requiring only two cells per wavelength[J]. Microwave and Optical Technology Letters, 1997, 15(3): 158–165. doi: 10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 [50] 贾春刚, 郭立新, 刘伟. 基于GPU的并行FDTD方法在二维粗糙面散射中的应用[J]. 电波科学学报, 2016, 31(4): 683–687. doi: 10.13443/j.cjors.2015111801JIA Chungang, GUO Lixin, and LIU Wei. GPU-based FDTD method for analysis of electromagnetic scattering from a 2D rough surface[J]. Chinese Journal of Radio Science, 2016, 31(4): 683–687. doi: 10.13443/j.cjors.2015111801 [51] XU Runwen, GUO Lixin, HE Hongjie, et al. Study on scattering from multilayer rough surfaces with an object buried with FEM/PML[J]. Microwave and Optical Technology Letters, 2016, 58(2): 429–433. doi: 10.1002/mop.29584 [52] XU Runwen, GUO Lixin, and FAN Tianqi. Composite scattering from an arbitrary dielectric target above the dielectric rough surface with FEM/PML[J]. Chinese Physics Letters, 2013, 30(12): 124101. doi: 10.1088/0256-307X/30/12/124101 [53] OZGUN O and KUZUOGLU M. Monte carlo-based characteristic basis finite-element method (MC-CBFEM) for numerical analysis of scattering from objects on/above rough sea surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 769–783. doi: 10.1109/TGRS.2011.2162650 [54] LIU Peng and JIN Yaqiu. Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(5): 1205–1210. doi: 10.1109/TAP.2004.827497 [55] LIU Peng and JIN Yaqiu. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 950–956. doi: 10.1109/TGRS.2004.825583 [56] LIU Peng and JIN Yaqiu. Numerical Simulation of the Doppler spectrum of a flying target above dynamic oceanic surface by using the FEM-DDM method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(2): 825–832. doi: 10.1109/TAP.2004.841294 [57] SUN Hualong, TONG Chongming, and WU Guanghui. An improved hybrid FEM/MOM combining MLFMA for composite electromagnetic scattering[C]. 11th International Symposium on Antennas, Propagation and EM Theory, Guilin, China, 2016: 542–545. [58] JOHNSON J T. A numerical study of scattering from an object above a rough surface[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(10): 1361–1367. doi: 10.1109/TAP.2002.802152 [59] JOHNSON J T. A study of the four-path model for scattering from an object above a half space[J]. Microwave and Optical Technology Letters, 2001, 30(2): 130–134. doi: 10.1002/mop.1242 [60] LAWRENCE D E and SARABANDI K. Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(10): 1368–1376. [61] BURKHOLDER R J, PINO M R, and KWON D. Development of ray-optical methods for studying the RCS of 2D targets on a rough sea surface[R]. Technical Report, Ohio State University Electro Science Laboratory, Columbus, Ohio, 1999. [62] XU Feng and JIN Yaqiu. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(5): 1495–1505. doi: 10.1109/TAP.2009.2016691 [63] JENG S K, LEE S W, SHEN M H, et al. High frequency scattering from a ship at sea[C]. IEEE Antennas and Propagation Society International Symposium, Ann Arbor, USA, 1993: 1436–1439. [64] ZAHN D and SARABANDI K. Numerical simulation of scattering from rough surfaces using a fast far-field iterative physical optics approach[C]. IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Orlando, USA, 1999: 530–533. [65] CHIU T and SARABANDI K. Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(5): 902–913. doi: 10.1109/8.774155 [66] CHIU T and SARABANDI K. Electromagnetic scattering from short branching vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 911–925. [67] CHIU, T and SARABANDI, K. Electromagnetic scattering from targets above rough surfaces[C]. 1997 IEEE Antennas and Propagation Society International Symposium, Montreal, Canada, 1997. doi: 10.1109/APS.1997.631762. [68] 何姿, 陈如山. 三维随机粗糙海面与舰船的复合电磁特性的高频方法分析研究[J]. 雷达学报, 2019, 8(3): 318–325. doi: 10.12000/JR19032HE Zi and CHEN Rushan. Study on efficient high frequency method of electromagnetic scattering from ships above sea surface[J]. Journal of Radars, 2019, 8(3): 318–325. doi: 10.12000/JR19032 [69] ZOU Gaoxiang, TONG Chuangming, SUN Hualong, et al. A hybrid method for electromagnetic scattering from target above composite rough surface of ground and near sea in adjacent region[J]. Electromagnetics, 2018, 38(7): 415–437. doi: 10.1080/02726343.2017.1378486 [70] YANG Wei and QI Conghui. A bi-iteration model for electromagnetic scattering from a 3D object above a 2D rough surface[J]. Electromagnetics, 2015, 35(3): 190–204. doi: 10.1080/02726343.2015.1005203 [71] LUO Wei, ZHANG Min, ZHAO Yanwei, et al. An efficient hybrid high-frequency solution for the composite scattering of the ship on very large two-dimensional sea surface[J]. Progress in Electromagnetics Research M, 2009, 8: 79–89. doi: 10.2528/PIERM09050103 [72] 罗伟. 时变海面与目标复合电磁散射研究[D]. [博士论文], 西安电子科技大学, 2011: 1–145.LUO Wei. A study of electromagnetic composite scattering from the time-varied sea surfaces and targets[D]. [Ph. D. dissertation], Xidian University, 2011: 1–145. [73] LI Juan, LI Ke, GUO Lixin, et al. A bi-iterative model for electromagnetic scattering from a PEC object partially buried in rough sea surface[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 493–497. doi: 10.1109/LGRS.2018.2795620 [74] LI Jie, GUO Lixin, HE Qiong, et al. Multi-hybrid method for investigation of EM scattering from inhomogeneous object above a dielectric rough surface[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(10): 1781–1790. doi: 10.1007/s11433-012-4720-y [75] LI Jie, GUO Lixin, and HE Qiong. Hybrid FE-BI-KA method in analysing scattering from dielectric object above sea surface[J]. Electronics Letters, 2011, 47(20): 1147–1148. doi: 10.1049/el.2011.1444 [76] LI Ke, GUO Lixin, LI Juan, et al. A fast and efficient method for the composite scattering of a coated object above 3D random rough surfaces[J]. IEEE Access, 2018, 6: 56192–56199. doi: 10.1109/ACCESS.2018.2872791 [77] HUANG Yuan, ZHAO Zhiqin, LI Xianjin, et al. Volume equivalent SBR method for electromagnetic scattering of dielectric and composite objects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2842–2852. doi: 10.1109/TAP.2020.3027873 [78] CHEN Xiaojie and SHI Xiaowei. An expression for the radar cross section computation of an electrically large perfect conducting cylinder located over a dielectric half-space[J]. Progress in Electromagnetics Research, 2007, 77: 267–272. doi: 10.2528/PIER07081702 [79] CHEN Xiaojie and SHI Xiaowei. Backscattering of electrically large perfect conducting targets modeled by NURBS surfaces in half-space[J]. Progress in Electromagnetics Research, 2007, 77: 215–224. doi: 10.2528/PIER07081602 [80] ANASTASSIU H T. A closed Form, physical optics expression for the radar cross section of a perfectly conducting flat plate over a dielectric half-space[J]. Radio Science, 2016, 38(2): 1027. doi: 10.1029/2002RS002688 [81] DONG Chunzhu, WANG Chao, WEI Xiao, et al. EM scattering from complex targets above a slightly rough surface[J]. PIERS Online, 2007, 3(5): 685–688. doi: 10.2529/PIERS061212012947 [82] DAN Jiang and XU Xiaojian. Multi-path backscattering from ships over time-evolving sea surfaces[C]. 2010 International Conference on Electromagnetics in Advanced Applications, Sydney, Australia, 2010: 847–850. [83] 许小剑, 李晓飞, 刁桂杰, 等. 时变海面雷达目标散射现象学模型[M]. 国防工业出版社, 2013. [84] 李晓飞, 许小剑. 时变海面复反射系数建模[J]. 北京航空航天大学学报, 2011, 37(2): 197–201. doi: 10.13700/j.bh.1001-5965.2011.02.023LI Xiaofei and XU Xiaojian. Modeling of complex reflection coefficient for time-evolving sea surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 197–201. doi: 10.13700/j.bh.1001-5965.2011.02.023 [85] 王勇, 许小剑. 海上舰船目标的宽带雷达散射特征信号仿真[J]. 航空学报, 2009, 30(2): 337–342. doi: 10.3321/j.issn:1000-6893.2009.02.024WANG Yong and XU Xiaojian. On wideband radar signature simulation of ships over sea surface[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 337–342. doi: 10.3321/j.issn:1000-6893.2009.02.024 [86] CHEN Hui, ZHANG Min, ZHAO Yanwei, et al. An efficient slope-deterministic facet model for SAR imagery simulation of marine scene[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(11): 3751–3756. doi: 10.1109/TAP.2010.2071349 [87] ZHANG Min, LUO Wei, LUO Gen, et al. Composite scattering of ship on sea surface with breaking waves[J]. Progress in Electromagnetics Research, 2012, 123: 263–277. doi: 10.2528/PIER11100811 [88] 魏仪文. 电大尺寸粗糙(海)面及其与目标复合电磁散射研究[D]. [博士论文], 西安电子科技大学, 2016: 1–148.WEI Yiwen. Investigation on composite electromagnetic scattering from electrical large scale rough sea surface and target[D]. [Ph. D. dissertation], Xidian University, 2016: 1–148. [89] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/JOSA.52.000116 [90] KOUYOUMJIAN R G and PATHAK P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J]. Proceedings of the IEEE, 1974, 62(11): 1448–1461. doi: 10.1109/PROC.1974.9651 [91] TIBERIO R and KOUYOUMJIAN R G. A uniform GTD solution for the diffraction by strips illuminated at grazing incidence[J]. Radio Science, 1979, 14(6): 933–941. doi: 10.1029/RS014i006p00933 [92] UFIMTSEV P Y. Method of edge wave in the physical theory of diffraction[R]. USAF Foreign Technol. Division, Wright-Patterson AFB, Ohio, FTD-HC-23-259-71, 1962. [93] TAO Y B, LIN H, and BAO H J. Adaptive aperture partition in shooting and bouncing ray method[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(9): 3347–3357. doi: 10.1109/TAP.2011.2161435 [94] PARK H G, KIM H T, and KIM K T. Beam tracing for fast RCS prediction of electrically large targets[J]. Progress in Electromagnetics Research M, 2011, 20: 29–42. doi: 10.2528/PIERM11060702 [95] RIUS J M, FERRANDO M, and JOFRE L. High-frequency RCS of complex radar targets in real-time[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(9): 1308–1319. doi: 10.1109/8.247759 [96] RIUS J M, FERRANDO M, and JOFRE L. GRECO: Graphical electromagnetic computing for RCS prediction in real time[J]. IEEE Antennas and Propagation Magazine, 1993, 35(2): 7–17. doi: 10.1109/74.207645 [97] 范天奇. 电大尺寸目标及其与海面复合电磁散射的弹跳射线加速算法与混合算法研究[D]. [博士论文], 西安电子科技大学, 2016: 1–128.FAN Tianqi. Investigation of SBR based accelerating and hybrid method for composite scattering from large targe and rough sea surface[D]. [Ph. D. dissertation], Xidian University, 2016: 1–128. [98] KEE C Y, WANG C F, and CHIA T T. Optimizing high-frequency PO-SBR on GPU for multiple frequencies[C]. 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 2015: 132–133. [99] YANG Wei, KEE C Y, and WANG Chaofu. Novel extension of SBR-PO method for solving electrically large and complex electromagnetic scattering problem in half-space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3931–3940. doi: 10.1109/TGRS.2017.2684241 [100] LING Hao, LEE S W, and CHOU R C. High-frequency RCS of open cavities with rectangular and circular cross sections[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(5): 648–654. doi: 10.1109/8.24193 [101] ZHOU Xiao and CUI Tiejun. Efficient evaluation of near-field time-domain physical-optics integral using locally expanded green function approximation[J]. Progress in Electromagnetics Research, 2015, 150: 41–48. doi: 10.2528/PIER14102507 [102] WEI Yiwen, TIAN Dayong, LI Juan, et al. Efficient GPU implementation of the time-domain shooting and bouncing rays method on electrically large complex target[J]. Waves in Random and Complex Media, 2022. [103] FENG Tiantian and GUO Lixin. EM scattering of electrically large target above sea surface with SDFSM-SBR method[C]. 2017 Sixth Asia-Pacific Conference on Antennas and Propagation, Xi’an, China, 2017: 1–3. [104] ZHANG Min, ZHAO Ye, LI Jinxing, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775–784. doi: 10.1109/TAP.2016.2633066 [105] ZHAO Hua, GUO Lixin, CHEN Tiange, et al. Electromagnetic scattering of coated objects over sea surface based on SBR-SDFSM[J]. Journal of Electromagnetic Waves and Applications, 2018, 32(9): 1079–1092. doi: 10.1080/09205071.2017.1417917 [106] WEST J C, ZHAO Zhiqin, LIU Xin’an, et al. LGA scattering from measured breaking water waves: Extension to jetting surfaces[C]. IEEE International Symposium on Geoscience and Remote Sensing, Sydney, Australia, 2001, 5: 2454–2456. [107] WEST J C and ZHAO Zhiqin. Electromagnetic modeling of multipath scattering from breaking water waves with rough faces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(3): 583–592. doi: 10.1109/TGRS.2002.1000318 [108] WEST J C. Ray analysis of low-grazing scattering from a breaking water wave[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6): 2725–2727. doi: 10.1109/36.803420 [109] WEST J C. Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(2): 523–526. doi: 10.1109/36.992830 [110] WANG Jingjing, GUO Lixin, WEI Yiwen, et al. Electromagnetic scattering analysis of the sea surface with single breaking waves[J]. International Journal of Antennas and Propagation, 2021, 2021: 1545031. doi: 10.1155/2021/1545031 [111] WEI Yiwen, GAO Mengyan, TIAN Dayong, et al. A model for calculating electromagnetic scattering from target in evaporation duct[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2312–2316. doi: 10.1109/LAWP.2022.3190013 [112] ZHANG Y, YANG Y E, BRAUNISCH H, et al. Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique-Abstract[J]. Journal of Electromagnetic Waves and Applications, 1999, 13(7): 983–984. doi: 10.1163/156939399X00457 [113] GUAN Bo, ZHANG Jianfeng, ZHOU Xiaoyang, et al. Electromagnetic scattering from objects above a rough surface using the method of moments with half-space green's function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3399–3405. doi: 10.1109/TGRS.2009.2022169 [114] ZHANG Xiaoyan and SHENG Xinqing. Highly efficient hybrid method for monostatic scattering by objects on a rough surface[J]. IET Microwaves, Antennas & Propagation, 2010, 4(10): 1597–1604. doi: 10.1049/iet-map.2009.0202 [115] ZHANG Xiaoyan and SHENG Xinqing. An efficient hybrid KA-MoM method for scattering from objects above a rough surface[C]. 2008 Asia-Pacific Microwave Conference, Hong Kong, China, 2008: 1–4. [116] WANG Rui, GUO Lixin, MA Jun, et al. Hybrid method for investigation of electromagnetic scattering from conducting target above the randomly rough surface[J]. Chinese Physics B, 2009, 18(4): 1503–1511. doi: 10.1088/1674-1056/18/4/036 [117] 郭立新, 张民, 吴振森. 随机粗糙面与目标复合电磁散射的基本理论和方法[M]. 北京: 科学出版社, 2014.GUO Lixin, ZHANG Min, and WU Zhensen. Basic Theory and Method of Composite Electromagnetic Scattering from Random Rough Surface and Target[M]. Beijing: Science Press, 2014. [118] 郭立新, 王蕊, 吴振森. 随机粗糙面散射的基本理论与方法[M]. 北京: 科学出版社, 2010.GUO Lixin, WANG Rui, and WU Zhensen. Basic Theory and Method of Scattering from Random Rough Surface[M]. Beijing: Science Press, 2010. [119] YANG Wei, ZHAO Zhiqin, QI Conghui, et al. Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface[J]. Progress in Electromagnetics Research, 2011, 117: 435–448. doi: 10.2528/PIER11043001 [120] 李西敏, 童创明, 付树洪, 等. 高斯粗糙面与临空目标复合电磁散射的KH-MoM解[J]. 电波科学学报, 2010, 25(6): 1146–1151. doi: 10.13443/j.cjors.2010.06.013LI Ximin, TONG Chuangming, FU Shuhong, et al. KH-MoM solution of composite EM scattering from object at low altitude over Gaussian random surfaces[J]. Chinese Journal of Radio Science, 2010, 25(6): 1146–1151. doi: 10.13443/j.cjors.2010.06.013 [121] LIU Yang, ZHENG Yuteng, ZHOU Haijing, et al. Iterative FEBI-PO hybrid method for analyzing scattering problems of complex structures having junctions with large-scale platform[J]. IEEE Access, 2019, 7: 168395–168403. doi: 10.1109/ACCESS.2019.2954581 [122] DALEY J C, RANSONE J T, BURKETT J A, et al. Sea clutter measurements on four frequencies[R]. Naval Research Laboratory Report 6806, 1968. [123] DROSOPOULOS A. Description of the OHGR database[R]. Defence Research Establishment Ottawa, Technical Note 94-14, 1994. [124] GRECO M, STINCO P, GINI F, et al. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502–1513. doi: 10.1109/TAES.2010.5545205 [125] WANG Jingjing, GUO Lixin, WEI Yiwen, et al. Electromagnetic scattering analysis of the sea surface with single breaking waves[J]. International Journal of Antennas and Propagation, 2021, doi: 10.1155/2021/1545031. [126] HERSELMAN P L, BAKER C J, and DE WIND H J. An Analysis of X-band calibrated sea clutter and small boat reflectivity at medium-to-low grazing angles[J]. International Journal of Navigation and Observation, 2008, 2008: 347518. doi: 10.1155/2008/347518 [127] DONG Yunhan and MERRETT D. Statistical measures of S-band sea clutter and targets[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008: 575–580. [128] DONG Y and MERRETT D. Analysis of L-band multi-channel sea clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 223–238. doi: 10.1049/iet-rsn.2009.0082 [129] ANTIPOV I. Analysis of sea clutter data[R]. Technical Report DSTO-TR-0647, 1998. [130] HAIR T, LEE T, and BAKER C J. Statistical properties of multifrequency high-range-resolution sea reflections[J]. IEE Proceedings F (Radar and Signal Processing), 1991, 138(2): 75–79. doi: 10.1049/ip-f-2.1991.0012 [131] FABBRO V, BIEGEL G, FÖRSTER J, et al. Measurements of sea clutter at low grazing angle in mediterranean coastal environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6379–6389. doi: 10.1109/TGRS.2017.2727057 [132] 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089 [133] VACHON P W, JOHANNESSEN O M, and JOHANNESSEN J A. An ERS 1 synthetic aperture radar image of atmospheric lee waves[J]. Journal of Geophysical Research:Oceans, 1994, 99(C11): 22483–22490. doi: 10.1029/94JC01392 [134] HU Jing, GAO Jianbo, POSNER F L, et al. Target detection within sea clutter: A comparative study by fractal scaling analyses[J]. Fractals, 2006, 14(3): 187–204. doi: 10.1142/S0218348X06003210 [135] HAYKIN S. The McMaster IPIX radar sea clutter database in 1993[OL]. http://soma.crl.mcmaster.ca/ipix/. [136] DE WIND H J, CILLIERS J E, and HERSELMAN P L. Dataware: Sea clutter and small boat radar reflectivity databases [best of the web][J]. IEEE Signal Processing Magazine, 2010, 27(2): 145–148. doi: 10.1109/MSP.2009.935415 [137] 李清亮, 尹志盈, 朱秀芹等. 雷达地海杂波测量与建模[M]. 国防工业出版社, 2017. [138] WARD K, TOUGH R, and WATTS S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. Stevenage: Institution of Engineering and Technology, 2013. [139] HUNTER I M and SENIOR T B A. Experimental studies of sea-surface effects on low-angle radars[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(11): 1731–1740. doi: 10.1049/piee.1966.0298 [140] 吴振森, 衣方磊. 一维动态海面的电磁散射杂波模拟和参数估计[J]. 电波科学学报, 2003, 18(2): 132–137. doi: 10.3969/j.issn.1005-0388.2003.02.003WU Zhensen and YI Fanglei. Numerical simulation and parameters estimation of scattering clutter from 1-D time-varying sea surface[J]. Chinese Journal of Radio Science, 2003, 18(2): 132–137. doi: 10.3969/j.issn.1005-0388.2003.02.003 [141] WRIGHT J and CREAMER D B. Improved linear representation of surface waves. Part 2. Slowly varying bottoms and currents[J]. Journal of Fluid Mechanics, 1994, 261: 65–74. doi: 10.1017/S0022112094000261 [142] WANG Pei, YAO Yitao, and TULIN M P. Wave group Evolution, wave deformation, and breaking: Simulations using Longtank, a numerical wave tank[J]. International Journal of Offshore and Polar Engineering, 1994, 4(3): 200–205. [143] YANG Wei, ZHAO Zhiqin, QI Conghui, et al. Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical legendre basis functions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(1): 346–352. doi: 10.1109/TGRS.2010.2052817 [144] LUO Wei, ZHANG Min, WANG Chao, et al. Investigation of low-grazing-angle microwave backscattering from threedimensional breaking sea waves[J]. Progress in Electromagnetics Research, 2011, 119: 279–298. doi: 10.2528/PIER11062607 [145] ARIKAN F. Statistics of simulated ocean clutter[J]. Journal of Electromagnetic Waves and Applications, 1998, 12(4): 499–526. doi: 10.1163/156939398X00926 [146] SORIANO G, JOELSON M, and SAILLARD M. Doppler spectra from a two-dimensional ocean surface at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2430–2437. doi: 10.1109/TGRS.2006.873580 [147] TOPORKOV J V and BROWN G S. Numerical simulations of scattering from time-varying, randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1616–1625. doi: 10.1109/36.851961 [148] TOPORKOV J V. Numerical scattering simulations from time-evolving ocean-like surfaces at L-and X-band: Doppler analysis and comparisons with a composite surface analytical model[C]. Proceedings of XXVII General Assembly of URSI, Holland, 2002. [149] JOHNSON J T, TOPORKOV J V, and BROWN G S. A numerical study of backscattering from time-evolving sea surfaces: Comparison of hydrodynamic models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2411–2420. doi: 10.1109/36.964977 [150] 丁慧芬. 动态海面及其与上方目标电磁散射杂波的特性分析[D]. [硕士论文], 西安电子科技大学, 2012: 1–75.DING Huifen. Analysis of characteristics of electromagnetic scattering sea clutter from target above time-varying sea surface[D]. [Master dissertation], Xidian University, 2012: 1–75. [151] BURKHOLDER R J, PINO M R, and OBELLEIRO F. Low angle scattering from 2-D targets on a time-evolving sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 40(5): 1185–1190. doi: 10.1109/TGRS.2002.1221954 [152] ZHAO Zhiqin. Overview: Electromagnetic scattering from ocean surface[J]. Journal of Electronic Science and Technology of China, 2006, 4(3): 209–218. [153] QI Conghui, ZHAO Zhiqin, and NIE Zaiping. Numerical approach on Doppler spectrum analysis for moving targets above a time-evolving sea surface[J]. Progress in Electromagnetics Research, 2013, 138: 351–365. doi: 10.2528/PIER13020112 [154] 陈珲. 动态海面及其上目标复合电磁散射与多普勒谱研究[D]. [博士论文], 西安电子科技大学, 2012: 1–168.CHEN Hui. A study of electromagnetic composite scattering and Doppler spectra of a target at time-evolving sea surface[D]. [Ph. D. dissertation], Xidian University, 2012: 1–168. [155] NIE Ding, ZHANG Min, GENG Xupu, et al. Investigation on Doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea[J]. Progress in Electromagnetics Research, 2012, 130: 169–186. doi: 10.2528/PIER12062509 [156] LI Xiaofei and XU Xiaojian. Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 603–611. doi: 10.1109/TGRS.2010.2060204 [157] PENG Peng and GUO Lixin. A facet-based simulation of the multipath effect on the EM scattering and Doppler spectrum of a low-flying target at maritime scene[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1495–1499. doi: 10.1109/LGRS.2018.2853662 [158] KALMYKOV A I and PUSTOVOYTENKO V V. On polarization features of radio signals scattered from the sea surface at small grazing angles[J]. Journal of Geophysical Research, 1976, 81(12): 1960–1964. doi: 10.1029/JC081i012p01960 [159] FUCHS J, WELCH S, WASEDA T, et al. Inside the sea-spike: Low grazing angle radar imaging of laboratory waves repeatedly breaking in wave groups[C]. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, Singapore, 1997: 714–718. [160] HANSEN J P and CAVALERI V F. High-resolution radar sea scatter, experimental observations and discriminants[R], Naval Research laboratory Report 8557, Washington, D. C., 1982. [161] HWANG P A, SLETTEN M A, and TOPORKOV J V. An empirical study of breaking wave contribution to radar backscatter from the ocean surface at low grazing angle[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 113–116. [162] RINO C L and NGO H D. Numerical simulation of low-grazing-angle ocean microwave backscatter and its relation to sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 133–141. doi: 10.1109/8.655460 [163] SLETTEN M A, LIU X, DUNCAN J H, et al. Radar investigations of breaking water waves at low grazing angles with simultaneous high-speed optical imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 922–924. [164] LIU Y, FRASIER S J, and MCINTOSH R E. Measurement and classification of low-grazing-angle radar sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 27–40. doi: 10.1109/8.655448 [165] KWOH D and LAKE B. A deterministic, coherent, and dual-polarized laboratory study of microwave backscattering from water Waves, Part I: Short gravity waves without wind[J]. IEEE Journal of Oceanic Engineering, 1984, 9(5): 291–308. doi: 10.1109/JOE.1984.1145638 [166] HOLLIDAY D and DERAAD L L. Sea-spike backscatter from a steepening wave[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 108–113. doi: 10.1109/8.655457 [167] HOLLIDAY D, DERAAD L L, and ST-CYR G J. Forward-backward method for scattering from imperfect conductors[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 101–107. doi: 10.1109/8.655456 [168] WU Biyi, WANG Jiajing, GUO Kunyi, et al. Back-scattering characteristics of realistic breaking waves[C]. 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 2019: 1–3. [169] 李文龙. 改进的时变卷浪建模及其电磁散射研究[D]. [硕士论文], 西安电子科技大学, 2014: 1–79.LI Wenlong. Electromagnetic scattering from improved time-varying overturning wave[D]. [Master dissertation], Xidian University, 2014: 1–79. [170] 孟肖. 电大尺寸粗糙(海)面电磁散射特性及并行加速技术研究[D]. [博士论文], 西安电子科技大学, 2016: 1–131.MENG Xiao. Investigation on the electromagnetic scattering from electrical large size rough (Sea) surface and parallel acceleration technique[D]. [Ph. D. dissertation], Xidian University, 2016: 1–131. [171] WEI Yiwen, GUO Lixin, and LI Juan. Numerical simulation and analysis of the spiky sea clutter from the sea surface with breaking waves[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4983–4994. doi: 10.1109/TAP.2015.2476375 [172] ALPERS W. Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra[J]. Journal of Geophysical Research:Oceans, 1983, 88(C3): 1745–1759. doi: 10.1029/JC088iC03p01745 [173] PLANT W J. Reconciliation of theories of synthetic aperture radar imagery of ocean waves[J]. Journal of Geophysical Research:Oceans, 1992, 97(C5): 7493–7501. doi: 10.1029/92JC00102 [174] LYZENGA D R and SHUCHMAN R A. Analysis of scatterer motion effects in Marsen X band SAR imagery[J]. Journal of Geophysical Research:Oceans, 1983, 88(C14): 9769–9775. doi: 10.1029/JC088iC14p09769 [175] VACHON P W, RANEY R K and EMERGY W J. A simulation for spaceborne SAR imagery of a Distributed, moving scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(1): 67–78. doi: 10.1109/36.20276 [176] HASSELMANN K, HASSELMANN R K, PLANT W J, et al. Theory of synthetic aperture radar ocean imaging: A MARSEN view[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4659–4686. doi: 10.1029/JC090iC03p04659 [177] 杨劲松, 周长宝, 黄伟艮. 星载合成孔径雷达海浪遥感测量[J]. 地球物理学报, 2001, 44(S1): 22–27. doi: 10.3321/j.issn:0001-5733.2001.z1.004YANG Jinsong, ZHOU Changbao, and HUANG Weigen. Ocean wave measurements by spaceborne SAR[J]. Chinese Journal of Geophysics, 2001, 44(S1): 22–27. doi: 10.3321/j.issn:0001-5733.2001.z1.004 [178] HUANG Weigen, FU Bin, ZHOU Changbao, et al. Simulation study on optimal currents and winds for the spaceborne SAR mapping of sea bottom topography[J]. Progress in Natural Science, 2000, 10(11): 859–866. [179] 黄晓霞, 朱振海. 海洋表面膜特征的SAR图像探测[J]. 遥感学报, 1999, 3(1): 48–53. doi: 10.11834/jrs.19990107HUANG Xiaoxia and ZHU Zhenhai. Detection of sea surface slick features using SAR image[J]. Journal of Remote Sensing, 1999, 3(1): 48–53. doi: 10.11834/jrs.19990107 [180] 刁桂杰, 许小剑, 倪虹, 等. 海面舰船目标SAR回波信号仿真[J]. 系统仿真学报, 2015, 27(9): 1989–1996. doi: 10.16182/j.cnki.joss.2015.09.009DIAO Guijie, XU Xiaojian, NI Hong, et al. Synthetic aperture radar signal simulation of ships on sea surface[J]. Journal of System Simulation, 2015, 27(9): 1989–1996. doi: 10.16182/j.cnki.joss.2015.09.009 [181] KONG Lingyu and XU Xiaojian. A compact dual-band dual-polarized microstrip antenna array for MIMO-SAR applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2374–2381. doi: 10.1109/TAP.2018.2814222 [182] XU Xiaojian, WANG Yong, and QIN Yao. SAR image modeling of ships over sea surface[C]. SAR Image Analysis, Modeling, and Techniques VIII, Stockholm, Sweden, 2006: 63630J. [183] LI Zhongxin and JIN Yaqiu. Numerical simulation of bistatic scattering from a fractal rough surface using the forward-backward method[J]. Electromagnetics, 2002, 22(3): 191–207. doi: 10.1080/02726340252886465 [184] ZHANG Min, ZHAO Yanwei, ZHAO Ye, et al. A bistatic synthetic aperture radar imagery simulation of maritime scene using the extended nonlinear chirp scaling algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2046–2054. doi: 10.1109/TAES.2013.6558038 [185] ZHAO Ye, ZHANG Min, ZHAO Yanwei, et al. A bistatic SAR image intensity model for the composite ship-ocean scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4250–4258. doi: 10.1109/TGRS.2015.2393915 [186] 赵志钦, 骆小谚, 聂在平. 利用双尺度模型的海浪极化SAR成像模拟[J]. 电子科技大学学报, 2009, 38(5): 651–655. doi: 10.3969/j.issn.1001-0548.2009.05.024ZHAO Zhiqin, LUO Xiaoyan, and NIE Zaiping. Simulation of polarization SAR imaging of sea wave using two-scale model[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(5): 651–655. doi: 10.3969/j.issn.1001-0548.2009.05.024 [187] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130 [188] 丁大志, 杨婕, 杨宝金, 等. 基于弹跳射线法的海上目标快速成像与识别算法[J]. 信号处理, 2020, 36(12): 1998–2006. doi: 10.16798/j.issn.1003-0530.2020.12.005DING Dazhi, YANG Jie, YANG Baojin, et al. Research on recognition of maritime targets based on the SBR imaging algorithm[J]. Journal of Signal Processing, 2020, 36(12): 1998–2006. doi: 10.16798/j.issn.1003-0530.2020.12.005 [189] 董春雷. 基于SBR算法的海上目标复合电磁散射及SAR成像与识别研究[D]. [博士论文], 西安电子科技大学, 2020: 1–150.DONG Chunlei. Investigation of composite electromagnetic scattering from targets on sea surface and SAR imaging with recognition based on SBR[D]. [Ph. D. dissertation], Xidian University, 2020: 1–150. [190] LI Chong, LI Juan, GUO Lixin, et al. Investigation on SAR image of target on rough surface[C]. 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 2021: 1–3. [191] PENG Peng, GUO Lixin, and TONG Chuangming. A hybrid EM scheme for the composite scattering and the SAR imaging of a low-altitude target above the electrically large and multi-scale sea surface[J]. Electromagnetics, 2017, 37(8): 500–512. doi: 10.1080/02726343.2017.1392718 [192] PENG Peng, GUO Lixin, and TONG Chuangming. A SAR imaging simulator of a low-flying target above ocean surface with multipath effect[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017: 1–4. -