Review of the Technology, Development and Applications of Holographic Staring Radar
-
摘要: 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。Abstract: Holographic staring radar is an array radar that continuously looks everywhere and performs multiple functions simultaneously instead of sequentially. First, this paper clarifies the definition of holographic staring radar and summarizes the features, performance advantages, and accompanying risks of holographic staring radar. Then, the research history and main application directions of holographic staring radar are reviewed. Next, the holographic staring radar series of Sun Yat-sen University in China is introduced. The target detection results of this holographic staring radar are given, showing the application potential of a holographic staring radar system in low-altitude target monitoring. Next, the research progress of related key technologies is examined, including system design, beam control, target detection, and parameter estimation. Finally, the development trends of holographic staring radar are discussed.
-
1. 引言
低空经济(low-altitude economy, LAE)是具有巨大前景的经济框架[1,2],有望促进环境感知、智能农业和短程交通等众多应用的发展,主要包括各种无人驾驶和有人驾驶飞机,如无人机(unmanned aerial vehicle,UAV)和电动垂直起降飞机,有望产生显著的经济价值和社会效益。促成LAE成功的主要因素之一是确保所有飞行设备之间的无缝通信,以执行及时的决策并进行有效的资源调度。为此,大量的研究集中在以无人机网络为代表的低空无线系统设计上,包括用户调度[3]、资源分配[4,5]和轨迹设计[6]等。与传统的地面无线系统相比,无人机具有高移动性,可以低开销的按需部署,同时能够保持视距(line-of-sight, LoS)空对地链路,从而为地面单位提供不间断的无线通信服务。然而,LoS信道的存在也使得无人机支持的无线网络极易受到恶意节点的窃听[7]。在需要传输隐私信息的各种实际低空经济应用中,必须保持无线通信的隐蔽性,以确保合法传输被隐藏并且无法被敌对节点检测到。在这种情况下,隐蔽通信,也称为低检测概率通信,已成为支持LAE的关键技术,最近已被学者广泛研究[8−11]。
为了实现隐蔽通信,一些工作提出利用干扰信号辅助UAV隐蔽传输,从而增大非法节点处的检测不确定性[12]。在文献[13]中,采用了专用的多天线干扰机,并讨论了完美和不完美信道状态信息条件下的鲁棒波束形成策略。此外,为了进一步提高隐蔽通信吞吐量,文献[14]利用多个干扰机独立发出人工噪声以混淆敌对节点。尽管干扰信号可以有效地干扰敌对节点,但它们也可能降低合法用户接收到的信干噪比(signal to interference plus noise ratio, SINR)。因此,在多干扰机辅助隐蔽通信系统中,必须制定合适的干扰选择策略,以最大限度地减少对合法用户的负面影响。为此,文献[15]研究了一种针对高斯信道的干扰机选择方案,在该方案中,选择激活能够使敌对节点接收的SINR最小的干扰节点。此外,文献[30]建议采用一种可以最大化合法用户接收SINR的干扰节点。事实上,这两种选择方法可以通过分别利用从发射机到合法用户和敌对节点的信道状态信息来轻松执行。尽管如此,上述干扰节点选择研究主要集中在点对点通信场景,其中只存在一个单一的发射机和合法用户,通常导致只选择一个干扰节点。这种方法对于LAE应用并不实用,因为可能存在多架无人机同时向多个合法用户发送消息,以提供大规模通信服务。在这种情况下,单个干扰节点可能不足以满足隐蔽要求。尽管有这些新出现的需求,但在公开文献中尚未报道针对网络化隐蔽通信的综合干扰机选择策略。
此外,现有的隐蔽通信场景通常考虑静态场景,即假设敌对节点和合法用户都是固定位置[10,13,14,16,17],实现固定的信道条件,然而在现实中,敌对节点可能是移动的,以增强探测能力和检测范围,从而导致动态和不可预测的发射机-窃听节点信道,对隐蔽性能产生了严重影响。为了克服这一挑战,通感一体化(integrated sensing and communication, ISAC)作为下一代无线系统中的关键技术之一,已经成为支持LAE应用的有前途的解决方案[18−22]。一方面,通过利用ISAC技术,无人机能够实现与其他飞机和地面单位的协调多点传输和接收。此外,反射的回波信号可以重新用于感知低空空域,从而避免潜在的碰撞并有效地跟踪目标[23−28]。与孤立的ISAC系统相比,基于多无人机的网络化ISAC可以提供相当大的传感优势。分布式无人机通过从不同角度观察同一目标,可以充分利用空间多样性[5]。受其固有优势的启发,之前的一些研究已经研究了基于多无人机的网络ISAC设计,包括能量传输、安全通信和移动边缘计算。例如,文献[24]中采用多架无人机对目标进行协同跟踪并与地面单位通信,共同优化了克拉美罗下界和无人机轨迹。尽管空中网络ISAC技术取得了一些进步,但现有的工作不能直接应用于LAE的隐蔽通信。一方面,传统的网络ISAC研究主要侧重于解决安全传输问题,确保数据的机密性和完整性,其核心是机密信息不能被敌对节点解码。相比之下,隐蔽通信被视为更高层次的安全技术,要求合法传输是敌对节点无法检测到的,从而使得高效的资源分配更具挑战性[28−30]。综上所述,在本文中,我们研究了基于ISAC的无人机协作网络隐蔽通信系统,其中一系列无人机与多个地面用户(ground users, GUs)通信,同时确保传输不被移动的敌对节点检测到。为此,我们假设每架无人机既可以作为信息无人机(information UAV, IUAV)执行隐蔽下行传输,也可以作为干扰无人机(jamming UAV, JUAV)发送干扰信号以对抗敌对节点的探测。同时,无人机利用ISAC信号跟踪敌对节点,从而可以精确推断出无人机-敌对节点链路对应的信道,从而促进有效的隐蔽通信设计。
2. 系统模型
如图1所示,我们考虑一个多无人机协作的ISAC系统,其中有M架无人机,记为 U={U1,U2,⋯,UM},在监管者Willie的存在下隐蔽地为K个地面用户提供服务,地面用户集合记为G={G1,G2,⋯,GK}。Willie 的目标是检测是否存在下行传输。所有无人机和地面用户都配备单天线,并且在相同的频段内工作。尽管使用相同的频带可能导致多用户干扰,但其负面效应可以通过优化无人机轨迹设计和功率分配策略从而有效地缓解。我们假设总的无人机飞行周期T被均匀划分为N个时间槽,相邻两个时间槽之间的时长为Δt>0。需要注意的是Δt应足够小,以确保在每个时间槽内无人机的位置保持不变。为了不失一般性,我们采用三维笛卡儿坐标系,其中第k个(k∈G)地面用户的坐标固定为zk=[xk,yk,0],第m架(m∈U)无人机的坐标记为qm=[xm,ym,H],其中H表示一个恒定的高度,该高度由避免地面设施潜在碰撞的最低高度决定。同时,Willie在第n个时间槽内的时变位置表示为 qw[n]=[xw[n],yw[n],0]。该假设在实际场景中通常是成立的, Willie移动以提高其检测能力。对于更一般化的情况,即存在多个监管和合法用户是移动且需要预测,将在未来的工作中进行探索。此外,我们假设所有无人机通过适当的信息交换可以精确地知道地面用户的位置,而Willie的位置则需要估计。
2.1 信道模型
根据之前的文献[7,27],我们认为无人机-地面传输能够保证在视距良好的环境下进行,其信道遵循自由空间路径损耗模型,更复杂的信道衰落和多径效应将在后续工作考虑。此外,我们假设UAV机动性引起的多普勒效应在用户处可以得到很好的补偿。因此从UAVm到第k个用户和Willie的信道增益可以分别表示为
{|hm,k[n]|2=ρ0d−2m,k[n]=ρ0‖ (1) 其中{\rho _0}表示信道在单位参考距离处的功率增益。{d_{m,k}}[n]和{d_{m,w}}[n]分别表示第m个UAV到用户k和到Willie在第n个时隙的距离。假设每个用户在每个时隙内只能由一架UAV服务,反之亦然。为了描述UAV-GU调度,我们定义了一个二进制变量{\alpha _{m,k}}[n],其中{\alpha _{m,k}}[n] = 1表示无人机m作为IUAV在时隙n为用户k服务;否则,{\alpha _{m,k}}[n] = 0。为了协助隐蔽通信,假设如果不选择第m架UAV为用户服务,它可以作为干扰机发射干扰信号以对抗Willie的检测。直观地说,虽然选择更多的JUAV可以更好地干扰 Willie 处的检测以提高隐蔽性,但同时也会影响用户处接收到的 SINR。因此,开发一种能够很好地平衡地面用户处的隐蔽性和通信质量的调度策略至关重要。为此,我们进一步定义一个二进制变量{\beta _m}[n]来表示第m个UAV是否在时隙n充当干扰机,即{\beta _m}[n] = 1表示第m个UAV充当干扰机,否则{\beta _m}[n] = 0。因此,我们有以下约束条件:
\left\{ \begin{gathered} {\alpha _{m,k}}[n] \in \{ 0,1\} ,\forall k,m,n \\ {\beta _m}[n] \in \{ 0,1\} ,\forall m,n \\ \sum\limits_{k = 1}^K {{\alpha _{m,k}}} [n] + {\beta _m}[n] \le 1,\forall m,n \\ \sum\limits_{m = 1}^M {{\alpha _{m,k}}} [n] \le 1,\forall k,n \\ \end{gathered} \right. (2) 令P_m^I[n] \ge 0和P_m^J[n] \ge 0分别为第m个UAV的通信功率和干扰功率。为了便于说明,假设 P_m^I[n]和P_m^J[n]在一个时隙内是恒定的,但在不同的时隙中可能会发生变化。根据上式,我们有以下约束:
0 \le \sum\limits_{k = 1}^K {{\alpha _{m,k}}} [n]P_m^I[n] + {\beta _m}[n]P_m^J[n] \le {P_{m,\max }},\forall m,n (3) 式中{P_{m,\max }}为无人机m在各时隙的峰值发射功率。为简化符号,我们分别表示集合\mathcal{I}和集合 \mathcal{J}包括每个时点的所有IUAVs 和JUAVs,即\mathcal{I} = \{ {U_m}\mid {\alpha _{m,k}}[n] = 1,\forall m,k\} 和 \mathcal{J} = \{ {U_m}\mid {\beta _m}[n] = 1, \forall m\} ,并且有\mathcal{I} \cup \mathcal{J} \subseteq \mathcal{U},\mathcal{I} \cap \mathcal{J} = \varnothing 。因此,若将无人机m分配为 IUAV服务用户k,则用户k处对应的接收SINR为
{\gamma _{m,k}}[n] = \frac{{P_m^I[n]|{h_{m,k}}[n]{|^2}}}{{{\varOmega _{{m_1},k}}[n] + {\phi _{j,k}}[n] + \sigma _k^2}}\quad (4) 式中{\varOmega _{{m_1},k}}[n] = \displaystyle\sum\nolimits_{{m_1} \in \mathcal{I}\backslash m} {P_{{m_1}}^I} [n]|{h_{{m_1},k}}[n]{|^2}是由其他 IUAVs 的下行信息传输引起的多用户干扰,而{\phi _{j,k}}[n] = \displaystyle\sum\nolimits_{j = 1}^M {{\beta _j}} [n]P_j^J[n]|{h_{j,k}}[n]{|^2}是由选定的JUAVs产生的干扰。因此,在时间槽n中,地面用户k的可达速率由以下公式给出:
{R_k}[n] = \sum\limits_{m \in \mathcal{U}} {{\alpha _{m,k}}} {R_{m,k}}[n]\quad (5) 其中{R_{m,k}}[n] = {\log _2}(1 + {\gamma _{m,k}}[n])。因此,时隙n内所有用户之间的可实现速率可以表示为 R[n] = \displaystyle\sum\nolimits_{k \in \mathcal{G}} {{R_k}} [n]。
2.2 隐蔽通信约束
对于隐蔽通信,Willie的目的是检测IUAVs是否向用户传输信息。由于传输链路以LoS为主,我们可以合理地假设Willie对网络拓扑有充分的了解,包括所有无人机的位置、所有无人机到Willie的信道状态信息、发射功率和干扰功率[12,25], 这个假设也可以解释为保证隐蔽通信的最坏情况。假定每个时隙内信道最大利用次数为L,Willie根据观测向量 {{\boldsymbol{y}}_w}[n] \in {\mathbb{C}^{L \times 1}}执行统计假设检验来判断是否发生传输,其中零假设{\mathcal{H}_0}代表不发生合法下行传输,反之,假设{\mathcal{H}_1}代表IUAV对GU进行通信。定义{p_0}({{\boldsymbol{y}}_w}[n])和{p_1}({{\boldsymbol{y}}_w}[n])为假设{\mathcal{H}_0}和{\mathcal{H}_1} 的似然函数。根据 Neyman-Pearson (NP) 准则,最优检测器为 \dfrac{{{p_1}({{\boldsymbol{y}}_w}[n])}}{{{p_0}({{\boldsymbol{y}}_w}[n])}} \gtrless _{{\mathcal{D}_0}}^{{\mathcal{D}_1}}1,其中{\mathcal{D}_0}和{\mathcal{D}_1}是对应假设的二元决策。通常而言,错误检测概率包括漏检和虚警概率,可以写为\zeta = 1 - {\mathcal{V}_\mathcal{T}}\left( {{p_0}({{\boldsymbol{y}}_w}[n]),{p_1}({{\boldsymbol{y}}_w}[n])} \right),其中{\mathcal{V}_\mathcal{T}}\left( {{p_0}({{\boldsymbol{y}}_w}[n]),{p_1}({{\boldsymbol{y}}_w}[n])} \right)表示两个似然函数之间的变分距离。由Pinsker不等式可得
\begin{split} & {\mathcal{V}_\mathcal{T}}\left( {{p_0}({{\boldsymbol{y}}_w}[n]),{p_1}({{\boldsymbol{y}}_w}[n])} \right) \\ & \le \sqrt {D\left( {{p_0}({{\boldsymbol{y}}_w}[n]),{p_1}({{\boldsymbol{y}}_w}[n])} \right)} \end{split} (6) 式中D( \cdot )是Kullback-Leibler (KL)散度[25],具体表示为
\begin{split} & D\left( {{p_0}\left( {{{\boldsymbol{y}}_w}[n]} \right),{p_1}\left( {{{\boldsymbol{y}}_w}[n]} \right)} \right) \\ & = \frac{L}{2}\left[ {\ln \left( {1 + {\gamma _w}[n]} \right) - \frac{{{\gamma _w}[n]}}{{1 + {\gamma _w}[n]}}} \right] \end{split} (7) 其中 {\gamma _w}\left[ n \right] = \frac{{\displaystyle\sum\nolimits_{i \in \mathcal{I}} {P_i^I[n]{{\left| {{h_{i,w}}[n]} \right|}^2}} }}{{{\phi _{j,w}}[n] + \sigma _w^2}},{\phi _{j,w}}[n] = \displaystyle\sum\nolimits_{j \in \mathcal{U}} {{\beta _j}[n]} P_j^J[n]|{h_{j,w}}[n]{|^2} 。综上,隐蔽性约束可以表示为 D\left({p}_{0}\left({{\boldsymbol{y}}}_{w}[n]\right),{p}_{1}\left({{\boldsymbol{y}}}_{w}[n]\right)\right)\le 2{\epsilon}^{2} ,其中\epsilon 是系统所需的隐蔽性阈值。
2.3 无人机观测模型
考虑 Willie 为了提高监视性能而处于移动状态。假设Willie以恒定速度移动,其状态演化模型可以表示为
{{\boldsymbol{x}}_w}[n] = {\boldsymbol{F}}{{\boldsymbol{x}}_w}[n - 1] + {{\boldsymbol{e}}_w} (8) 其中{{\boldsymbol{x}}_w}[n] = {[{x_w}[n],{y_w}[n],{\dot x_w}[n],{\dot y_w}[n]]^{\rm T}} 是时隙n中 Willie的状态,F是状态转移矩阵定义为{\boldsymbol{F}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{I}}_2}}&{\Delta t{{\boldsymbol{I}}_2}} \\ {{{\boldsymbol{0}}_2}}&{{{\boldsymbol{I}}_2}} \end{array}} \right]。此外,{{\boldsymbol{e}}_w} = {[{e_1},{e_2},{e_3},{e_4}]^{\rm T}}是状态转移噪声,服从高斯分布 {e_1}\text{~}\mathcal{N}(0,\sigma _1^2) ,{e_2}\text{~}\mathcal{N}(0,\sigma _2^2),{e_3}\text{~}\mathcal{N}(0,\sigma _3^2),以及{e_4}\text{~}\mathcal{N}(0,\sigma _4^2),其中\sigma _1^2,\sigma _2^2,\sigma _3^2,\sigma _4^2 表示相应的噪声功率。假设状态转移噪声之间相互独立,因此有{{\boldsymbol{e}}_w}\text{~}\mathcal{N}({{\textit{0}}},{{\boldsymbol{Q}}_e}),其中 {{\boldsymbol{Q}}_e} = {\text{diag}}(\sigma _1^2,\sigma _2^2,\sigma _3^2,\sigma _4^2) 。
除了状态演化模型,适当的测量模型对于实现精确跟踪也至关重要。基于来自Willie的反射回波,每个UAV可以估计相关参数,例如UAV与Willie之间的距离和多普勒频移。估计参数通过独立的反馈或前馈链路在所有UAV之间共享。记{\tau _m}[n]和{\nu _m}[n]为时间槽n中无人机m与Willie之间的往返时延和多普勒频移,则测量模型可以表示为
\left\{ \begin{aligned} & {\tau _m}[n] = \frac{{2||{{\boldsymbol{q}}_m}[n] - {{\boldsymbol{q}}_w}[n]||}}{c} + {n_{{\tau _m}[n]}} \\ & {\nu _m}[n] = \frac{{2{{({{{\boldsymbol{\dot q}}}_m}[n] - {{{\boldsymbol{\dot q}}}_w}[n])}^{\rm T}}({{\boldsymbol{q}}_m}[n] - {{\boldsymbol{q}}_w}[n]){f_c}}}{{c||{{\boldsymbol{q}}_m}[n] - {{\boldsymbol{q}}_w}[n]||}} + {n_{{\nu _m}[n]}} \end{aligned} \right. (9) 其中c和{f_c}分别为光速和载波频率,{n_{{\tau _m}[n]}}和{n_{{\nu _m}[n]}}是不相关的加性高斯白噪声(AWGN, additive white gaussian noise)分别服从\mathcal{N}(0,\sigma _{{\tau _m}}^2)和\mathcal{N}(0,\sigma _{{\nu _m}}^2)的分布,其中\sigma _{{\tau _m}}^2和\sigma _{{\nu _m}}^2是测量噪声方差。值得注意的是,识别从 Willie 处反射的测量信息对于隐蔽通信设计至关重要,这可以通过解决相应的数据关联问题来实现。通过结合当前时隙的测量数据,并与历史测量数据进行关联,能够识别并区分出不同目标的回波。将所有观测值定义为{\boldsymbol{b}}[n] = [{\tau _1}[n], \cdots , {\tau _M}[n],{\nu _1}[n], \cdots ,{\nu _M}[n]]^{\rm T},使得非线性观测模型可以被紧凑地重写为{\boldsymbol{b}}[n] = {\boldsymbol{g}}({{\boldsymbol{x}}_w}[n]) + {{\boldsymbol{n}}_b}[n],其中{\boldsymbol{g}}( \cdot )是观测函数,而{{\boldsymbol{n}}_b}[n] = [{n_{{\tau _1}[n]}}, \cdots ,{n_{{\tau _M}[n]}}, {n_{{\nu _1}[n]}}, \cdots ,{n_{{\nu _M}[n]}}]^{\rm T}是相应的观测噪声向量,其协方差矩阵为{{\boldsymbol{Q}}_b} = {\text{diag}}(\sigma _{{\tau _1}}^2, \cdots ,\sigma _{{\tau _M}}^2,\sigma _{{\nu _1}}^2, \cdots ,\sigma _{{\nu _M}}^2)。
3. 问题建模
我们的目标是通过优化用户调度、JUAV选择、功率分配最大化所考虑隐蔽通信系统的吞吐量,然而,值得注意的是,通信隐蔽性依赖于Willie的实时位置,且其位置对于无人机而言是未知的,因此需要估计和预测。根据第2节中的Willie的移动模型,我们可以观察到Willie的当前运动状态由其在前一个时间槽中的状态及演化模型决定。这表明无人机只能基于当前测量结果有效地预测Willie在下一个时间槽的位置,导致通信速率最大化问题只能在一个时间槽内高效地求解。因此,以第n个时间槽为例,我们用\mathcal{A} = \{ {\alpha _{m,k}}[n],m \in \mathcal{U},k \in \mathcal{G}\} 表示IUAV-GU关联变量集,用\mathcal{B} = \{ {\beta _m}[n],m \in \mathcal{U}\} 表示JUAV选择变量集,用{\mathcal{P}^I} = \{ P_m^I[n],m \in \mathcal{U}\} 表示IUAV的通信功率分配变量集,用{\mathcal{P}^J} = \{ P_m^J[n],m \in \mathcal{U}\} 表示 JUAV的功率分配变量集。为了保证公平性,引入一个加权因子{\omega _k}[n] = n/\displaystyle\sum\nolimits_{i = 1}^n {{R_k}} [i] 表示用户k在过去时间的累积平均可达速率的倒数。较大的{\omega _k}[n]表示用户k在过去的时隙中服务较少,从而实现优先为未被服务过的用户分配资源,使得所有的用户在总持续时间内获得足够的服务,防止少数较强的用户垄断网络资源。然后,最大化问题可以表示如下
\begin{split} & {\text{(P0) }}\mathop {\max }\limits_{\mathcal{A},\mathcal{B},{\mathcal{P}^I},{\mathcal{P}^J}} \sum\limits_{k \in \mathcal{G}} {{\omega _k}} {R_k} \\ & {\mathrm{s.t.}}\; {\mathrm{C}}1: D\left({p}_{0}\left({{\boldsymbol{y}}}_{w}[n]\right),{p}_{1}\left({{\boldsymbol{y}}}_{w}[n]\right)\right)\le 2{\epsilon}^{2} \\ & \quad\;\; {\mathrm{C}}2: {\beta _m}[n] \in \{ 0,1\} ,\forall m \\ & \quad\;\; {\mathrm{C}}3: {\alpha _{m,k}}[n] \in \{ 0,1\} ,\forall k,m,n\\ & \quad\;\; {\mathrm{C}}4: \sum\limits_{k = 1}^K {{\alpha _{m,k}}} [n] + {\beta _m}[n] \le 1,\forall m,n\\ & \quad\;\; {\mathrm{C}}5: \sum\limits_{m = 1}^M {{\alpha _{m,k}}} [n] \le 1,\forall k,n \\ & \quad\;\; {\mathrm{C}}6:0 \le \sum\limits_{k = 1}^K {{\alpha _{m,k}}} [n]P_m^I[n] + {\beta _m}[n]P_m^J[n] \le {P_{m,\max }},\\ & \qquad\;\; P_m^I[n] \ge 0,P_m^J[n] \ge 0,\forall m,n\\[-1pt] \end{split} (10) 可以观察到,直接求解该问题是具有挑战性的,原因如下。首先,集合\mathcal{I}和\mathcal{J}的组成尚未确定。这种不确定性使得目标函数无法显式地公式化表达,因为集合\mathcal{U}中将在每个时间槽中被分配为IUAV或JUAV的无人机的确切数量未知。此外,上述问题包含二元变量,导致目标函数和约束条件对于所有优化变量而言均不具有联合凸性。
4. 解决方案
由于问题(P0)是非凸的,采用传统的凸优化方法很难获得全局解。作为妥协,本节提出了一种基于交替优化的算法,将原始问题转化为一系列子问题并迭代求解以获得高效解。此外,由于问题P1是实时设计,这反过来又要求获取Willie的实时位置。为了克服这一挑战,我们首先提出一种有效的算法来预测和跟踪Willie在每个时隙中的运动状态。
4.1 无迹卡尔曼滤波
由于观测模型的非线性,一般采用扩展卡尔曼滤波(extended Kalman filtering, EKF)和长短期记忆网络(long short-term memory, LSTM)方法对状态变量进行跟踪。但是,EKF算法需要计算复杂的雅可比矩阵。此外,EKF采用泰勒展开线性化技术,只能达到一阶精度。尽管LSTM技术能够捕捉时序数据中的复杂特征,但需要大量的训练数据,并不适用于电池能量和计算能力有限的无人机实时网络中。为了获得更好的跟踪性能,本文利用无迹卡尔曼滤波(unscented transform filtering, UKF)方法,该方法采用非线性无迹变换技术以二阶精度来近似后验均值和协方差[26]。假设无人机对前一个时隙Willie 的真实状态{{\boldsymbol{x}}_w}[n - 1]有一个估计,其均值为{{\boldsymbol{\hat x}}_w}[n - 1],协方差矩阵为{{\hat {\boldsymbol{C}}}}[n - 1],为了调用UKF,首先需要计算sigma点:
\left\{ \begin{aligned} & {{\boldsymbol{p}}_s}[n - 1] = {{{\boldsymbol{\hat x}}}_w}[n - 1],\quad s = 0 \\ & {{\boldsymbol{p}}_s}[n - 1] = {{{\boldsymbol{\hat x}}}_w}[n - 1] + {(\sqrt {4 + \lambda } {{\hat {\boldsymbol{C}}}}[n - 1])_s},\\ & \quad s = 1, \cdots ,4 \\ & {{\boldsymbol{p}}_s}[n - 1] = {{{\boldsymbol{\hat x}}}_w}[n - 1] - {(\sqrt {4 + \lambda } {{\hat {\boldsymbol{C}}}}[n - 1])_s},\\ & \quad s = 5, \cdots ,8 \end{aligned} \right. (11) 其中\lambda = 4(\alpha _u^2 - 1),{\alpha _u}为确定sigma点在平均值周围扩散程度的参数。然后,状态均值和相应的协方差矩阵可以由下式分别得到
\left\{ \begin{gathered} {{{\boldsymbol{\hat x}}}_w}[n|n - 1] = \sum\limits_{s = 0}^8 {\omega _s^a} {{{\boldsymbol{\hat p}}}_s}[n|n - 1] \\ {{\hat {\boldsymbol C}}}[n|n - 1] = \sum\limits_{s = 0}^8 {\omega _s^c} {{\boldsymbol{u}}_s}{\boldsymbol{u}}_s^{\rm T} + {{\boldsymbol{Q}}_e} \\ \end{gathered} \right. (12) 其中 {{\boldsymbol{\hat p}}_s}[n|n - 1] = {\boldsymbol{F}}{{\boldsymbol{p}}_s}[n - 1] 表示预测的sigma点,{{\boldsymbol{u}}_s} = {{\boldsymbol{\hat p}}_s}[n|n - 1] - {\widehat {\boldsymbol{x}}_w}[n|n - 1]。\omega _s^a和\omega _s^c是标量权重表示为
\left\{ \begin{aligned} & \omega _0^a = \frac{\lambda }{{4 + \lambda }},\quad \omega _0^c = \frac{\lambda }{{4 + \lambda }} + 4 - \alpha _u^2 + {\beta _u},s = 0 \\ & \omega _s^a = \omega _s^c = \frac{1}{{2(4 + \lambda )}},\quad s = 1, 2,\cdots ,8 \end{aligned} \right. (13) 其中{\beta _u} = 2对于高斯分布通常是最优的[26]。将预测代入原式,我们得到更新的sigma点 {{\boldsymbol{\tilde p}}_s}[n|n - 1],进一步利用它来预测观测值的均值,即
\widehat {\boldsymbol{b}}[n|n - 1] = \sum\limits_{s = 0}^8 {\omega _s^a} {{\boldsymbol{\hat b}}_s}[n|n - 1],\quad s = 0,1, \cdots ,8 (14) 其中{{\boldsymbol{\hat b}}_s}[n|n - 1] = {\boldsymbol{g}}({{\boldsymbol{\tilde p}}_s}[n|n - 1]),因此,预测观测值的协方差矩阵直接由下式给出:
{{{\hat {\boldsymbol C}}}_b}[n|n - 1] = \sum\limits_{s = 0}^8 {\omega _s^c} {{\boldsymbol{u}}_{1,s}}{\boldsymbol{u}}_{1,s}^{\rm T} + {{\boldsymbol{Q}}_b} (15) 其中 {{\boldsymbol{u}}_{1,s}} = {{\boldsymbol{\hat b}}_s}[n|n - 1] - \widehat {\boldsymbol{b}}[n|n - 1] ,然后可以计算卡尔曼增益:
{\boldsymbol{K}}[n] = {\boldsymbol{\hat T}}[n|n - 1]{{\hat {\boldsymbol C}}}_b^{ - 1}[n|n - 1] (16) 其中 {\boldsymbol{\hat T}}[n|n - 1] = \displaystyle\sum\nolimits_{s = 0}^8 {\omega _s^c} {{\boldsymbol{u}}_{2,s}}{\boldsymbol{u}}_{1,s}^{\rm T} ,{{\boldsymbol{u}}_{2,s}} = {\text{ }}{{\boldsymbol{\tilde p}}_s}[n|n - 1] - {{\boldsymbol{\hat x}}_w}[n|n - 1]。基于卡尔曼增益,可以很容易地分别获得状态和协方差矩阵的更新:
\left\{ \begin{gathered} {{{\boldsymbol{\hat x}}}_w}[n] = {{{\boldsymbol{\hat x}}}_w}[n|n - 1] + {\boldsymbol{K}}[n]({{\boldsymbol{b}}_n} - {\boldsymbol{\hat b}}[n|n - 1]) \\ {\boldsymbol{C}}[n] = {\boldsymbol{C}}[n|n - 1] - {\boldsymbol{K}}[n]{{\boldsymbol{C}}_b}[n|n - 1]{{\boldsymbol{K}}^{\rm T}}[n] \\ \end{gathered} \right. (17) 为了便于后续的研究,我们现在使用从{{\boldsymbol{\hat x}}_w}[n|n - 1]中提取的{{\boldsymbol{\hat q}}_w}[n|n - 1]来代替(P0)中Willie每个时隙的实际位置,以便对问题(P0)进行实时优化。那么,从无人机m到Willie 的信道和相应的隐蔽性约束可以改写为{\hat h_{m,w}}[n]和 \widehat{D}({p}_{0}({{\boldsymbol{y}}}_{w}[n]), {p}_{1}({{\boldsymbol{y}}}_{w}[n])) \le 2{\epsilon}^{2} 。
4.2 JUAV选择与干扰功率优化
基于预测的Willie位置,将原问题分为子问题1(在其他变量不变的情况下优化干扰策略)、子问题2(在其他变量不变的情况下优化IUAV-GU调度策略)和子问题3(在其他变量不变的情况下确定通信功率)。首先,我们先解决子问题1。给定IUAV-GU调度\mathcal{A}、通信发射功率{\mathcal{P}^I},可以看IUAV集合\mathcal{I}是固定的。在这种情况下,有如下的子问题1:
\begin{split} & ({\mathrm{P}}1)\mathop {\max }\limits_{\mathcal{B},{\mathcal{P}^J}} \sum\limits_{k \in \mathcal{G}} {\sum\limits_{m \in \mathcal{U}} {{\omega _k}} } [n]{\alpha _{m,k}}[n]{R_{m,k}}[n]\\ & {\mathrm{s.t.}}\; {\mathrm{C}}1, {\mathrm{C}}2, {\mathrm{C}}4, {\mathrm{C}}6 \end{split} (18) 以上问题很难直接解决。为此,我们首先表示一个辅助变量\tilde P_m^J[n] = {\beta _m}[n]P_m^J[n]来处理{\beta _m}[n]和P_m^J[n]之间的耦合。然后,可以将{R_{m,k}}[n]重写为{\tilde R_{m,k}}[n] = {\log _2}(1 + {\tilde \gamma _{m,k}}),则有
{\tilde \gamma _{m,k}}[n] = \frac{{P_m^I[n]|{h_{m,k}}[n]{|^2}}}{{{\varOmega _{{m_1},k}}[n] + {{\tilde \phi }_{j,k}}[n] + \sigma _k^2}} (19) 其中{\tilde \phi _{j,k}}[n] = \displaystyle\sum\nolimits_{j = 1}^M {\tilde P_j^J} [n]|{h_{j,k}}[n]{|^2}。虽然{\tilde R_{m,k}}[n]关于\tilde P_m^J[n]仍然是非凸的,我们可以通过一阶泰勒展开建立它的凸下界,并采用它作为替代。然后通过采用连续凸逼近(successive convex approximation, SCA)方法迭代地解决代理函数的问题。将\tilde P_m^{J,{r_1}}[n]表示为第{r_1}次迭代中的可行点,则其下界可以表示为
{\tilde R_{m,k}}[n] \ge \tilde R_{m,k}^\prime [n] - \left( {\tilde R_{m,k}^{{\text{lo}}}[n] + \sum\limits_{j = 1}^M {\tilde D_{m,k}^{}} [n]\left( {\tilde P_j^J[n] - \tilde P_j^{J,{r_1}}[n]} \right)} \right) \triangleq \tilde R_{m,k}^{{\text{lb}}}[n] (20) 其中
\left\{ \begin{gathered} \tilde R_{m,k}^\prime [n] = {\log _2}\left( {\sum\limits_{{m_1} \in I} {P_{{m_1}}^I} [n]|{h_{{m_1},k}}[n]{|^2} + {{\tilde \phi }_{j,k}}[n] + \sigma _k^2} \right) \\ \tilde R_{m,k}^{{\text{lo}}}[n] = {\log _2}\left( {{\varOmega _{{m_1},k}}[n] + \sum\limits_{j = 1}^M {\tilde P_j^{J,{r_1}}} [n]|{h_{j,k}}[n]{|^2} + \sigma _k^2} \right) \\ {{\tilde D}_{m,k}}[n] = \frac{{{{\log }_2}(e)|{h_{j,k}}[n]{|^2}}}{{{\varOmega _{{m_1},k}}[n] + \displaystyle\sum\limits_{{j_1} = 1}^M {\tilde P_{{j_1}}^{J,{r_1}}} [n]|{h_{{j_1},k}}[n]{|^2} + \sigma _k^2}} \\ \end{gathered} \right. (21) 利用\tilde R_{m,k}^{{\text{lb}}}[n]近似替换{R_{m,k}}[n]。对于隐蔽性约束C1,易得\hat D({p_0}({{\boldsymbol{y}}_w}[n]),{p_1}({{\boldsymbol{y}}_w}[n]))关于{\hat \gamma _w}[n]是单调递增的,其中{\hat \gamma _w}[n] 基于Willie预测位置下的SINR。因此,C1可简化为 {\widehat{\gamma }}_{w}[n]\le \epsilon ,为确定\epsilon ,需要解方程 \mathrm{ln}(1+{\widehat{\gamma }}_{w}[n])-\dfrac{{\widehat{\gamma }}_{w}[n]}{1+{\widehat{\gamma }}_{w}[n]}=4{\epsilon}^{2}/L 。经过简单数学运算,易得 \epsilon=\mathrm{exp}\left({W}_{L}\left(-{{\mathrm{e}}}^{-(1+4{\epsilon}^{2}/L)}\right)+ \dfrac{4{\epsilon}^{2}}{L}+1\right)-1 ,其中 {W_L}( \cdot ) 是 Lambert W 函数。进一步考虑辅助变量\tilde P_m^J[n],我们有
{\displaystyle \sum _{j=1}^{M}{\tilde{P}}_{j}^{J}}[n]|{\widehat{h}}_{j,w}[n]{|}^{2}\ge \frac{{\displaystyle \sum _{i\in I}{P}_{i}^{I}}[n]|{\widehat{h}}_{i,w}[n]{|}^{2}}{\epsilon}-{\sigma }_{w}^{2} (22) 随后,我们注意到 JUAV 二元选择约束 C2 等价于以下两个连续约束,即
{\beta _m}[n] - \beta _m^2[n] \le 0,0 \le {\beta _m}[n] \le 1,\quad \forall m,n (23) 可以观察到,前一个公式要求{\beta _m}[n]大于1或小于0,而第二个公式则迫使{\beta _m}[n]落在[0,1]范围内。因此{\beta _m}[n] = 0或{\beta _m}[n] = 1必须成立。虽然上述不等式仍然是非凸的,但它具有可微结构。可以通过在给定局部点\beta _m^{{r_1}}[n]处采用一阶泰勒展开来获得一个凸近似{(\beta _m^{{r_1}}[n] - {\beta _m}[n])^2} + {\beta _m}[n] - {\beta _m}{[n]^2} \le 0,\forall m,然而,可以验证的是对于任意给定的局部\beta _m^r[n] \in (0,1),上述不等式的左侧不可能降至零以下,从而不能直接应用该近似。为了规避这个困难,我们采用罚函数方法,使目标函数近似成为R_{m,k}^{{\text{lb}}}[n] - \kappa \mu ,其中\kappa \gg 0是惩罚参数,从而\mu 可以写为
{\text{C2-1: }}\sum\limits_{m = 1}^M {{{(\beta _m^{{r_1}}[n])}^2}} - 2\beta _m^{{r_1}}[n]{\beta _m}[n] + {\beta _m}[n] \le \mu (24) 通过采用大M方法,子问题1可以近似如下:
\begin{split} & ({\text{P1-1}})\mathop {\max }\limits_{\mathcal{B},{\mathcal{P}^J},\mu ,{{\tilde {\mathcal{P}}}^J}} \sum\limits_{k \in \mathcal{G}} {\sum\limits_{m \in \mathcal{U}} {{\omega _k}} } [n]{\alpha _{m,k}}[n]R_{m,k}^{{\text{lb}}}[n] - \kappa \mu\\ & {\mathrm{s.t}}.\; {\mathrm{C}}4,{\text{C2-1}}\\ & \quad\;\; {\text{C6-1: }}0 \le \sum\limits_{k = 1}^K {{\alpha _{m,k}}} [n]P_m^I[n] + {\beta _m}[n]P_m^J[n] \le {P_{m,\max }} \\ & \quad\;\; {\text{C7:}}\quad \tilde P_m^J[n] \ge 0,\quad \tilde P_m^J[n] \le P_m^J[n],\forall m\\ & \quad\;\; {\text{C8:}}\quad \tilde P_m^J[n] \le {\beta _m}[n]{P_{m,\max }},\forall m\\ & \quad\;\; {\text{C9:}}\quad \tilde P_m^J[n] \ge P_m^J[n] - (1 - {\beta _m}[n]){P_{m,\max }},\forall m \end{split} (25) 其中约束(C7)—(C9)由于采用了大M方法而被额外引入[27]。问题(P1-1)现在是凸的,可以用CVX有效地解决。此外,需要注意的是,从近似问题(P1-1)获得的最优目标值是问题(P1)的下界,因此,问题(P1-1)的解对于问题(P1)也是可行的。特别是,可以为\kappa 初始化一个较小值,使得问题(P1-1)更有可能是可行的。随后,参数\kappa 可以乘以常数{a_0} > 1逐渐倍增,从而逐渐减小\mu 的值直到接近零。具体算法步骤如算法1所示:
1 多无人机联合干扰策略优化算法1. Jamming strategy optimization algorithm输入:迭代索引{r_1} = 0, {r_{1,\max }},{\kappa _{\max }}和可行点
\left\{ {{\mathcal{B}^0},{\mathcal{P}^0},{{\tilde {\mathcal{P}}}}^0},{\mu ^0} \right\}输出:\left\{ {{\mathcal{B}^*},{\mathcal{P}^{J,*}},{{\tilde {\mathcal{P}}}^{J,*}},{\mu ^*}} \right\} 1.给定\left\{ {{\mathcal{B}^{{r_1}}},{\mathcal{P}^{J,{r_1}}},{{\tilde {\mathcal{P}}}^{J,{r_1}}},{\mu ^{{r_1}}}} \right\},求解(P1-1),并将解表示
为\left\{ {{\mathcal{B}^*},{\mathcal{P}^{J,*}},{{\tilde {\mathcal{P}}}^{J,*}},{\mu ^*}} \right\}2.令\left\{ {{\mathcal{B}^{{r_1}}},{\mathcal{P}^{J,{r_1}}},{{\tilde {\mathcal{P}}}^{J,{r_1}}},{\mu ^{{r_1}}}} \right\} = \left\{ {{\mathcal{B}^*},{\mathcal{P}^{J,*}},{{\tilde {\mathcal{P}}}^{J,*}},{\mu ^*}} \right\} 3.更新 {\kappa ^{{r_1} + 1}} = \min \{ {a_0}{\kappa ^{{r_1}}},{\kappa _{\max }}\} 4.更新 {r_1} = {r_1} + 1 5.重复上述步骤直到收敛 4.3 UAV-GU调度优化
给定干扰策略\mathcal{B}和{\mathcal{P}^J}以及通信功率{\mathcal{P}^I},有如下IUAV-GU调度的子问题2:
\begin{split} & {\text{(P2) }}\mathop {\max }\limits_\mathcal{A} \sum\limits_{k \in \mathcal{G}} {\sum\limits_{m \in \mathcal{U}} {{\omega _k}} } [n]{\alpha _{m,k}}[n]{R_{m,k}}[n] \\ & {\mathrm{s. t}}.\; {\mathrm{C}}3, {\mathrm{C}}4, {\mathrm{C}}5, {\mathrm{C}}6 \end{split} (26) 由于约束C3,问题{\text{(P2)}}是非凸的,尽管可以按照子问题 {\text{(P1)}}中{\beta _m}[n]进行类似处理,但可以观察到目标函数和约束关于{\alpha _{m,k}}[n]都是线性的。那么,C3可以简单地松弛为
{\text{C3-1}}:0 \le {\alpha _{m,k}}[n] \le 1,\forall k,m,n (27) {\text{C3-1}}是一个紧的松弛,原因是对于任何{\alpha _{m,k}}[n] \in (0,1),都能在不违反约束C4和C5的情况下,调整{\alpha _{m,k}}[n]以满足{\text{C3-1}}中的等式且不会降低目标值。因此,IUAV-GU调度问题可由下式给出:
\begin{split} & {\text{(P2-1) }}\mathop {\max }\limits_\mathcal{A} \sum\limits_{k \in \mathcal{G}} {\sum\limits_{m \in \mathcal{U}} {{\omega _k}} } [n]{\alpha _{m,k}}[n]{R_{m,k}}[n] \\ & {\mathrm{s. t}}.\;{\text{C3-1,C4,C5,C6}} \end{split} (28) (P2-1)是一个线性规划 (Linear Programming, LP)问题,可以通过CVX有效地求解。
4.4 通信发射功率优化
随后,我们对通信发射功率进行优化。对于固定的 \left\{ {\mathcal{B},\mathcal{A},{\mathcal{P}^J}} \right\} ,原问题可以修改为
\begin{split} & {\text{(P3) }}\mathop {\max }\limits_{{\mathcal{P}^I}} \sum\limits_{k \in \mathcal{G}} {\sum\limits_{i \in \mathcal{I}} {{\omega _k}} } [n]{\alpha _{i,k}}[n]{R_{i,k}}[n] \\ & {\mathrm{s. t.}} \;{\mathrm{C}}10:{\displaystyle \sum _{i\in \mathcal{I}}{P}_{i}^{I}}[n]|{h}_{i,w}[n]{|}^{2}\le \left({\widehat{\varphi }}_{j,w}[n]+{\sigma }_{w}^{2}\right)\epsilon \\ & \quad\;\; {\text{C11:}}\sum\limits_{k = 1}^K {{\alpha _{i,k}}} [n]P_i^I[n] \le {P_{i,\max }},P_i^I[n] \ge 0,\forall i \end{split} (29) 由于多用户干扰项,目标函数是非凸的,而所有约束都是仿射的。一般来说,很难找到全局最优解。注意{R_{i,k}}[n]可以写为{R_{i,k}}[n] = {\log _2}\left( \displaystyle\sum\nolimits_{{i_1} \in \mathcal{I}} {P_{{i_1}}^I} [n]| {h_{{i_1},k}} [n]{|^2} + {\phi _{j,k}}[n] + \sigma _k^2 \right) - {\bar R_{i,k}}[n], 其中{\bar R_{i,k}}[n] = {\log _2}( {\displaystyle\sum\nolimits_{{i_1} \in \mathcal{I}\backslash i} {P_{{i_1}}^I} [n]|{h_{{i_1},k}}[n]{|^2} + {\phi _{j,k}}[n] + \sigma _k^2} ),P_i^{I,{r_2}}[n]是在第{r_2}次迭代中给定的功率值,然后通过采用一阶泰勒展开可以得到一个凸上界\bar R_{i,k}^{{\text{ub}}}[n],
\begin{split} \;&{\bar R_{i,k}}[n] \le \sum\limits_{_{{i_1} \in \mathcal{I}\backslash i}} {{D_{{i_1},k}}[n]\left( {P_{{i_1}}^I[n] - P_{{i_1}}^{I,{r_2}}[n]} \right)} \\ & + {\log _2}\left( {\sum\limits_{_{{i_1} \in \mathcal{I}\backslash i}} {P_{{i_1}}^{I,{r_2}}[n]{{\left| {{h_{{i_1},k}}[n]} \right|}^2} + {\phi _{j,k}}[n] + \sigma _k^2} } \right) \end{split} (30) 其中 {D_{{i_1},k}}[n] = \dfrac{{{{\left| {{h_{{i_1},k}}[n]} \right|}^2}{{\log }_2}(e)}}{{{\displaystyle\sum\nolimits_{{i_2} \in \mathcal{I}\backslash i}}P_{{i_2}}^{I,{r_2}}[n]{h_{{i_2},k}}[n] + {\phi _{j,k}}[n] + \sigma _k^2}} ,替换原始目标函数,即得到近似凸问题
\begin{split} & {\text{(P3-1) }}\mathop {\max }\limits_{{\mathcal{P}^I}} \sum\limits_{k \in \mathcal{G}} {\sum\limits_{i \in \mathcal{U}} {{\omega _k}} } [n]{\alpha _{i,k}}[n]\\ & \quad\cdot \left( {{{\log }_2}\left( {\sum\limits_{{i_1} \in \mathcal{I}} {{\varphi _{{i_1},k}}} [n]} \right) - \bar R_{i,k}^{{\text{ub}}}[n]} \right) \\ & {\mathrm{s.t.}} {\text{C}}10,{\text{C}}11 \end{split} (31) 式中 {\varphi _{{i_1},k}}[n] = P_{{i_1}}^I[n]{\left| {{h_{{i_1},k}}[n]} \right|^2} + {\phi _{j,k}}[n] + \sigma _k^2 ,可以验证问题(P3-1)是凸的,从而可以用标准求解器求解。通过固定单组变量后,分别求解3个子问题,并对3组变量分别交替迭代优化,从而将多变量集合的优化问题分解为一系列单变量集合的子问题,每次迭代选择一组单变量集进行优化,而其他变量保持不变,基于多无人机协作通感一体的隐蔽通信设计总体算法如算法2所示,算法2的目标函数在迭代过程中是非递减的。此外,由于目标函数具有有限的上界,因此可以保证算法2收敛到一个次优解。由于算法2的计算复杂度取决于内点法和UKF矩阵求逆过程,从而可以保证多项式计算复杂度。
2 多无人机隐蔽通信总体设计算法2. Overall algorithm of multi-UAV-based covert communications输入:n = 2,\ell = 0,{{\boldsymbol{\hat x}}_w}[1],{{\hat {\boldsymbol C}}}[1],最大迭代次数为{\ell _{\max }}和
\left\{ {{\mathcal{A}^0},{\mathcal{P}^{I,0}}} \right\}输出:\left\{ {\mathcal{A},{\mathcal{P}^I}\mathcal{B},{\mathcal{P}^\mathcal{J}}} \right\} 1. 计算预测值{{\boldsymbol{\hat x}}_w}[n\mid n - 1]和{{\hat {\boldsymbol C}}}[n\mid n - 1] 2. 解问题(P1-1)来确定干扰策略\left\{ {{\mathcal{B}^{\ell + 1}},{\mathcal{P}^{\mathcal{J},\ell + 1}}} \right\} 3. 基于\left\{ {{\mathcal{B}^{\ell + 1}},{\mathcal{P}^{\mathcal{J},\ell + 1}}} \right\},解(P2-1)和(P3-1)确定
\left\{ {{\mathcal{A}^{\ell + 1}},{\mathcal{P}^{I,\ell + 1}}} \right\}4. 更新\ell = \ell + 1并重复步骤2—3,直到收敛或者\ell \ge {\ell _{{\text{max }}}} 5. 更新n = n + 1,并重复上述步骤,直到n > N 5. 仿真实验及分析
在本节中,我们呈现了数值结果以验证我们所提出算法的有效性。考虑一个基于多无人机协作的通感一体系统,其中有M = 4个无人机为K = 10个地面用户提供服务,这些地面用户随机分布在面积为300 \times 300 m2的区域内。注意到网络规模和地面用户位置部分变化并不会明显影响到所提算法的适用性。除非另有说明,我们将系统参数设置如下。参考距离为1 m时的信道功率增益为{\rho _0} = - 50 dB,所有地面用户和 Willie 的噪声功率均设为\sigma _k^2 = \sigma _w^2 = - 90 dBm。我们考虑所有无人机在固定高度H = 30 m飞行,最大飞行速度为{V_{\max }} = 10 m/s,最大发射功率为35 dBm。整个时间持续T = 50 s,每个时间槽的持续时间为\Delta t = 0.2 s。在评估系统性能之前,我们介绍几种用于比较的基准方案。a) 无JUAV 方案:在该方案中,所有的无人机均作为IUAV工作,不存在专用的JUAV。可以通过所提出的方法来获得次优的资源分配,同时不考虑干扰策略;b) 随机 JUAV 选择方案:在每个时间槽随机选择一个JUAV,表示为{U_j} = {\text{ran}}{{\text{d}}_{m \in U}}{U_m},其中{U_j}表示选择的干扰无人机。通过对子问题1进行小幅调整来优化干扰功率;c) 最小接收信干噪比选择方案:该方案选择使Willie的接收信干噪比最小的无人机作为JUAV,表示为{U_j} = \arg {\min _{m \in U}}{\gamma _{m,w}} = \arg {\max _{m \in U}}|{h_{m,w}}{|^2},其中{\gamma _{m,w}}为 Willie 接收来自无人机m处的信号信干噪比。
我们首先评估所提出UKF算法的追踪性能,如图2所示,其中4个无人机分布在不同的位置用于实现隐蔽通信和干扰Willie监测任务,其水平位置分别为[75 225 225 75; 225 225 75 75]m。 可以看出Willie的轨迹与预测的路径非常接近,表明所提出的算法对Willie的运动有比较准确的预测和跟踪效果,从而为实时高效资源分配打下基础。进一步,图3比较了UKF和EKF方法的状态追踪性能,可以看出在速度和位置预测上,UKF均优于EKF,这是因为UKF不对非线性观测做一阶泰勒展开,不需要计算复杂的雅可比矩阵,其非线性无迹变换能够很好地模拟高斯噪声,达到二阶精度。相比之下,EKF方法的线性化方式损失了部分信息,且包含较为计算复杂的线性化过程。
在此基础上,我们在图4中展示了所开发方法在一个示例时隙中的收敛行为,其他时刻里的收敛行为大致类似。在大多数情况下,由于无JUAV方法不考虑干扰策略,仅优化调度和通信资源,因此具有最快的收敛速度。此外,随机JUAV选择方案和最小接收信干噪比选择方案具有适中的收敛速度,而我们提出的方法需要更多的迭代次数,因为所提算法需要交替求解所有子问题。然而可以看到,所有方法的系统能效都可以在不超过 10 次迭代内收敛到次优解,从而保证了提出算法的快速收敛性能。图5展示了不同数量无人机下的系统吞吐量,当M = 1时,发射功率的提升并不能带来系统性能显著的提升,这是由于没人干扰信号的引入,唯一的IUAV因为约束于隐蔽性条件从而并不能完全耗尽发射功率,相反,当无人机数量大于1时,由于可以充当为JUAV,系统吞吐得到显著改善。
在图6中,我们验证了每个时刻下系统在满足隐蔽性约束下,所有用户的总可达速率的累积分布函数(cumulative distribution function, CDF)。可以明显看到,无JUAV方法的性能显著差于其他3种方案,这一现象的原因在于无JUAV方案缺乏精心设计的干扰策略,严格的隐蔽性约束使得通信功率下降,从而导致了较小的可达速率。我们所开发的方法由于采用了高度灵活的IUAV/JUAV选择框架,能够动态调整IUAV和JUAV的数量,以有效满足隐蔽性约束,因此可以实现最佳性能。此外,我们注意到,最小接收信干噪比选择方案的性能也相对较好,因为该方法会指派距离最近的无人机成为JUAV从而对Willie 进行有效干扰。然而,该方法在所考虑的网络通信场景中并不完全适用,因为当Willie接近合法用户时,会导致合法用户接收信干噪比严重下降,从而影响系统吞吐量。
在图7中,我们展示了在不同隐蔽性阈值 \mathrm{\epsilon} 下所有时间槽的平均可达的总通信速率。可以观察到,随着隐蔽性阈值的增加,平均可达的总通信速率也在增加。这是符合预期的,因为较大的隐蔽性约束阈值\epsilon 允许Willie更大的错误检测概率,从而可以分配更多的无人机作为 IUAV,以提高可达的通信速率,这揭示了系统吞吐性能与隐蔽性之间的权衡关系。此外可以看出,不分配任何JUAV的方案的系统性能仅随着隐蔽性阈值的增加轻微得到提升,这是因为在不引入人工噪声的情况下,IUAV只能降低自身的发射功率以实现隐蔽约束。
在图8中,我们展示了发射功率与隐蔽性阈值对系统平均可达总速率的影响。图中展示了不同发射功率和隐蔽性阈值 \varepsilon 之间的关系,使用了色彩图表示系统平均可达总速率的分布情况。可以看到,随着发射功率的增加,系统的平均可达总速率呈现出逐渐提高的趋势,在较大的隐蔽性阈值(较松的隐蔽约束)下,系统的平均可达总速率随着发射功率的增加显著提升,这表明在松弛的隐蔽性约束下,增加发射功率对速率的提升效果明显。然而,当隐蔽性约束逐渐变严格时,总速率的提升逐渐趋缓,这是因为在较高隐蔽性要求下,系统对发射功率的敏感性降低,即使增加发射功率,系统中更多的资源必须用于保持隐蔽性,导致通信资源的有效利用率下降。在图9中,我们比较了所提算法与非加权和速率最大化方法每个用户的平均可达速率。可以看出,非加权和速率最大化会将系统资源集中到少数信道条件良好的用户身上,尽管Willie的移动会使得少数时刻下因为隐蔽性约束一些其他用户被服务到,但是总体上来讲,和无人机最近的用户将会获得更充足的服务。对比之下,我们提出的算法通过对当前累积平均可达速率赋以权重,从而实现了用户公平性。
6. 结语
本文提出了一种基于多无人机协作的隐蔽通信方案,利用协作通感一体化技术在存在一个移动监管者Willie的情况下,优化了系统的隐蔽性和通信性能。首先依靠ISAC信号得到的时延和多普勒测量,利用UKF实现了对Willie位置的实时跟踪。然后,通过同时考虑隐蔽性和最大功率预算,构建了一个考虑公平性的系统吞吐量最大化问题。为了解决由此产生的混合整数非凸分数规划问题,本文提出了一个有效的迭代算法对多无人机发射功率、JUAV/IUAV选择以及调度策略联合交替优化,仿真结果表明,提出的算法能够准确追踪移动守卫,并与各种基准方案相比,实现隐蔽通信性能提升。研究还发现,增加发射功率有助于提高系统总可达速率,但在严格隐蔽性约束下效果有限。未来的研究可以进一步探讨在更复杂的网络场景中(如存在多个监视者),如何实现隐蔽通信与高效能量利用之间的最佳平衡。
-
表 1 相控阵雷达、全息凝视雷达和MIMO雷达对比
Table 1. The comparison of phased array radar, holographic staring radar and MIMO radar
对比项 相控阵雷达 全息凝视雷达 MIMO雷达 工作模式示意图[7] 发射波束特点 单个集中波束发射 发射宽波束 多个发射天线发射分集波形 接收波束特点 单个集中波束接收 同时多波束接收 同时多波束接收 相同发射总功率、
积累时间输出信噪比[6,7]SNRPA SNRPA/e (e为波束展宽倍数) SNRPA/N (N为发射阵元数) 角度分辨率[6] 由接收天线孔径决定 由接收天线孔径决定 由发射阵列与接收阵列卷积得到虚拟阵列孔径决定 优势 相同孔径发射增益大 多目标跟踪能力强、同时多功能、
多普勒分辨率高、射频隐身性高等多目标跟踪能力强、虚拟孔径扩展测角精度高、
多普勒分辨率高、射频隐身性高等劣势 相同孔径观测范围小 相同孔径发射增益低、计算量大、
不适合单目标跟踪相同孔径发射增益低、计算量大、
脉冲综合距离副瓣高、不适合单目标跟踪表 2 Aveillant公司全息雷达系统参数[24-30]
Table 2. Basic technical parameters of Aveillant's holographic radar[24-30]
参数名称 原理样机 Gamekeeper 16U Theia 64A QUAD (128) 频率 L波段 L波段 L波段 L波段 带宽 ~2 MHz ~2 MHz ~2 MHz ~2 MHz 发射功率 ~1 kW ~1 kW ~10 kW \ 接收通道数 8×8 4×16 32×8 \ 方位覆盖范围 90° 90° 90° 360° 俯仰覆盖范围 90° 30° 90° 90° PRF \ ~7.5 kHz ~3.8 kHz \ 更新率 \ ~0.25 s ~0.5 s ~1 s 探测距离 5 n mile (@RCS 1 m2) 5 km (@RCS 0.01 m2) 20 n mile (@RCS 0.01 m2) 40 n mile (@RCS 0.01 m2) 探测距离精度 \ \ <50 m \ 探测方位精度 <250 m 速度分辨率 <0.5 m/s 表 3 中山大学全息雷达系统参数
Table 3. Basic parameters of the holographic staring radar developed by SYSU
参数名称 L波段全息凝视雷达 S波段全息凝视雷达 频率 L波段 S波段 带宽 2~16 MHz 2~10 MHz 发射功率 ~500 W ~400 W 接收通道数 8×8 4×16 方位覆盖范围 90° 90° 俯仰覆盖范围 22.5°, 30.0°, 45.0°, 60.0°
(可设定)30° PRF ~5 kHz ~7.5 kHz 更新率 ~1 s ~1 s 探测距离 10 km
(@RCS 0.01 m2)8 km
(@RCS 0.01 m2)探测距离精度 <10 m <15 m 方位角分辨精度 <1.5° <0.75° 速度分辨率 <0.1 m/s <0.05 m/s -
[1] OSWALD G and BAKER C. Holographic Staring Radar[M]. London, United Kingdom: Institution of Engineering and Technology, 2021: 7–35. [2] 汤小为, 汤俊, 彭应宁, 等. 一种新体制雷达——“泛探”雷达的关键技术研究[C]. 第十届全国雷达学术年会论文集, 北京, 2008: 43–46.TANG Xiaowei, TANG Jun, PENG Yingning, et al. Research on some key techniques of a new radar syestem ubiquitous radar[C]. The 10th Annual Radar Conference of China, Beijing, China, 2008: 43–46. [3] RADAR SYSTEMS PANEL. IEEE standard for radar definitions[R]. IEEE Std 686, 2017. [4] 王盛利. 多波束凝视雷达[M]. 北京: 国防工业出版社, 2017: 1–10.WANG Shengli. Multibeam Staring Radar[M]. Beijing: National Defense Industry Press, 2017: 1–10. [5] 赵永波, 刘宏伟. MIMO雷达技术综述[J]. 数据采集与处理, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001ZHAO Yongbo and LIU Hongwei. Overview on MIMO radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001 [6] 何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128 [7] RABIDEAU D J and PARKER P. Ubiquitous MIMO multifunction digital array radar[C]. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 1057–1064. [8] DOREY J, BLANCHARD Y, and CHRISTOPHE F. The RIAS project, a new approach to air surveillance radar[J]. Radiant, Journal of the Dutch Meteor Society, 1984: 113–118. [9] LUCE A S, MOLINA H, MULLER D, et al. Experimental results on RIAS digital beamforming radar[C]. 92 International Conference on Radar, Brighton, UK, 1992: 74–77. [10] COLIN J M. Phased array radars in France: Present and future[C]. International Symposium on Phased Array Systems and Technology, Boston, USA, 1996: 458–462. [11] WIRTH W D. Long term coherent integration for a floodlight radar[C]. International Radar Conference, Alexandria, USA, 1995: 698–703. [12] WIRTH W D. Radar Techniques Using Array Antennas[M]. London: Institution of Engineering and Technology, 2013: 419–446. [13] WIRTH W D. Omnidirectional low probability of intercept radar[C]. International Conference on Radar, Paris, France, 1989: 25–30. [14] 保铮, 张庆文. 一种新型的米波雷达—综合脉冲与孔径雷达[J]. 现代雷达, 1995, 17(1): 1–13. doi: 10.16592/j.cnki.1004-7859.1995.01.001BAO Zheng and ZHANG Qingwen. A new style metric wave radar — Synthetic impulse and aperture radar[J]. Modern Radar, 1995, 17(1): 1–13. doi: 10.16592/j.cnki.1004-7859.1995.01.001 [15] 陈伯孝, 张守宏. 稀布阵综合脉冲孔径雷达时域与频域脉冲综合方法[J]. 现代雷达, 1997, 19(6): 12–17. doi: 10.16592/j.cnki.1004-7859.1997.06.003CHEN Boxiao and ZHANG Shouhong. Synthetic pulse processing in frequency-domain and time-domain for sparse-array synthetic impulse and aperture radar[J]. Modern Radar, 1997, 19(6): 12–17. doi: 10.16592/j.cnki.1004-7859.1997.06.003 [16] 陈伯孝, 张守宏, 赵永波. 稀布阵综合脉冲孔径雷达旁瓣对消性能分析[J]. 现代雷达, 1998, 20(5): 55–61. doi: 10.16592/j.cnki.1004-7859.1998.05.010CHEN Boxiao, ZHANG Shouhong, and ZHAO Yongbo. The performance analysis of interference cancellation for sparse-array synthetic impulse and aperture radar[J]. Modern Radar, 1998, 20(5): 55–61. doi: 10.16592/j.cnki.1004-7859.1998.05.010 [17] 党晓方. 微波综合脉冲孔径雷达若干关键技术研究[D]. [博士论文], 西安电子科技大学, 2014: 1–8.DANG Xiaofang. Study on some key issues of microwave array synthetic impulse and aperture radar[D]. [Ph. D. dissertation], Xidian University, 2014: 1–8. [18] 吴剑旗, 阮信畅. 稀布阵综合脉冲孔径雷达主要性能分析[J]. 现代电子, 1994(3): 1–6.WU Jianqi and RUAN Xinchang. Main performance analysis of sparse array synthetic pulse aperture radar[J]. Modern Electronics, 1994(3): 1–6. [19] SKOLNIK M. Improvements for air-surveillance radar[C]. 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999: 18–21. [20] SKOLNIK M. Systems aspects of digital beam forming ubiquitous radar[R]. NRL Report: NRLhlW 5007-02-8625, June 28, 2002. [21] SKOLNIK M. Attributes of the ubiquitous phased array radar[C]. IEEE International Symposium on Phased Array Systems and Technology, 2003, Boston, USA, 2003: 101–106. [22] ALTER J J, WHITE R M, KRETSCHMER F F, et al. Ubiquitous radar: An implementation concept[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 65–70. [23] JAHANGIR M and QUILTER T. The practicality and benefit of a 3-D wide-area persistent surveillance micro-Doppler radar[C]. 2015 16th International Radar Symposium (IRS), Dresden, Germany, 2015: 272–277. [24] JAHANGIR M. Target centric wide-area 3-D surveillance using a non-scanning multibeam receiver array[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 652–657. [25] JAHANGIR M and BAKER C. Robust detection of micro-UAS drones with L-band 3-D holographic radar[C]. 2016 Sensor Signal Processing for Defence, Edinburgh, UK, 2016: 1–5. [26] JAHANGIR M and BAKER C. Persistence surveillance of difficult to detect micro-drones with L-band 3-D holographic radar™[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5. [27] JAHANGIR M and BAKER C J. Extended dwell Doppler characteristics of birds and micro-UAS at l-band[C]. 2017 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–10. [28] JAHANGIR M, BAKER C J, and OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1052–1057. [29] JAHANGIR M and BAKER C J. L-band staring radar performance against micro-drones[C]. 2018 19th International Radar Symposium, Bonn, Germany, 2018: 1–10. [30] BENNETT C, JAHANGIR M, FIORANELLI F, et al. Use of symmetrical peak extraction in drone micro-doppler classification for staring radar[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6. [31] JAHANGIR M, AHMAD B I, and BAKER C J. Robust drone classification using two-stage decision trees and results from SESAR SAFIR trials[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 636–641. [32] JAHANGIR M, AHMAD B I, and BAKER C J. The application of performance metrics to staring radar for drone surveillance[C]. 2020 17th European Radar Conference, Utrecht, Netherlands, 2021: 382–385. [33] JAHANGIR M, ATKINSON G M, ANTONIOU M, et al. Measurements of birds and drones with L-band staring radar[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–10. [34] GHAZALLI N, BALLERI A, JAHANGIR M, et al. Passive detection using a staring radar illuminator of opportunity[C]. 2019 International Radar Conference, Toulon, France, 2019: 1–5. [35] JAHANGIR M and BAKER C J. CLASS U-space drone test flight results for non-cooperative surveillance using an L-band 3-D staring radar[C]. 2019 20th International Radar Symposium, Ulm, Germany, 2019: 1–11. [36] DALE H, BAKER C, ANTONIOU M, et al. An initial investigation into using convolutional neural networks for classification of drones[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 618–623. [37] DALE H, BAKER C, ANTONIOU M, et al. A comparison of convolutional neural networks for low SNR radar classification of drones[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–5. [38] GRIFFIN B, BALLERI A, BAKER C, et al. Optimal receiver placement in staring cooperative radar networks for detection of drones[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6. [39] GRIFFIN B, BALLERI A, BAKER C, et al. Prototyping a dual-channel receiver for use in a staring cooperative radar network for the detection of drones[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–7. [40] JAHANGIR M, BAKER C J, ANTONIOU M, et al. Advanced cognitive networked radar surveillance[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–6. [41] HARMAN S. A comparison of staring radars with scanning radars for UAV detection: Introducing the Alarm™ staring radar[C]. 2015 European Radar Conference, Paris, France, 2015: 185–188. [42] HARMAN S A and HUME A L. Applications of staring surveillance radars[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 270–273. [43] HARMAN S. Analysis of the radar return of micro-UAVs in flight[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1159–1164. [44] MASSARDO M and STALLONE R. Experimental validation of a frustum of cone antenna applied to Omega 360 ubiquitous 2D radar[C]. 2017 IEEE International Workshop on Metrology for AeroSpace, Padua, Italy, 2017: 36–39. [45] FRANCO S and QUATTROCIOCCHI S. Experimental validation of a frustum of cone antenna radiation patterns[C]. 2017 IEEE International Workshop on Metrology for AeroSpace, Padua, Italy, 2017: 32–35. [46] STALLONE R, MASSARDO M, MONTANARI G, et al. Omega360 an innovative radar for detection and tracking of small drones[C]. 2019 International Radar Conference, Toulon, France, 2019: 1–5. [47] 陈曾平, 张月, 鲍庆龙. 数字阵列雷达及其关键技术进展[J]. 国防科技大学学报, 2010, 32(6): 1–7. doi: 10.3969/j.issn.1001-2486.2010.06.001CHEN Zengping, ZHANG Yue, and BAO Qinglong. Advance in digital array radar and its key technologies[J]. Journal of National University of Defense Technology, 2010, 32(6): 1–7. doi: 10.3969/j.issn.1001-2486.2010.06.001 [48] 张月, 邹江威, 陈曾平. 泛探雷达长时间相参积累目标检测方法研究[J]. 国防科技大学学报, 2010, 32(6): 15–20. doi: 10.3969/j.issn.1001-2486.2010.06.003ZHANG Yue, ZOU Jiangwei, and CHEN Zengping. Long-time coherent integration targets detection method for ubiquitous radar[J]. Journal of National University of Defense Technology, 2010, 32(6): 15–20. doi: 10.3969/j.issn.1001-2486.2010.06.003 [49] 鲍庆龙, 张月, 吴桐, 等. 泛探雷达时-空级联目标检测与DOA估计算法[J]. 国防科技大学学报, 2010, 32(6): 21–25. doi: 10.3969/j.issn.1001-2486.2010.06.004BAO Qinglong, ZHANG Yue, WU Tong, et al. Joint time-space target detection and DOA estimation algorithm on ubiquitous radar[J]. Journal of National University of Defense Technology, 2010, 32(6): 21–25. doi: 10.3969/j.issn.1001-2486.2010.06.004 [50] 郭瑞. 主被动一体化数字阵列雷达波达方向估计技术研究[D]. [博士论文], 国防科技大学, 2017: 1–13.GUO Rui. Research on direction of arrival estimation for integrated active-passive digital array radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2017: 1–13. [51] 赵英潇. 全息雷达长时间积累目标检测关键技术研究[D]. [博士论文], 国防科技大学, 2019.ZHAO Yingxiao. Long time integration and target detection technologies applied in holographic radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2019. [52] 田瑞琦. 泛探雷达微弱目标检测关键技术研究[D]. [博士论文], 国防科技大学, 2018: 1–112.TIAN Ruiqi. Research on key technology of ubiquitous radar weak target detection[D]. [Ph. D. dissertation], National University of Defense Technology, 2018: 1–112. [53] ZHANG Yue, GUO Yongqiang, and CHEN Zengping. Range-Doppler domain signal processing for medium PRF ubiquitous radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. [54] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402 [55] CHEN Xiaolong, ZHANG Hai, SONG Jie, et al. Micro-motion classification of flying bird and rotor drones via data augmentation and modified multi-scale CNN[J]. Remote Sensing, 2022, 14(5): 1107. doi: 10.3390/rs14051107 [56] 陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar micro-doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040 [57] 陈小龙, 南钊, 张海, 等. 飞鸟与旋翼无人机雷达微多普勒测量实验研究[J]. 电波科学学报, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192CHEN Xiaolong, NAN Zhao, ZHANG Hai, et al. Experimental research on radar micro-Doppler of flying bird and rotor UAV[J]. Chinese Journal of Radio Science, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192 [58] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068 [59] WU Qi, CHEN Jie, LU Yue, et al. A complete automatic target recognition system of low altitude, small RCS and slow speed (LSS) targets based on multi-dimensional feature fusion[J]. Sensors, 2019, 19(22): 5048. doi: 10.3390/s19225048 [60] WU Qi, CHEN Jie, WU Hongming, et al. Experimental study on micro-doppler effect and micro-motion characteristics of aerial targets based on holographic staring radar[C]. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019: 1186–1190. [61] DAI Ting, XU Shiyou, TIAN Biao, et al. Extraction of micro-doppler feature using LMD algorithm combined supplement feature for UAVs and birds classification[J]. Remote Sensing, 2022, 14(9): 2196. doi: 10.3390/rs14092196 [62] ELTA Systems Lt. Persistent ground & coastal surveillance radar family[OL]. https://www.iai.co.il/p/elm-2112. [63] ELTA Systems Lt. Persistent foliage penetration radar[OL]. https://www.iai.co.il/p/elm-2112fp. [64] ELTA Systems Lt. Persistent perimeter detection radar[OL]. https://www.iai.co.il/p/elm-2114. [65] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Drone detection and RCS measurements with ubiquitous radar[C]. 2018 International Conference on Radar, Brisbane, Australia, 2018: 1–6. [66] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. X-band ubiquitous radar system: First experimental results[C]. 2017 IEEE SENSORS, Glasgow, UK, 2017: 1–3. [67] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Remotely piloted aircraft detection with persistent radar[C]. 2018 15th European Radar Conference, Madrid, Spain, 2018: 317–320. [68] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Drone detection with X-band ubiquitous radar[C]. 2018 19th International Radar Symposium (IRS), Bonn, Germany, 2018: 1–10. [69] URZAIZ F I, DE QUEVEDO Á D, AYUSO A M, et al. Design, implementation and first experimental results of an X-band ubiquitous radar system[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1150–1155. [70] Elbit Systems. Multi Beam Radar MBR 16-V1 real-time detection and tracking of moving ground and naval targets[OL]. https://elbitsystems.com/product/mbr-2/ [71] Propatria Inc. Ground & Air Surveillance Radar[OL]. https://propatria-inc.com/products/radars/mbr-3d. [72] SUESS M, GRAFMUELLER B, and ZAHN R. A novel high resolution, wide swath SAR system[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 1013–1015. [73] WANG Wei, WANG Robert, DENG Yunkai, et al. Improved digital beam-forming approach with scaling function for range multi-channel synthetic aperture radar system[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 379–385. doi: 10.1049/iet-rsn.2015.0276 [74] KRIEGER G and MOREIRA A. Spaceborne bi- and multistatic SAR: Potential and challenges[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(3): 184–198. doi: 10.1049/ip-rsn:20045111 [75] 江涛, 陈翼, 王盛利. 凝视数字多波束合成孔径雷达系统性能分析[J]. 系统工程与电子技术, 2013, 35(4): 745–752. doi: 10.3969/j.issn.1001-506X.2013.04.12JIANG Tao, CHEN Yi, and WANG Shengli. System performance analysis of staring digital multiple beam synthetic aperture radar[J]. Systems Engineering and Electronics, 2013, 35(4): 745–752. doi: 10.3969/j.issn.1001-506X.2013.04.12 [76] RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3622–3628. doi: 10.1109/TGRS.2011.2157971 [77] REIGBER A, NOTTENSTEINER A, LIMBACH M, et al. DBFSAR: An airborne very high-resolution digital beamforming SAR system[C]. 2017 European Radar Conference, Nuremberg, Germany, 2017: 175–178. [78] REIGBER A, SCHREIBER E, TRAPPSCHUH K, et al. The high-resolution digital-beamforming airborne SAR system DBFSAR[J]. Remote Sensing, 2020, 12(11): 1710. doi: 10.3390/rs12111710 [79] ZHOU Yashi, WANG Wei, CHEN Zhen, et al. Digital beamforming synthetic aperture radar (DBSAR): Experiments and performance analysis in support of 16-channel airborne X-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6784–6798. doi: 10.1109/tgrs.2020.3027691 [80] WANG Hui, DAI Shoulun, and ZHENG Shichao. Airborne Ka-band digital beamforming SAR system and flight test[C]. 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4. [81] FRAZER G J, ABRAMOVICH Y I, JOHNSON B A, et al. Recent results in MIMO over-the-horizon radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6. [82] 万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143 [83] MOFRAD R F, SADEGHZADEH R A, and ALIDOOST S. Comparison of antenna beam broadening methods for phased array radar applications[C]. 2011 Loughborough Antennas & Propagation Conference, Loughborough, UK, 2011: 1–4. [84] MARCANO D and DURAN F. Synthesis of antenna arrays using genetic algorithms[J]. IEEE Antennas and Propagation Magazine, 2000, 42(3): 12–20. doi: 10.1109/74.848944 [85] KHZMALYAN A D and KONDRAT'YEV A S. Phase-only synthesis of antenna array amplitude pattern[J]. International Journal of Electronics, 1996, 81(5): 585–589. doi: 10.1080/002072196136490 [86] ALP Y K, ALTIPARMAK F, GOK G, et al. Two different approaches for wide beam synthesis: Second order cone programming and swarm intelligence[C]. 20th European Signal Processing Conference, Bucharest, Romania, 2012: 1329–1333. [87] SAYIDMARIE K, SULTAN Q H. Synthesis of wide beam array patterns using quadratic-phase excitations[J]. International Journal of Electromagnetics and Applications, 2013, 3(6): 127–135. doi: 10.5923/j.ijea.20130306.01 [88] SAYIDMARIE K H and SULTAN Q H. Synthesis of wide beam array patterns using random phase weights[C]. 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering, Mosul, Iraq, 2013: 52–57. [89] BROWN G C, KERCE J C, and MITCHELL M A. Extreme beam broadening using phase only pattern synthesis[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006, Waltham, USA, 2006: 36–39. [90] ERÇIL E. An alternative method for phase only array pattern synthesis[C]. 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, 2012: 1–2. [91] KINSEY R. Phased array beam spoiling technique[C]. IEEE Antennas and Propagation Society International Symposium, Montreal, Canada, 1997: 698–701. [92] LEIFER M C. Revisiting a method of beam shaping using phase weights[C]. 2016 IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2016: 1–3. [93] LEIFER M C. An airborne radar phased array with low sidelobes and a spoiled beam[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 72–76. [94] BUCKLEY K. Spatial/Spectral filtering with linearly constrained minimum variance beamformers[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 249–266. doi: 10.1109/tassp.1987.1165142 [95] GRIFFITHS L and JIM C. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1): 27–34. doi: 10.1109/TAP.1982.1142739 [96] XU Jingwei, LIAO Guisheng, and ZHU Shengqi. Robust LCMV beamforming based on phase response constraint[J]. Electronics Letters, 2012, 48(20): 1304–1306. doi: 10.1049/el.2012.2619 [97] COX H, ZESKIND R, and OWEN M. Robust adaptive beamforming[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(10): 1365–1376. doi: 10.1109/TASSP.1987.1165054 [98] FELDMAN D D and GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867–876. doi: 10.1109/78.285650 [99] LEE C C and LEE J H. Eigenspace-based adaptive array beamforming with robust capabilities[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1711–1716. doi: 10.1109/8.650188 [100] LORENZ R G and BOYD S P. Robust minimum variance beamforming[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1684–1696. doi: 10.1109/TSP.2005.845436 [101] VOROBYOV S A, GERSHMAN A B, and LUO Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865 [102] LI Jian, STOICA P, and WANG Zhisong. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702–1715. doi: 10.1109/TSP.2003.812831 [103] LIE J P, SER W, and SEE C M S. Adaptive uncertainty based iterative robust capon beamformer using steering vector mismatch estimation[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4483–4488. doi: 10.1109/TSP.2011.2157500 [104] LIE J P, LI Xiaohui, SER W, et al. Adaptive uncertainty based iterative robust capon beamformer[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 2526–2529. [105] NAI S E, SER W, YU Zhuliang, et al. Iterative robust minimum variance beamforming[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1601–1611. doi: 10.1109/TSP.2010.2096222 [106] CHEN Yilun, WIESEL A, ELDAR Y C, et al. Shrinkage algorithms for MMSE covariance estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5016–5029. doi: 10.1109/TSP.2010.2053029 [107] DONG Mei, ZHENG Qiaozhen, and SU Hongtao. Automatic robust adaptive beamforming via ridge regression using l1-norm approximation[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 385–387. [108] GONG C, HUANG L, XU D, et al. Knowledge-aided robust adaptive beamforming with small snapshots[J]. Electronics Letters, 2013, 49(20): 1258–1259. doi: 10.1049/el.2013.2198 [109] GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289 [110] MALLIPEDDI R, LIE J, RAZUL S G, et al. Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch[J]. Progress in Electromagnetics Research Letters, 2011, 25: 37–46. doi: 10.2528/PIERL11040104 [111] D'ADDIO E, FARINA A, and STUDER F A. Performance compparison of optimum and conventional MTI and Doppler processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(6): 707–715. doi: 10.1109/taes.1984.310453 [112] 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001 [113] ZHENG Jibin, SU Tao, ZHU Wentao, et al. Radar high-speed target detection based on the scaled inverse fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1108–1119. doi: 10.1109/JSTARS.2014.2368174 [114] KONG Lingjiang, LI Xiaolong, CUI Guolong, et al. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4474–4486. doi: 10.1109/TSP.2015.2437844 [115] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4013–4026. doi: 10.1109/TSP.2016.2558161 [116] ZHANG Jiancheng, SU Tao, ZHENG Jibin, et al. Novel fast coherent detection algorithm for radar maneuvering target with jerk motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 1792–1803. doi: 10.1109/JSTARS.2017.2651156 [117] CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via radon-fractional fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682 [118] LI Xiaolong, CUI Guolong, YI Wei, et al. Coherent integration for maneuvering target detection based on radon-Lv’s distribution[J]. IEEE Signal Processing Letters, 2015, 22(9): 1467–1471. doi: 10.1109/LSP.2015.2390777 [119] LI Xiaolong, KONG Lingjiang, CUI Guolong, et al. ISAR imaging of maneuvering target with complex motions based on ACCF-LVD[J]. Digital Signal Processing, 2015, 46: 191–200. doi: 10.1016/j.dsp.2015.06.015 [120] LI Xiaolong, SUN Zhi, YI Wei, et al. Detection of maneuvering target with complex motions based on ACCF and FRFT[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 17–20. [121] LI Xiaolong, CUI Guolong, YI Wei, et al. A fast non-searching method for maneuvering target detection based on ACCF[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 11–14. [122] WANG Genyuan, XIA Xianggen, ROOT B T, et al. Maneuvering target detection in over-the-horizon radar by using adaptive chirplet transform and subspace clutter rejection[C]. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 2003: 49–52. [123] NAMIAS V. The fractional order fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3): 241–265. doi: 10.1093/imamat/25.3.241 [124] 陈小龙, 刘宁波, 黄勇, 等. 雷达目标检测分数域理论及应用[M]. 北京: 科学出版社, 2022: 56–80.CHEN Xiaolong, LIU Ningbo, HUANG Yong, et al. Fractional Domain Theory and Application of Fractional Domain for Radar Target Detection[M]. Beijing: Science Press, 2022: 56–80. [125] LV Xiaolei, BI Guoan, WAN Chunru, et al. Lv’s distribution: Principle, implementation, properties, and performance[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3576–3591. doi: 10.1109/TSP.2011.2155651 [126] LUO Shan, BI Guoan, LV Xiaolei, et al. Performance analysis on Lv distribution and its applications[J]. Digital Signal Processing, 2013, 23(3): 797–807. doi: 10.1016/j.dsp.2012.11.011 [127] XU Jia, YU Ji, PENG Yingning, et al. Radon-fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251 [128] XU Jia, YU Ji, PENG Yingning, et al. Radon-fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645 [129] YU Ji, XU Jia, PENG Yingning, et al. Radon-fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044 [130] XU Jia, XIA Xianggen, PENG Shibao, et al. Radar maneuvering target motion estimation based on generalized radon-fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/TSP.2012.2217137 [131] 陈小龙, 刘宁波, 王国庆, 等. 基于Radon-分数阶傅里叶变换的雷达动目标检测方法[J]. 电子学报, 2014, 42(6): 1074–1080. doi: 10.3969/j.issn.0372-2112.2014.06.006CHEN Xiaolong, LIU Ningbo, WANG Guoqing, et al. Radar detection method for moving target based on radon-fourier fractional fourier transform[J]. Acta Electronica Sinica, 2014, 42(6): 1074–1080. doi: 10.3969/j.issn.0372-2112.2014.06.006 [132] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. I. System concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410 [133] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. II. Detection statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 109–115. doi: 10.1109/7.250411 [134] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. III. Detection performance with binary integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 116–125. doi: 10.1109/7.250412 [135] CARRETERO-MOYA J, GISMERO-MENOYO J, ASENSIO-LOPEZ A, et al. Small-target detection in sea clutter based on the Radon Transform[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008: 610–615. [136] COPELAND A C, RAVICHANDRAN G, and TRIVEDI M M. Localized radon transform-based detection of ship wakes in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1): 35–45. doi: 10.1109/36.368224 [137] BARNIV Y and KELLA O. Dynamic programming solution for detecting dim moving targets part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6): 776–788. doi: 10.1109/TAES.1987.310914 [138] TONISSEN S M and EVANS R J. Peformance of dynamic programming techniques for Track-Before-Detect[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1440–1451. doi: 10.1109/7.543865 [139] SALMOND D J and BIRCH H. A particle filter for track-before-detect[C]. 2001 American Control Conference, Arlington, USA, 2001: 3755–3760. [140] HOSEINNEZHAD R, VO B N, and VO B T. Visual tracking in background subtracted image sequences via multi-bernoulli filtering[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 392–397. doi: 10.1109/TSP.2012.2222389 [141] 童慧思, 张颢, 孟华东, 等. PHD滤波器在多目标检测前跟踪中的应用[J]. 电子学报, 2011, 39(9): 2046–2051.TONG Huisi, ZHANG Hao, MENG Huadong, et al. Probability hypothesis density filter multitarget track-before-detect application[J]. Acta Electronica Sinica, 2011, 39(9): 2046–2051. [142] XU Jia, ZHOU Xu, QIAN Lichang, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. doi: 10.1109/TAES.2016.150076 [143] DING Zegang, YOU Pengjie, QIAN Lichang, et al. A subspace hybrid integration method for high-speed and maneuvering target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 630–644. doi: 10.1109/TAES.2019.2919478 [144] HOWARD D D, SHERMAN S M, THOMSON D N, et al. Experimental results of the complex indicated angle techique for multipath correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 779–787. doi: 10.1109/TAES.1974.307884 [145] WHITE W D. Double null technique for low angle tracking[J]. Microwave Journal, 1976, 19: 35–38, 60. [146] 吴剑旗, 杨雪亚. 一种基于空域滤波的米波雷达测高新方法[J]. 现代雷达, 2015, 37(3): 1–4. doi: 10.3969/j.issn.1004-7859.2015.03.001WU Jianqi and YANG Xueya. Novel height finding technique based on spatial filtering in meter-wave radar[J]. Modern Radar, 2015, 37(3): 1–4. doi: 10.3969/j.issn.1004-7859.2015.03.001 [147] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830 [148] BOHME J. Estimation of source parameters by maximum likelihood and nonlinear regression[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, USA, 1984: 271–274. [149] STOICA P, OTTERSTEN B, VIBERG M, et al. Maximum likelihood array processing for stochastic coherent sources[J]. IEEE Transactions on Signal Processing, 1996, 44(1): 96–105. doi: 10.1109/78.482015 [150] 赵光辉, 陈伯孝, 董玫. 基于交替投影的DOA估计方法及其在米波雷达中的应用[J]. 电子与信息学报, 2008, 30(1): 224–227. doi: 10.3724/SP.J.1146.2006.00835ZHAO Guanghui, CHEN Baixiao, and DONG Mei. A new DOA estimator based on alternating projection and its application in VHF radar[J]. Journal of Electronics &Information Technology, 2008, 30(1): 224–227. doi: 10.3724/SP.J.1146.2006.00835 [151] LO T and LITVA J. Use of a highly deterministic multipath signal model in low-angle tracking[J]. IEE Proceedings F - Radar and Signal Processing, 1991, 138(2): 163–171. doi: 10.1049/ip-f-2.1991.0022 [152] LO T and LITVA J. Low-angle tracking using a multifrequency sampled aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(5): 797–805. doi: 10.1109/7.97325 [153] LI Cunxu, CHEN Baixiao, ZHENG Yisong, et al. Altitude measurement of low elevation target in complex terrain based on orthogonal matching pursuit[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 745–751. doi: 10.1049/iet-rsn.2016.0468 [154] LI Cunxu, CHEN Baixiao, YANG Minglei, et al. Altitude measurement of low-elevation target for VHF radar based on weighted sparse bayesian learning[J]. IET Signal Processing, 2018, 12(4): 403–409. doi: 10.1049/iet-spr.2016.0738 [155] ZHU Wei and CHEN Baixiao. Altitude measurement based on terrain matching in VHF array radar[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 647–662. doi: 10.1007/s00034-012-9472-4 [156] LIU Yuan, JIU Bo, XIA Xianggen, et al. Height measurement of low-angle target using MIMO radar under multipath interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 808–818. doi: 10.1109/TAES.2017.2767919 [157] GUO Rui, PENG Xiangyu, TIAN Biao, et al. Low elevation target altitude measurement for ubiquitous radar based on known transmitted waveform and sparse representation[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 346–355. doi: 10.1049/rsn2.12187 [158] GUO Rui, ZHANG Yue, TIAN Biao, et al. Height measurement of micro-UAVs with L-band staring radar[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 7967–7970. [159] 时晨光, 董璟, 周建江, 等. 飞行器射频隐身技术研究综述[J]. 系统工程与电子技术, 2021, 43(6): 1452–1467. doi: 10.12305/j.issn.1001-506X.2021.06.02SHI Chenguang, DONG Jing, ZHOU Jianjiang, et al. Overview of aircraft radio frequency stealth technology[J]. Systems Engineering and Electronics, 2021, 43(6): 1452–1467. doi: 10.12305/j.issn.1001-506X.2021.06.02 [160] 王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945WANG Qianzhe, HE Zhaoyang, SONG Bowen, et al. Overview on RF stealth technology research[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945 [161] 余显斌, 吕治东, 李涟漪, 等. 太赫兹感知通信一体化波形设计与信号处理[J]. 通信学报, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015YU Xianbin, LYU Zhidong, LI Lianyi, et al. Waveform design and signal processing for terahertz integrated sensing and communication[J]. Journal on Communications, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015 [162] 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146 [163] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023 [164] RABIDEAU D J. MIMO radar waveforms and cancellation ratio[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1167–1178. doi: 10.1109/TAES.2012.6178055 [165] SUN Hongbo, BRIGUI F, and LESTURGIE M. Analysis and comparison of MIMO radar waveforms[C]. 2014 International Radar Conference, Lille, France, 2014: 1–6. [166] Lockheed Martin. TPY-4 next generation multi-mission radar[OL]. https://www.lockheedmartin.com/en-us/products/ground-based-air-surveillance-radars/tpy-4.html. 期刊类型引用(5)
1. 刘峰,刘海波,周超,于冲,李兴明,崔莹莹,陈天明,陈宇翔. 基于二维相控阵体制的探鸟雷达系统. 信号处理. 2024(01): 166-184 . 百度学术
2. 陈小龙,何肖阳,邓振华,关键,杜晓林,薛伟,苏宁远,王金豪. 雷达微弱目标智能化处理技术与应用. 雷达学报. 2024(03): 501-524 . 本站查看
3. 邓振华,陈小龙,薛伟,张月,汪兴海,关键,赵志坚. 海空背景下低慢小目标泛探雷达多域多维特征建模与分析. 信号处理. 2024(05): 801-814 . 百度学术
4. 宋强,彭翔宇,黄仕林,张月,邓振淼,陈小龙. 基于序贯特征提取的无人机与飞鸟目标分类. 信号处理. 2024(05): 839-852 . 百度学术
5. 李云莉,蒋文,唐先慧,叶祥龙,陆炫宇. 基于最大图像清晰度的泛探雷达目标距离-多普勒走动校正. 现代雷达. 2023(10): 59-65 . 百度学术
其他类型引用(1)
-