基于SVM的捷变频雷达密集转发干扰智能抑制方法

杜思予 刘智星 吴耀君 沙明辉 全英汇

杜思予, 刘智星, 吴耀君, 等. 基于SVM的捷变频雷达密集转发干扰智能抑制方法[J]. 雷达学报, 2023, 12(1): 173–185. doi: 10.12000/JR22065
引用本文: 杜思予, 刘智星, 吴耀君, 等. 基于SVM的捷变频雷达密集转发干扰智能抑制方法[J]. 雷达学报, 2023, 12(1): 173–185. doi: 10.12000/JR22065
DU Siyu, LIU Zhixing, WU Yaojun, et al. Dense-repeated jamming suppression algorithm based on the support vector machine for frequency agility radar[J]. Journal of Radars, 2023, 12(1): 173–185. doi: 10.12000/JR22065
Citation: DU Siyu, LIU Zhixing, WU Yaojun, et al. Dense-repeated jamming suppression algorithm based on the support vector machine for frequency agility radar[J]. Journal of Radars, 2023, 12(1): 173–185. doi: 10.12000/JR22065

基于SVM的捷变频雷达密集转发干扰智能抑制方法

DOI: 10.12000/JR22065
基金项目: 国家自然科学基金(61772397),陕西省杰出青年科学基金(2021JC-23),陕西省科技创新团队(2019TD-002)
详细信息
    作者简介:

    杜思予,硕士生,主要研究方向为雷达波形优化及抗干扰

    刘智星,博士生,主要研究方向为捷变相参雷达信号处理及抗干扰

    吴耀君,博士生,副研究员,主要研究方向为捷变雷达抗干扰、雷达目标特性识别、新体制雷达

    沙明辉,博士,研究员,主要研究方向为雷达系统设计和雷达电子对抗

    全英汇,博士,教授,主要研究方向为电磁博弈对抗、敏捷雷达、雷达遥感等

    通讯作者:

    全英汇 yhquan@mail.xidian.edu.cn

  • 责任主编:刘泉华 Corresponding Editor: LIU Quanhua
  • 中图分类号: TN972

Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar

Funds: The National Natural Science Foundation of China (61772397), The Shaanxi Provincial Science Fund for Distinguished Young Scholars (2021JC-23), The Science and Technology Innovation Team of Shaanxi Province (2019TD-002)
More Information
  • 摘要: 密集转发干扰与雷达发射信号高度相关,兼具压制式和欺骗式干扰效果,使雷达系统难以检测到真实目标,严重威胁雷达作战能力。针对这一问题,该文提出一种基于支持向量机(SVM)的捷变频雷达密集转发干扰智能抑制方法。通过对随机样本集进行离线训练获得最优SVM模型,智能化识别并分类目标和干扰;然后,采用平滑滤波进一步抑制目标所在距离单元内的干扰信号;最后,基于压缩感知(CS)理论进行二维高分辨重构,估计出目标参数信息。仿真实验与实测数据处理结果表明,所提算法在不同场景下均能够有效抑制密集转发干扰,准确检测出真实目标。

     

  • 图  1  捷变频雷达信号模型

    Figure  1.  Frequency agile radar signal model

    图  2  密集转发干扰原理图

    Figure  2.  Dense repeated jamming principle diagram

    图  3  干扰抑制算法流程图

    Figure  3.  Flow chart of interference suppression algorithm

    图  4  匹配滤波数据空间分布特征

    Figure  4.  Matching filtering data spatial distribution characteristics

    图  5  特征参数计算示意图

    Figure  5.  Schematic diagram of characteristic parameter calculation

    图  6  平滑滤波

    Figure  6.  Smoothing window filtering

    图  7  最优SVM分类模型

    Figure  7.  Optimal SVM classification model

    图  8  抗干扰仿真结果

    Figure  8.  Anti-jamming simulation results

    图  9  实测数据处理结果

    Figure  9.  Measured data processing results

    图  10  分类准确率随JSR变化曲线

    Figure  10.  The curve of classification accuracy changing with JSR

    图  11  分类准确率随训练样本比例变化曲线

    Figure  11.  The curve of classification accuracy changing with the proportion of training set

    图  12  目标信息保留度

    Figure  12.  The target information retention percentage

    图  13  不同算法在不同JSR下的检测概率

    Figure  13.  Detection probability of different algorithmsunder different JSR

    图  14  不同虚警率下检测概率随JSR变化曲线

    Figure  14.  The curve of detection probability changing with JSR under different false alarm rates

    表  1  雷达参数

    Table  1.   Radar parameters

    参数数值参数数值
    脉冲数Q64脉冲重复周期Tr40 μs
    信号脉宽Tp4 μs信号带宽B20 MHz
    初始载频fc14 GHz跳频间隔$ \Delta f$9 MHz
    采样率fs40 MHz
    下载: 导出CSV

    表  2  外场试验参数

    Table  2.   Outfield experiment parameters

    参数数值参数数值
    脉冲数Q128脉冲重复周期Tr250 μs
    信号脉宽Tp4 μs信号带宽B20 MHz
    跳频总数$Q' $256载频跳变范围33.2~34.2 GHz
    采样率fs60 MHz
    下载: 导出CSV
  • [1] FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958
    [2] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080
    [3] 黎明也, 曹志华, 朱宝增. 对线性调频雷达的密集假目标干扰研究[J]. 中国电子科学研究院学报, 2014, 9(3): 272–276. doi: 10.3969/j.issn.1673-5692.2014.03.009

    LI Mingye, CAO Zhihua, and ZHU Baozeng. The study of dense false-farget jamming to LFM radar[J]. Journal of CAEIT, 2014, 9(3): 272–276. doi: 10.3969/j.issn.1673-5692.2014.03.009
    [4] WEN Cai, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [5] 余康林, 匡华星, 王超宇. 基于多维特征的密集转发式干扰识别方法[J]. 雷达科学与技术, 2021, 19(4): 448–454, 466. doi: 10.3969/j.issn.1672-2337.2021.04.013

    YU Kanglin, KUANG Huaxing, and WANG Chaoyu. A recognition method of dense repeater jamming based on multiple features[J]. Radar Science and Technology, 2021, 19(4): 448–454, 466. doi: 10.3969/j.issn.1672-2337.2021.04.013
    [6] XU Leilei, LIU Hongwei, ZHOU Shenghua, et al. Colocated MIMO radar waveform design against repeat radar jammers[C]. 2018 International Conference on Radar (RADAR), Brisbane, Australia, 2018: 1–5.
    [7] 刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001

    LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001
    [8] 卢刚, 唐斌, 罗双才. LFM雷达中DRFM假目标自适应对消方法[J]. 系统工程与电子技术, 2011, 33(8): 1760–1764. doi: 10.3969/j.issn.1001-506X.2011.08.16

    LU Gang, TANG Bin, and LUO Shuangcai. Adaptive cancellation of DRFM false targets for LFM radar[J]. Systems Engineering and Electronics, 2011, 33(8): 1760–1764. doi: 10.3969/j.issn.1001-506X.2011.08.16
    [9] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    [10] 李培, 王峰. 基于域变换的雷达主瓣密集转发干扰抑制方法研究[J]. 中国电子科学研究院学报, 2021, 16(8): 797–804. doi: 10.3969/j.issn.1673-5692.2021.08.008

    LI Pei and WANG Feng. Research on radar main lobe dense repeater jamming suppression method based on domain transform[J]. Journal of CAEIT, 2021, 16(8): 797–804. doi: 10.3969/j.issn.1673-5692.2021.08.008
    [11] 张亮, 王国宏, 张顺义, 等. 一种分数阶域的密集假目标干扰抑制算法[J]. 西安交通大学学报, 2020, 54(12): 79–87. doi: 10.7652/xjtuxb202012010

    ZHANG Liang, WANG Guohong, ZHANG Shunyi, et al. An algorithm for suppressing jamming of dense false targets in fractional Fourier transform domain[J]. Journal of Xian Jiaotong University, 2020, 54(12): 79–87. doi: 10.7652/xjtuxb202012010
    [12] 孙殿星, 陈翔, 万建伟, 等. 基于多特征的密集假目标干扰融合识别与抑制[J]. 系统工程与电子技术, 2018, 40(10): 2207–2215. doi: 10.3969/j.issn.1001-506X.2018.10.08

    SUN Dianxing, CHEN Xiang, WAN Jianwei, et al. Fusion identification and suppression technique against concentrated false targets jamming based on multiple features[J]. Systems Engineering and Electronics, 2018, 40(10): 2207–2215. doi: 10.3969/j.issn.1001-506X.2018.10.08
    [13] CHEN Fengbo, LI Rongfeng, DING Liming, et al. A method against DRFM dense false target jamming based on jamming recognization[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4.
    [14] CAI Guang, SHAO Yinbo, LI Rongfeng, et al. A method for countering dense false target jamming based on correlation sample selection[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017: 1–5.
    [15] LIU Kaiqiang, FU Xiongjun, GAO Zhiming, et al. Time-space two-dimensional dense false targets jamming and countermeasures[C]. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 2018: 1982–1987.
    [16] 方文, 全英汇, 沙明辉, 等. 捷变频联合波形熵的密集假目标干扰抑制算法[J]. 系统工程与电子技术, 2021, 43(6): 1506–1514. doi: 10.12305/j.issn.1001-506X.2021.06.07

    FANG Wen, QUAN Yinghui, SHA Minghui, et al. Dense false targets jamming suppression algorithm based on frequency agility and waveform entropy[J]. Systems Engineering and Electronics, 2021, 43(6): 1506–1514. doi: 10.12305/j.issn.1001-506X.2021.06.07
    [17] 董淑仙, 全英汇, 陈侠达, 等. 基于捷变频联合数学形态学的干扰抑制算法[J]. 系统工程与电子技术, 2020, 42(7): 1491–1498. doi: 10.3969/j.issn.1001-506X.2020.07.09

    DONG Shuxian, QUAN Yinghui, CHEN Xiada, et al. Interference suppression algorithm based on frequency agility combined with mathematical morphology[J]. Systems Engineering and Electronics, 2020, 42(7): 1491–1498. doi: 10.3969/j.issn.1001-506X.2020.07.09
    [18] LONG Xingwang, LI Kun, TIAN Jing, et al. Ambiguity function analysis of random frequency and PRI agile signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 382–396. doi: 10.1109/TAES.2020.3016851
    [19] AKHTAR J and OLSEN K E. Frequency agility radar with overlapping pulses and sparse reconstruction[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 0061–0066.
    [20] TAO Yanji, ZHANG Gong, TAO Tingbao, et al. Frequency-agile coherent radar target Sidelobe suppression based on sparse Bayesian learning[C]. 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Nanjing, China, 2019: 1–4.
    [21] 张克舟, 李青山, 陆静, 等. LFM脉冲压缩雷达密集假目标干扰时序设计与分析[J]. 现代防御技术, 2015, 43(4): 132–137. doi: 10.3969/j.issn.1009-086x.2015.04.022

    ZHANG Kezhou, LI Qingshan, LU Jing, et al. Design and analysis of dense false target jamming time sequence of LFM pulse compression radar[J]. Modern Defense Technology, 2015, 43(4): 132–137. doi: 10.3969/j.issn.1009-086x.2015.04.022
    [22] 何明浩, 韩俊. 现代雷达辐射源信号分选与识别[M]. 北京: 科学出版社, 2016: 90–116.

    HE Minghao and HAN Jun. Modern Radar Emitter Signal Sorting and Recognition[M]. Beijing: Science Press, 2016: 90–116.
    [23] 滑文强, 王爽, 侯彪. 基于半监督学习的SVM-Wishart极化SAR图像分类方法[J]. 雷达学报, 2015, 4(1): 93–98. doi: 10.12000/JR14138

    HUA Wenqiang, WANG Shuang, and HOU Biao. Semi-supervised learning for classification of polarimetric SAR images based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93–98. doi: 10.12000/JR14138
    [24] 王福友, 罗钉, 刘宏伟. 低分辨机载雷达空地运动目标的分类识别算法[J]. 雷达学报, 2014, 3(5): 497–504. doi: 10.3724/SP.J.1300.2014.14092

    WANG Fuyou, LUO Ding, and LIU Hongwei. Low-resolution airborne radar air/ground moving target classification and recognition[J]. Journal of Radars, 2014, 3(5): 497–504. doi: 10.3724/SP.J.1300.2014.14092
    [25] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 121–140.

    ZHOU Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016: 121–140.
    [26] SZELISKI R. Computer Vision: Algorithms and Applications (Texts in Computer Science)[M]. London: Springer, 2010: 109–129.
    [27] EKSTROM M. Digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(4): 484–486. doi: 10.1109/TASSP.1980.1163437
    [28] GONZALEZ R C and WOODS R E. Digital Image Processing[M]. Upper Saddle River: Prentice Hall, 2002: 144–156.
    [29] MARQUES E C, MACIEL N, NAVINER L, et al. A review of sparse recovery algorithms[J]. IEEE Access, 2019, 7: 1300–1322. doi: 10.1109/ACCESS.2018.2886471
    [30] QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700
    [31] KNILL C, SCHWEIZER B, SPARRER S, et al. High range and doppler resolution by application of compressed sensing using low baseband bandwidth OFDM radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3535–3546. doi: 10.1109/TMTT.2018.2830389
    [32] WEI Shaopeng, ZHANG Lei, and LIU Hongwei. Joint frequency and PRF agility waveform optimization for high-resolution ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5100723. doi: 10.1109/TGRS.2021.3051038
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1513
  • HTML全文浏览量:  738
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-06-07
  • 网络出版日期:  2022-06-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回