星源照射双/多基地SAR成像

武俊杰 孙稚超 吕争 杨建宇 李财品 孙华瑞 陈天夫 赵良波 任航 庄超然

武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213
引用本文: 武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213
WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213
Citation: WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213

星源照射双/多基地SAR成像

DOI: 10.12000/JR22213
基金项目: 国家自然科学基金(61901088, 61922023, 61801099),北京市科技新星项目(Z201100006820103)
详细信息
    作者简介:

    武俊杰,教授,博士生导师,研究方向为合成孔径雷达成像、双/多基合成孔径雷达、雷达信号处理等

    孙稚超,副教授,研究方向为最优化方法及其应用、双/多基合成孔径雷达、星载合成孔径雷达信号处理等

    吕 争,高级工程师,研究方向为微波遥感卫星总体设计和遥感图像应用

    杨建宇,教授,博士生导师,研究方向为雷达信号处理、合成孔径雷达成像等

    李财品,高级工程师,研究方向为星载合成孔径雷达成像、雷达系统设计等

    孙华瑞, 博士生,研究方向为双基SAR成像算法等

    陈天夫,博士生,研究方向为星源照射双基SAR成像算法、多模式SAR成像等

    赵良波,研究员,研究方向为微波遥感卫星总体设计

    任 航,博士生,研究方向为双/多基合成孔径雷达、压缩感知理论、优化理论和算法等

    庄超然,硕士,工程师,主要负责民用陆地观测卫星运控工作,制定卫星运行及综合管控策略

    通讯作者:

    武俊杰 junjie_wu@uestc.edu.cn

  • 责任主编:曾涛 Corresponding Editor: ZENG Tao
  • 中图分类号: TN985

Bi/multi-static Synthetic Aperture Radar Using Spaceborne Illuminator

Funds: The National Natural Science Foundation of China (61901088, 61922023, 61801099), The Beijing Science and Technology New Star Project (Z201100006820103)
More Information
  • 摘要: 星源照射双/多基地合成孔径雷达(SAR),采用卫星发射,卫星、临近空间、飞机、地面等平台接收,实现对地海面场景和目标的高分辨成像。该技术具有可成像范围广、隐蔽性好、抗干扰能力强等优点,且可以通过波束调控实现扫描、聚束、滑动聚束等多种组合成像模式,从而获取更加丰富的成像信息,具有十分广阔的民用和军事应用前景。目前,国内外针对星源照射双/多基地SAR成像技术开展了多年的研究,积累了诸多研究成果。该文分别从系统组成、构型方法、回波模型、成像方法、收发同步与试验验证等方面对该技术进行阐述与分析,同时对相关的研究工作进行较系统的回顾,并展望了星源照射双/多基地SAR成像技术未来的发展方向。

     

  • 图  1  星源照射双/多基地SAR系统

    Figure  1.  The configuration of bi/multi-static SAR system with spaceborne illuminators

    图  2  星源照射双/多基地 SAR 系统分类

    Figure  2.  The classification of bi/multi-static SAR system with spaceborne illuminators

    图  3  地面距离分辨率与几何构型的关系[14]

    Figure  3.  The relationship between ground range resolutions and bistatic configurations[14]

    图  4  地面方位分辨率与几何构型的关系[14]

    Figure  4.  The relationship between ground azimuth resolutions and bistatic configurations[14]

    图  5  HH极化星机双基SAR成像信噪比特性[14]

    Figure  5.  The property of SNR for spaceborne/airborne bistatic SAR with HH polarization[14]

    图  6  GEO星机双基SAR的等距离等多普勒线[23]

    Figure  6.  The contour of range-Doppler for geosynchronous spaceborne/airborne bistatic SAR[23]

    图  7  GEO星机多角度成像模式示意图[25]

    Figure  7.  The diagram of multi-angle imaging modes for geosynchronous spaceborne/airborne bistatic SAR[25]

    图  8  星地试验成像结果[49]

    Figure  8.  The imaging result of spaceborne and ground-based bistatic SAR[49]

    图  9  TerraSAR-X/F-SAR双基SAR成像结果[61]

    Figure  9.  The imaging result of TerraSAR-X/F-SAR bistatic SAR[61]

    图  10  稀疏恢复效果对比[64]

    Figure  10.  Comparison of sparse reconstruction results[64]

    图  11  GNSS星载双基SAR直达波同步系统[5]

    Figure  11.  The direct-signal synchronous system for bistatic SAR with GNSS illuminators[5]

    图  12  海面动目标成像结果比较[79]

    Figure  12.  Comparison of the imaging results of the distributed moving target[79]

    图  13  GEO SA-BiSAR的非稀疏分布式成像场景模拟[82]

    Figure  13.  Nonsparse distributed imaging scene simulations for GEO SA-BiSAR[82]

    图  14  SABRINA系统试验结果[84]

    Figure  14.  The test results of SABRINA system[84]

    图  15  德国DLR星机双基SAR试验成像结果[85]

    Figure  15.  Imaging results of German DLR spaceborne/airborne bistatic SAR experiment[85]

    图  16  德国FHR双基后视SAR成像结果[86]

    Figure  16.  Imaging results of German FHR bistatic SAR experiment with back-looking mode[86]

    图  17  美国圣地亚实验室星地双基SAR成像试验结果[87]

    Figure  17.  Imaging results of spaceborne and ground-based bistatic SAR experiment conducted by US Sandia laboratory Laboratory[87]

    图  18  单/双基成像结果对比[88]

    Figure  18.  Comparison of monostatic/bistatic imaging results[88]

    图  19  单通道和5通道DBF获取的图像对比[90]

    Figure  19.  Comparison of imaging results between single channel DBF and five channel DBF[90]

    图  20  成像结果对比[56]

    Figure  20.  Comparison of imaging results[56]

    图  21  成像结果与光学遥感图像对比[91]

    Figure  21.  Comparison of imaging results with optical remote sensing images[91]

    图  22  伯明翰大学GNSS星载/机载双基SAR成像试验结果[4]

    Figure  22.  The results of GNSS spaceborne/airborne bistatic SAR experiment conducted by Birmingham University[4]

    图  23  图像相干融合结果[95]

    Figure  23.  Results of coherent fusion image[95]

    图  24  伯明翰大学和国防科技大学GNSS星地双基SAR成像试验结果[96]

    Figure  24.  Spaceborne and ground-based bistatic SAR experiment conducted by Birmingham University and National University of Defense Technology[96]

    图  25  光学图像与成像结果的对比[98]

    Figure  25.  Comparison between the optical image and the radar image[98]

    表  1  GEO星机双基SAR系统仿真参数

    Table  1.   The simulation parameters of geosynchronous spaceborne/airborne bistatic SAR

    系统参数 数值平台参数 数值
    载频1.25 GHzGEO轨道离心率0.07
    带宽100 MHzGEO轨道倾角53°
    峰值功率5 kWGEO半长轴长度42164.17 km
    发射天线增益50 dB接收站速度200 m/s
    接收天线增益20.8 dB接收站高度10 km
    下载: 导出CSV

    表  2  星源照射双/多基SAR典型系统/试验介绍

    Table  2.   Typical system introduction of bi/multi-static SAR system with spaceborne illuminators

    类别平台组合典型系统/试验国家研制状态优劣势与应用价值
    发射接收
    同构SAR卫星SAR卫星陆探1号中国在轨运行可实现高精度干涉测量,
    用于地表DEM生成与运动目标检测等
    TerraSAR-X/TanDEM-X德国在轨运行
    TanDEM-L德国正在研制
    异构SAR卫星
    GNSS卫
    星等
    飞机、地
    面等
    挑战者号+CV990飞机美国验证了星机双基SAR成像可行性机载接收站:观测视角丰富、响应速度快
    地面接收站:感兴趣区域
    长时间观测
    GNSS卫星:全球覆盖,
    带宽与功率受限
    SAR卫星:大带宽、
    功率密度较高
    ERS-2/ENVISAT+地面固定站(SABRINA系统)西班牙星地双基干涉SAR试验
    TerraSAR-X+飞机
    (F-SAR/PAMIR)
    中国、德国、美国星机SAR成像试验
    遥感-1+地面固定站中国对比单双基成像结果
    TerraSAR-X +地面固定站中国DBF提升信噪比
    高分-3+飞机中国星机双基SAR成像试验
    GLONASS/GPS/Galileo +地面固定接收中国、英国GNSS星地双基SAR成像试验
    GLONASS+飞机英国、中国GNSS星机双基SAR成像试验
    北斗-2+地面固定接收中国GNSS星地双基SAR成像试验
    下载: 导出CSV
  • [1] 杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017.

    YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017.
    [2] 曾涛. 双基地合成孔径雷达发展现状与趋势分析[J]. 雷达学报, 2012, 1(4): 329–341. doi: 10.3724/SP.J.1300.2012.20093

    ZENG Tao. Bistatic SAR: State of the art and development trend[J]. Journal of Radars, 2012, 1(4): 329–341. doi: 10.3724/SP.J.1300.2012.20093
    [3] WANG R and DENG Yunkai. Bistatic SAR System and Signal Processing Technology[M]. Singapore: Springer, 2018.
    [4] CHERNIAKOV M, ZENG Tao, and PLAKIDIS E. Galileo signal-based bistatic system for avalanche prediction[C]. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 784–786.
    [5] ANTONIOU M and CHERNIAKOV M. GNSS-based bistatic SAR: A signal processing view[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 98. doi: 10.1186/1687-6180-2013-98
    [6] WILLIS N J , GRIFFITHS H D. Advances in Bistatic Radar[M]. Scitech Publishing Inc, 2007.
    [7] MARTONE M, BRÄUTIGAM B, RIZZOLI P, et al. Enhancing interferometric SAR performance over sandy areas: Experience from the TanDEM-X mission[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1036–1046. doi: 10.1109/JSTARS.2015.2418537
    [8] ZHANG Yanyan, ZHANG Heng, OU Naiming, et al. First demonstration of multipath effects on phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2590–2604. doi: 10.1109/TGRS.2019.2952471
    [9] HOMER J, MOJARRABI B, PALMER J, et al. Non-cooperative bistatic SAR imaging system: Spatial resolution analysis[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1446–1448.
    [10] ZENG Tao, CHERNIAKOV M, and LONG Teng. Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(2): 461–474. doi: 10.1109/TAES.2005.1468741
    [11] ENDER J H G. The meaning of k-space for classical and advanced SAR techniques[C]. International Symposium Physics in Signal and Image Processing, Marseille, France, 2001: 23–38.
    [12] WANG Jingen, WANG Yanfei, ZHANG Jianming, et al. Resolution calculation and analysis in bistatic SAR with geostationary illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 194–198. doi: 10.1109/LGRS.2012.2197850
    [13] HU Cheng, CHEN Zhiyang, DONG Xichao, et al. Multistatic geosynchronous SAR resolution analysis and grating lobe suppression based on array spatial ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6020–6038. doi: 10.1109/TGRS.2020.2969573
    [14] SUN Zhichao, WU Junjie, PEI Jifang, et al. Inclined geosynchronous spaceborne–airborne bistatic SAR: Performance analysis and mission design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 343–357. doi: 10.1109/TGRS.2015.2457034
    [15] SANTI F, BUCCIARELLI M, PASTINA D, et al. Spatial resolution improvement in GNSS-Based SAR using multistatic acquisitions and feature extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6217–6231. doi: 10.1109/TGRS.2016.2583784
    [16] JIANG Yicheng and WANG Zhuoqun. Analysis for resolution of bistatic SAR configuration with geosynchronous transmitter and UAV receiver[J]. International Journal of Antennas and Propagation, 2013, 2013: 237463. doi: 10.1155/2013/237463
    [17] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [18] CUMMING I G and WONG F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2004.
    [19] SOUMEKH M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York: Wiley, 1999.
    [20] 孙稚超. 基于GEO辐射源的星机SAR成像理论与方法研究[D]. [博士论文], 电子科技大学, 2017.

    SUN Zhichao. Research on the imaging theory and algorithms of geosynchronous spaceborne-airborne bistatic SAR[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2017.
    [21] GEBHARDT U, LOFFELD O, NIES H, et al. Bistatic airborne/spaceborne hybrid experiment: Basic considerations[C]. SPIE 5978, Sensors, Systems, and Next-Generation Satellites IX, Bruges, Belgium, 2005.
    [22] 周鹏. 星机双基地SAR系统总体与同步技术研究[D]. [博士论文], 电子科技大学, 2008.

    ZHOU Peng. System design and synchronization technique of spaceborne/airborne hybrid bistatic synthetic aperture radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2008.
    [23] SUN Zhichao, WU Junjie, YANG Jianyu, et al. Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective differential evolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6444–6457. doi: 10.1109/TGRS.2016.2585184
    [24] LIU Qi, LI Qiang, YU Weidong, et al. Automatic building detection for multi-aspect SAR images based on the variation features[J]. Remote Sensing, 2022, 14(4): 1409. doi: 10.3390/rs14061409
    [25] 安洪阳. 基于高轨照射源的双基SAR成像与动目标检测技术研究[D]. [博士论文], 电子科技大学, 2020.

    AN Hongyang. Research on imaging and moving target detection technology of bistatic SAR with geosynchronous illuminator[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [26] RODRIGUEZ-CASSOLA M, PRATS P, SCHULZE D, et al. First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 33–37. doi: 10.1109/LGRS.2011.2158984
    [27] CUI Chang, DONG Xichao, and HU Cheng. Performance analysis and configuration design of geosynchronous spaceborne-airborne bistatic moving target indication system[C]. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020; 6559–6562.
    [28] MAO Deqing, ZHANG Yongchao, PEI Jifang, et al. Forward-looking geometric configuration optimization design for spaceborne-airborne multistatic synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8033–8047. doi: 10.1109/JSTARS.2021.3103802
    [29] GRAZIANO M D and D’ERRICO M. Novel constellation design method for spaceborne/airborne bistatic SAR systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2082–2095. doi: 10.1109/TAES.2014.130161
    [30] DONG Xichao, CUI Chang, LI Yuanhao, et al. Geosynchronous spaceborne-airborne bistatic moving target indication system: Performance analysis and configuration design[J]. Remote Sensing, 2020, 12(11): 1810. doi: 10.3390/rs12111810
    [31] SUN Zhichao, YEN G G, WU Junjie, et al. Mission planning for energy-efficient passive UAV radar imaging system based on substage division collaborative search[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 275–288. doi: 10.1109/TCYB.2021.3090662
    [32] 王跃锟, 李真芳, 张金强, 等. GEO-LEO双站SAR地面分辨特性及轨道构型分析[J]. 系统工程与电子技术, 2017, 39(5): 996–1001. doi: 10.3969/j.issn.1001-506X.2017.05.07

    WANG Yuekun, LI Zhenfang, ZHANG Jinqiang, et al. Ground resolution characteristic and orbital configuration analysis for GEO-LEO BiSAR[J]. Systems Engineering and Electronics, 2017, 39(5): 996–1001. doi: 10.3969/j.issn.1001-506X.2017.05.07
    [33] MASSONNET D. Capabilities and limitations of the interferometric cartwheel[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 506–520. doi: 10.1109/36.911109
    [34] 郝继刚, 张育林. SAR干涉测高分布式小卫星编队构形优化设计[J]. 宇航学报, 2006, 27(4): 654–658, 669. doi: 10.3321/j.issn:1000-1328.2006.04.017

    HAO Jigang and ZHANG Yulin. Formation optimized design for the height measurement of InSAR using distributed micro-satellites[J]. Journal of Astronautics, 2006, 27(4): 654–658, 669. doi: 10.3321/j.issn:1000-1328.2006.04.017
    [35] 黄海风, 邓泳, 梁甸农. 基于测高精度最优值的星载分布式InSAR编队构形设计方法[J]. 国防科技大学学报, 2005, 27(4): 85–90. doi: 10.3969/j.issn.1001-2486.2005.04.020

    HUANG Haifeng, DENG Yong, and LIANG Dianlong. A formation design approach of the distributed spaceborne InSAR based on height-measure optimal accuracy value[J]. Journal of National University of Defense Technology, 2005, 27(4): 85–90. doi: 10.3969/j.issn.1001-2486.2005.04.020
    [36] 何峰, 梁甸农, 董臻. 主星带伴随小卫星编队SAR系统干涉测高精度与编队构形设计[J]. 宇航学报, 2005, 26(4): 455–460. doi: 10.3321/j.issn:1000-1328.2005.04.014

    HE Feng, LIANG Diannong, and DONG Zhen. Height-measure accuracy of InSAR in spaceborne parasitic SAR system and flying formation design[J]. Journal of Astronautics, 2005, 26(4): 455–460. doi: 10.3321/j.issn:1000-1328.2005.04.014
    [37] 陈雯雯, 邵晓巍, 段登平. 基于DEM和GMTI的收发同置分布式InSAR编队构型设计[J]. 上海航天, 2012, 29(1): 12–18, 46. doi: 10.3969/j.issn.1006-1630.2012.01.003

    CHEN Wenwen, SHAO Xiaowei, and DUAN Dengping. Formation design of distributed satellites InSAR based on DEM and GMTI[J]. Aerospace Shanghai, 2012, 29(1): 12–18, 46. doi: 10.3969/j.issn.1006-1630.2012.01.003
    [38] 伍升钢, 钱山, 谭炜, 等. 分布式InSAR卫星绕飞角设计与控制方法研究[J]. 宇航学报, 2013, 34(9): 1224–1230. doi: 10.3873/j.issn.1000-1328.2013.09.007

    WU Shenggang, QIAN Shan, TAN Wei, et al. Research on the flying-around angle design and orbit control for distributed InSAR satellites[J]. Journal of Astronautics, 2013, 34(9): 1224–1230. doi: 10.3873/j.issn.1000-1328.2013.09.007
    [39] 胡程, 陈志扬, 董锡超. 分布式GEO SAR: 编队构型设计及性能分析[J]. 南京信息工程大学学报:自然科学版, 2020, 12(2): 236–245. doi: 10.13878/j.cnki.jnuist.2020.02.012

    HU Cheng, CHEN Zhiyang, and DONG Xichao. Formation design and performance analysis for distributed geosynchronous SAR[J]. Journal of Nanjing University of Information Science and Technology:Natural Science Edition, 2020, 12(2): 236–245. doi: 10.13878/j.cnki.jnuist.2020.02.012
    [40] MOREIRA A and HUANG Yonghong. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029–1040. doi: 10.1109/36.312891
    [41] LI F K, HELD D N, CURLANDER J C, et al. Doppler parameter estimation for spaceborne synthetic-aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 47–56. doi: 10.1109/TGRS.1985.289499
    [42] WU Yuan, SUN Guangcai, YANG Chun, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. doi: 10.1109/TGRS.2015.2481923
    [43] SUN Guangcai, WU Yuan, YANG Jun, et al. Full-aperture focusing of very high resolution spaceborne-squinted sliding spotlight SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3309–3321. doi: 10.1109/TGRS.2017.2669205
    [44] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR With advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/TGRS.2010.2053211
    [45] ZHAO Bingji, QI Xiangyang, DENG Yukai, et al. Accurate fourth-order Doppler parameter estimation approach for geosynchronous SAR[C]. EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 615–618.
    [46] ZHANG Qianghui, WU Junjie, LI Zhongyu, et al. PFA for bistatic forward-looking SAR mounted on high-speed maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6018–6036. doi: 10.1109/TGRS.2019.2903878
    [47] TANG Shiyang, GUO Ping, ZHANG Linrang, et al. Modeling and precise processing for spaceborne transmitter/missile-borne receiver SAR signals[J]. Remote Sensing, 2019, 11(3): 346. doi: 10.3390/rs11030346
    [48] WU Junjie, LI Zhongyu, HUANG Yulin, et al. A generalized omega-K algorithm to process translationally variant bistatic-SAR data based on two-dimensional stolt mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6597–6614. doi: 10.1109/TGRS.2014.2299069
    [49] SUN Zhichao, CHEN Tianfu, SUN Huarui, et al. A novel frequency-domain focusing method for geosynchronous low-earth-orbit bistatic SAR in sliding-spotlight mode[J]. Remote Sensing, 2022, 14(13): 3178. doi: 10.3390/rs14133178
    [50] SUN Zhichao, WU Junjie, LI Zhongyu, et al. Geosynchronous spaceborne-airborne bistatic SAR data focusing using a novel range model based on one-stationary equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1214–1230. doi: 10.1109/TGRS.2020.3002900
    [51] NEO Y L, WONG F, and CUMMING I G. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862
    [52] LIU Baochang, WANG Tong, WU Qisong, et al. Bistatic SAR data focusing using an omega-K algorithm based on method of series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2899–2912. doi: 10.1109/TGRS.2009.2017522
    [53] ZENG Tao, HU Cheng, WU Lixin, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5019–5030. doi: 10.1109/TGRS.2013.2276048
    [54] ZENG Tao, WANG Rui, LI Feng, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108–3118. doi: 10.1109/TGRS.2012.2219057
    [55] FOCSA A, DATCU M, and ANGHEL A. Compressed sensing-based multi-aperture focusing of spaceborne transmitter/stationary receiver bistatic SAR data[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–4.
    [56] ZHANG Heng, DENG Yunkai, WANG R, et al. Spaceborne/Stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5203–5216. doi: 10.1109/TGRS.2016.2558294
    [57] WANG Wenqin and SHAO Huaizong. Azimuth-variant signal processing in high-altitude platform passive SAR with spaceborne/airborne transmitter[J]. Remote Sensing, 2013, 5(3): 1292–1310. doi: 10.3390/rs5031292
    [58] LIU Zhe, YANG Jianyu, ZHANG Xiaoling, et al. Frequency domain imaging algorithm for spaceborne/airborne hybrid bistatic SAR[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 842–845.
    [59] LIU Zhe, YANG Jianyu, and ZHANG Xiaoling. Nonlinear RCM compensation method for spaceborne/airborne forward-looking bistatic SAR[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 4233–4236.
    [60] LIU Zhe, LI Zhe, DAI Chunyang, et al. Efficient nonuniform fourier reconstruction for spaceborne/airborne bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 191–195. doi: 10.1109/LGRS.2013.2252144
    [61] RODRIGUEZ-CASSOLA M, PRATS P, KRIEGER G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2949–2966. doi: 10.1109/TAES.2011.6034676
    [62] WU Junjie, SUN Zhichao, AN Hongyang, et al. Azimuth signal multichannel reconstruction and channel configuration design for geosynchronous spaceborne-airborne bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1861–1872. doi: 10.1109/TGRS.2018.2869835
    [63] AN Hongyang, WU Junjie, SUN Zhichao, et al. Azimuth ambiguity suppression for multichannel geosynchronous spaceborne-airborne bistatic SAR[C]. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 3663–3666.
    [64] AN Hongyang, WU Junjie, TEH K C, et al. Geosynchronous spaceborne-airborne bistatic SAR imaging based on fast low-rank and sparse matrices recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207714. doi: 10.1109/TGRS.2021.3081099
    [65] AN Hongyang, WU Junjie, HE Zhiwei, et al. Geosynchronous spaceborne-airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1590–1594. doi: 10.1109/LGRS.2019.2902036
    [66] AN Hongyang, WU Junjie, SUN Zhichao, et al. A two-step nonlinear chirp scaling method for multichannel GEO spaceborne-airborne bistatic SAR spectrum reconstructing and focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3713–3728. doi: 10.1109/TGRS.2018.2886817
    [67] GUO Yukun, YU Ze, LI Jingwen, et al. Focusing spotlight-mode bistatic GEO SAR with a stationary receiver using time-doppler resampling[J]. IEEE Sensors Journal, 2020, 20(18): 10766–10778. doi: 10.1109/JSEN.2020.2994752
    [68] MIAO Yuxuan, YANG Jianyu, WU Junjie, et al. Spatially variable phase filtering algorithm based on azimuth wavenumber regularization for bistatic spotlight SAR imaging under complicated motion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5223115. doi: 10.1109/TGRS.2021.3139965
    [69] ANTONIOU M, SAINI R, and CHERNIAKOV M. Results of a space-surface bistatic SAR image formation algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3359–3371. doi: 10.1109/TGRS.2007.902124
    [70] LI Chuang, ZHANG Heng, DENG Yunkai, et al. Focusing the L-band spaceborne bistatic SAR mission data using a modified RD algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 294–306. doi: 10.1109/TGRS.2019.2936255
    [71] ESPETER T, WALTERSCHEID I, KLARE J, et al. Synchronization techniques for the bistatic spaceborne/airborne SAR experiment with TerraSAR-X and PAMIR[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 2160–2163.
    [72] 王淑芳, 王礼亮. 卫星导航定位系统时间同步技术[J]. 全球定位系统, 2005, 30(2): 10–14. doi: 10.3969/j.issn.1008-9268.2005.02.003

    WANG Shufang and WANG Liliang. Time synchronization technology of satellite navigation and positioning system[J]. GNSS World of China, 2005, 30(2): 10–14. doi: 10.3969/j.issn.1008-9268.2005.02.003
    [73] 李中余, 黄川, 武俊杰, 等. 基于GNSS的无源雷达海面目标检测技术综述[J]. 雷达科学与技术, 2020, 18(4): 404–416. doi: 10.3969/j.issn.1672-2337.2020.04.009

    LI Zhongyu, HUANG Chuan, WU Junjie, et al. Overview of maritime target detection techniques using GNSS-based passive radar[J]. Radar Science and Technology, 2020, 18(4): 404–416. doi: 10.3969/j.issn.1672-2337.2020.04.009
    [74] GUTTRICH G L, SIEVERS W E, and TOMLJANOVICH N M. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 126–131.
    [75] KLEMM R. Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 596–608. doi: 10.1109/7.845248
    [76] FANTE R L. Ground and airborne target detection with bistatic adaptive space-based radar[C]. 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999: 7–11.
    [77] ZHANG Ying, XIONG Wei, DONG Xichao, et al. A novel azimuth spectrum reconstruction and imaging method for moving targets in geosynchronous spaceborne-airborne bistatic multichannel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5976–5991. doi: 10.1109/TGRS.2020.2974531
    [78] ZHANG Shuangxi, LI Shaojie, LIU Yanyang, et al. A novel azimuth Doppler signal reconstruction approach for the GEO-LEO bi-static multi-channel HRWS SAR system[J]. IEEE Access, 2019, 7: 39539–39546. doi: 10.1109/ACCESS.2019.2904653
    [79] XU Wei, WEI Zhengbin, HUANG Pingping, et al. Azimuth multichannel reconstruction for moving targets in geosynchronous spaceborne-airborne bistatic SAR[J]. Remote Sensing, 2020, 12(11): 1703. doi: 10.3390/rs12111703
    [80] CUI Chang, DONG Xichao, HU Cheng, et al. An adaptive moving target indication method for GEO spaceborne-airborne bistatic SAR[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 5243–5246.
    [81] WANG Pengfei, LIU Mei, WANG Shuwen, et al. 3D velocity estimation for moving targets via geosynchronous bistatic SAR[C]. 2018 China International SAR Symposium (CISS), Shanghai, China, 2018: 1–5.
    [82] AN Hongyang, WU Junjie, TEH K C, et al. Simultaneous moving and stationary target imaging for geosynchronous spaceborne-airborne bistatic SAR based on sparse separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6722–6735. doi: 10.1109/TGRS.2020.3025802
    [83] GOLDSTEIN R, ROSEN P, and WERNER C. ERS-1 bistatic radar images[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, USA, 1994: 1–7.
    [84] DUQUE S, LOPEZ-DEKKER P, and MALLORQUI J J. Single-pass bistatic SAR interferometry using fixed-receiver configurations: Theory and experimental validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2740–2749. doi: 10.1109/TGRS.2010.2041063
    [85] RODRIGUEZ-CASSOLA M, BAUMGARTNER S V, KRIEGER G, et al. Bistatic TerraSAR-X/F-SAR spaceborne-airborne SAR experiment: Description, data processing, and results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 781–794. doi: 10.1109/TGRS.2009.2029984
    [86] WALTERSCHEID I, ESPETER T, BRENNER A R, et al. Bistatic SAR experiments with PAMIR and TerraSAR X—Setup, processing, and image results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3268–3279. doi: 10.1109/TGRS.2010.2043952
    [87] WAHL D E and YOCKY D A. Bistatic SAR: Signal processing and image formation[R]. SAND2014-18347, 2014.
    [88] WANG Rui, LI Feng, and ZENG Tao. Bistatic SAR experiment, processing and results in spaceborne/stationary configuration[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 393–397.
    [89] ZENG Tao, ZHU Mao, HU Cheng, et al. Experimental results and algorithm analysis of DEM generation using bistatic SAR interferometry with stationary receiver[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 5835–5852. doi: 10.1109/TGRS.2015.2422303
    [90] WANG R, WANG Wei, SHAO Yunfeng, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842–849. doi: 10.1109/TGRS.2015.2467176
    [91] SUN Zhichao, WU Junjie, LV Zheng, et al. Spaceborne-airborne bistatic SAR experiment using GF-3 illuminator: Description, processing and results[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 2699–2702.
    [92] 武俊杰, 孙稚超, 杨建宇, 等. 基于GF-3照射的星机双基SAR成像及试验验证[J]. 雷达科学与技术, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002

    WU Junjie, SUN Zhichao, YANG Jianyu, et al. Spaceborne-airborne bistatic SAR using GF-3 illumination—Technology and experiment[J]. Radar Science and Technology, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002
    [93] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317–3341. doi: 10.1109/TGRS.2007.900693
    [94] SAINI R, ZUO Rui, and CHERNIAKOV M. Development of space-surface bistatic synthetic aperture radar with GNSS trasmnitter of opportunity[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6.
    [95] ZENG Tao, ZHANG Tian, TIAN Weiming, et al. Space-surface bistatic SAR image enhancement based on repeat-pass coherent fusion with beidou-2/compass-2 as illuminators[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1832–1836. doi: 10.1109/LGRS.2016.2614337
    [96] ZHANG Qilei, CHANG Wen’ge, ZENG Zhangfan, et al. An integrative synchronization and imaging algorithm for GNSS-based BSAR[J]. Science China Information Sciences, 2015, 58(6): 1–15. doi: 10.1007/s11432-015-5319-5
    [97] MA Hui, ANTONIOU M, and CHERNIAKOV M. Passive GNSS-based SAR imaging and opportunities using Galileo E5 signals[J]. Science China Information Sciences, 2015, 58(6): 1–11. doi: 10.1007/s11432-015-5335-5
    [98] ZHOU Xinkai, CHEN Jie, WANG Pengbo, et al. An efficient imaging algorithm for GNSS-R Bi-static SAR[J]. Remote Sensing, 2019, 11(24): 2945. doi: 10.3390/rs11242945
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  3148
  • HTML全文浏览量:  1257
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 修回日期:  2023-02-18
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回