Processing math: 100%

全息凝视雷达系统技术与发展应用综述

郭瑞 张月 田彪 肖钰 胡俊 徐世友 陈曾平

何峻, 傅瑞罡, 付强. 自动目标识别评价方法发展述评[J]. 雷达学报, 2023, 12(6): 1215–1228. doi: 10.12000/JR23094
引用本文: 郭瑞, 张月, 田彪, 等. 全息凝视雷达系统技术与发展应用综述[J]. 雷达学报, 2023, 12(2): 389–411. doi: 10.12000/JR22153
HE Jun, FU Ruigang, and FU Qiang. Review of automatic target recognition evaluation method development[J]. Journal of Radars, 2023, 12(6): 1215–1228. doi: 10.12000/JR23094
Citation: GUO Rui, ZHANG Yue, TIAN Biao, et al. Review of the technology, development and applications of holographic staring radar[J]. Journal of Radars, 2023, 12(2): 389–411. doi: 10.12000/JR22153

全息凝视雷达系统技术与发展应用综述

DOI: 10.12000/JR22153 CSTR: 32380.14.JR22153
基金项目: 国家自然科学基金(U2133216),深圳市科技计划资助(GXWD20201231165807008, 20200828174754001, KQTD20190929172704911),深圳市基础研究资助项目(JCYJ20180307151430655),广东省科技技术项目(2019ZT08X751)
详细信息
    作者简介:

    郭 瑞,博士,助理教授,主要研究方向为数字阵列雷达技术、阵列信号处理技术等

    张 月,博士,副教授,主要研究方向为全息雷达技术、宽带数字化技术等

    肖 钰,博士,副教授,主要研究方向为雷达天线、毫米波相控阵技术等

    胡 俊,博士,助理教授,主要研究方向为先进探测系统、智能信号处理技术等

    徐世友,博士,教授,博士生导师,主要研究方向为宽带雷达成像、自动目标识别、信息融合、多功能数字阵列雷达等

    陈曾平,教授,博士生导师,主要研究方向为空间态势感知、软件化雷达探测、宽带成像识别等

    通讯作者:

    陈曾平 chenzengp@mail.sysu.edu.cn

  • 责任主编:杨建宇 Corresponding Editor: YANG Jianyu
  • 中图分类号: TN958

Review of the Technology, Development and Applications of Holographic Staring Radar

Funds: The National Natural Science Foundation of China (U2133216), Shenzhen Science and Technology Program (GXWD20201231165807008, 20200828174754001, KQTD20190929172704911), Shenzhen Fundamental Research Program (JCYJ20180307151430655), Guangdong Provinical Science and Technology Program (2019ZT08X751)
More Information
  • 摘要: 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。

     

  • 信息化时代中对于深层次信息的需求日益迫切,目标识别就是根据某物体呈现的特征进行分析和判断,从而达到辨认和识别其身份和属性的目的。当这一过程不需要人工参与而只由机器自动完成时,就称该过程为自动目标识别(Automatic Target Recognition, ATR)。一旦将此项重要的任务交由机器来自主完成,应该如何评价ATR所取得的实际作用?

    由于ATR技术与模式识别、人工智能等技术有着许多共同点,因此雷达、光学等信息处理研究领域中都包含ATR这一研究方向,许多学术机构及期刊会议也设有ATR专栏。IEEE很早就从图像处理角度定义过ATR:自动目标识别一般指通过计算机处理来自各种传感器的数据,实现自主或辅助目标的检测和识别[1]

    很多学者系统梳理过ATR的概念与技术发展。例如,文献[2]对雷达ATR技术现状与发展认识进行了总结,文献[3]从工程视角进一步对ATR技术发展进行了评述。ATR技术研究需要多个学科方向进行交叉融合[4],而测试与评价对任何技术领域的发展都是非常重要的。随着ATR技术的快速发展,ATR评价方法的研究也逐步得到重视。例如,Ross等人[511]在历年SPIE会议上发表了一系列论文阐述SAR ATR评价的理念与方法,李彦鹏等人[1214]对ATR效果评估进行了深入研究。但从总体来看,近年来通用性的评价方法研究较为少见。ATR评价方法研究经常被归属于某个相关技术领域,点缀在众多的图形图像[15,16]、信息处理[17,18]、系统工程[19,20],乃至运筹管理[21,22]等领域的期刊或会议论文集中。

    专门总结ATR评价方法的综述研究更为少见,更多的是在论文、专著中作为ATR技术发展的组成部分予以介绍。例如,文献[12,2327]虽然都以ATR评价方法作为主题,但研究重点在于提出新的评价方法;文献[13]对ATR评价进行了介绍,但主要成果是为ATR系统的性能评价提供综合性分析工具。文献[28]是一篇有关ATR算法评价方法的综述文献,更多的是对上述学位论文及专著相关部分的总结。十多年来,ATR技术领域有了新的发展,同时给ATR评价带来了新的问题,但是该领域缺乏最新的综述文献对这些新进展进行归纳与总结。

    本文面向通用的ATR算法与系统,不仅梳理和总结了ATR技术及其评价方法的发展,还对ATR评价方法研究背后的基础理论、方法模型等开展了分析讨论,并针对当前方法研究中存在的关键问题给出了自己的见解,旨在为科学、有效的ATR算法与系统评价提供方法借鉴和启发引导。

    20世纪80~90年代的ATR研究基本可以看作统计模式识别理论在具体应用领域中的探索实践,处理方法上沿袭了传统的特征提取与选择、模板建库、分类器设计、匹配决策等经典模式识别环节。特征提取在统计模式识别中尤为关键,这也是早期ATR研究的重点内容。

    以雷达对空中目标的识别为例,目标信号特征包括飞机的动力构件调制特征、目标谐振区极点特征、极化散射矩阵的不变量、微动特征,以及雷达成像时散射中心、结构特征等[29]。目标特征提取需要大量的实测数据,而当时的数据采集手段较为有限,造成用于匹配模板的标准状态与目标的实际状态之间存在较大差异,导致这一时期ATR系统的实用性较差。

    当人们认识到模板匹配方法的局限性之后,开始尝试采用模型预测来应对实际情况中目标变化的多样性。基于模型的分类识别逐渐成为当时ATR研究的主流技术。其中,颇具代表性的当属美国国防部高级研究计划局(Defense Advanced Research Projects Agency, DARPA)和美国空军实验室(Air Force Research Laboratory, AFRL)联合开展的MSTAR (Moving and Stationary Target Acquisition and Recognition)计划[30],研制出较为成熟的基于模型SAR ATR系统。

    针对传统ATR系统难以引入外部信息、缺少对目标相关知识利用等问题,文献[31]建议采用知识推理辅助的目标识别方法。这类方法中,基于上下文知识的目标识别技术首先得到了关注和深入研究[32]。随后,本体论[33]、可视化[34]、数据融合[35]等方法被陆续引入。ATR研究的范围逐步提升到更广泛的全局信息利用层面。

    早期基于神经网络的ATR技术大多采用小规模的网络分类器[3639]。随着深度学习研究兴起,深度学习方法已成为当前ATR技术的一个研究热点[4042]。深度卷积神经网络(Convolutional Neural Networks, CNN)的成功[43]同样在声呐图像、雷达图像的识别应用中得到了验证[4446]。深度学习方法在信息处理过程中不再严格区分“特征提取”与“分类识别”,而是直接完成目标识别的全过程[47]

    目前,CNN已被广泛应用于一维距离像识别[4850]、SAR图像识别[5155]和红外图像识别[5658]等场景,并且被证明在提升泛化性能方面有不错的表现[59],但有些场景中也容易受到噪声干扰[60,61]和欺骗[62]等因素影响。另外,虽然迁移学习[63]在SAR图像ATR的应用中取得了一定成功[6466],但人们还是对深度学习ATR方法的可解释性存在着一定的疑惑[67]

    从20世纪50年代雷达目标识别领域研究[68]开始,ATR技术已经取得了长足的进步。然而,要真正解决目标识别问题,ATR技术仍面临许多困难与挑战。除了目标识别问题本身的复杂性之外,ATR领域缺乏系统、科学的性能测试与评价方法也是制约其技术发展的瓶颈问题之一。

    ATR评价方法研究正是要致力于改变这一现状,对ATR算法或系统进行性能评价与预测,使得ATR研究具备成为真正科学领域的基本要素[4]。文献[69]是有关ATR发展的较早评述,其中对于ATR评价重要性和发展的预测已被实践所证明。为构建实用化的ATR系统,必须先建立起有效的ATR评价方法及性能测试系统[70]

    ATR评价实际上贯穿于整个ATR研制过程。以研制一个ATR算法为例,图1[71]给出了ATR评价在各个阶段的不同内容。

    图  1  典型ATR研制与测试生命周期[71]
    Figure  1.  A typical ATR development and test life cycle[71]

    无论处于哪个阶段,ATR算法的评价都离不开性能指标定义、测试条件构建和推断与决策等环节。本节分别归纳总结这几方面的研究成果。

    识别性能对于ATR算法来说无疑非常重要,许多文献中提到的ATR性能指标就是指衡量其识别能力的指标。至于泛化能力等其他方面的能力,通常采用分析某个关键识别指标(如识别率)随测试条件变化的下降程度来度量。故本文重点阐述ATR识别性能指标。

    混淆矩阵(Confusion Matrix)从模式分类研究时期起就被广泛使用,通常记录成一张由行和列构成的二维表格。单元格用下标(i,j )定位,记录目标i被自动判别为目标j的次数或比率。配合彩色或灰度幅度值,混淆矩阵能够更加直观地展示目标识别的结果,如图2[72]所示。

    图  2  3类目标识别结果混淆矩阵[72]
    Figure  2.  Classification result map of three types of targets[72]

    对于m类目标的情况,混淆矩阵至少包含了m2个单元格,详细记录了ATR算法对于每一类目标正确识别及混淆判别的结果。当目标类型数据较多时,混淆矩阵难以直观展示测试结果。对此,可以利用混淆矩阵推算出另一类被经常使用的评价指标—概率型指标,反映ATR过程中对某个目标类别的正确/错误判别概率,如检测概率(Probability of Detection, PD)、虚警概率(Probability of False Alarm, PFA)、识别率等。

    如果说概率型指标是以数的形式对混淆矩阵进行简化,那么ROC (Receiver Operating Characteristic)曲线就是用图的形式对PDPFA之间存在的约束关系进行描述。ROC曲线最早应用于雷达检测领域,如图3[73]所示。

    图  3  双正态分布生成的ROC曲线[73]
    Figure  3.  Sample N-N ROC curve generation[73]

    图3给出了存在高斯白噪声(非目标)n情况下,对同样服从正态分布的信号(目标)sn依据检测门限x0得到的ROC曲线。显然,越大的曲线下面积(Area Under the Curve, AUC)意味着ATR系统在保持低虚警概率P(S/n)的同时,具有更高的检测概率P(S/sn)。AUC因而成为评价“目标-非目标”这种二分类ATR算法性能的最常见评价指标,并逐步从雷达ATR领域扩展到其他领域,如医学病理图像ATR诊断性能评价[74,75]。文献[76]对一些基于ROC曲线的ATR算法性能评价方法进行了较为系统的总结。

    采用深度学习方法的ATR算法,更倾向于采用由精确率(Precision)和召回率(Recall)所构成的P-R曲线[77]。为避免P-R曲线因为样本的排序而出现摇摆,一般还要对其进行平滑处理,如图4所示。

    图  4  实际P-R曲线与平滑后P-R曲线
    Figure  4.  Actual and smoothed P-R Curve

    与AUC类似,平均精度(Average Precision, AP)由P-R曲线所衍生,表示不同召回率下精确率的平均值。至于如何对P-R曲线做离散化取值,如何计算平滑后的P-R曲线下面积,都有一系列相应的规范要求,具体方法可以参考文献[78,79]。此外,P-R曲线虽然同样是针对某类目标而言的,但可以通过对各类目标的AP值再取平均值(mean AP, mAP)来实现多分类的ATR算法性能评价。因此,AUC也可以说是mAP的特例。

    综上所述,ATR算法识别性能的评价指标主要包括:以表格形式记录的混淆矩阵,根据目标识别阶段定义的概率型指标,以及ROC曲线、P-R曲线等图形及衍生指标。表1总结了常见的ATR识别性能指标。

    表  1  常见ATR识别性能指标
    Table  1.  Common ATR performance measures
    形式 典型代表 使用要点 适用范围 优/缺点
    表格 混淆矩阵 每行数据记录一类目标被正确识别或错误混淆的情况 任意m类目标的分类性能评价 优点:记录所有目标类型之间的相互区分结果
    缺点:目标类型数m较大时展示效果不直观
    概率 检测概率PD
    虚警概率PFA
    种类识别概率PCC
    类型识别概率PID
    逐级识别过程中特定事件的发生概率 目标识别过程中某个决策任务结果的不确定性度量 优点:内涵清晰,指标点估计值计算简单
    缺点:需要根据多次目标识别试验进行统计推断
    曲线 ROC曲线
    P-R曲线
    转换为AUC, AP采用下面积、曲线积分的形式度量 相互制约的两方面
    性能综合刻画
    优点:综合评价阈值变化对两个相互制约指标的影响
    缺点:需调整阈值进行量化,精度受阈值离散取值的影响
    下载: 导出CSV 
    | 显示表格

    ATR技术最终将应用于真实环境,需要将ATR算法加载到实际系统中进行检验。MSTAR计划将SAR ATR系统所处的条件分为4类[9]:ATR系统面临的真实环境称为工作条件(Operation Conditions, OC),性能评价时所构建的测试条件(Test Condtions)只是OC的子集。用于算法训练的数据样本代表了ATR系统的训练条件(Training Condtions)。此外,对于模型驱动的ATR系统还可以定义其建模条件(Modeled Condtions)。上述4类条件之间的关系如图5(a)所示;而ATR系统评价其实只能考察ATR系统的准确性(Accuracy)、稳健性(Robustness)和扩展性(Extensibility),三者共同反映了部分的有效性(Utility),如图5(b)所示。

    图  5  MSTAR计划中的训练与测试条件[9]
    Figure  5.  Training and testing conditions in MSTAR program[9]

    为了更好地评价ATR系统的扩展性,AFRL进一步将OC划分为标准工作条件(Standard Operation Condition, SOC)和扩展工作条件(Extended Operation Condition, EOC)[80],根据ATR任务的具体需求设置具有代表性的EOC,并在目标类型、地面背景、传感器姿态等因素维度上构建差异化的测试条件。测试条件构建最后体现为不同的数据集:一般来说,SOC采集的一部分数据构成训练数据集,主要被用作ATR算法训练开发和自检;EOC的数据相对于研制方保密,形成测试数据集并用于ATR系统性能评价。

    在SAR ATR技术领域中,MSTAR数据集被广泛使用。MSTAR数据集包含X波段0.25 m×0.25 m分辨率的全方位SAR图像序列,方位角间隔1°,图像分辨率128×128像素,所含目标多为车辆[81]。其中,常见的几类地面目标如图6所示[82]

    图  6  10类MSTAR目标的光学及SAR图像[82]
    Figure  6.  Optic and SAR images of 10 MSTAR targets[82]

    公开发布的数据中提供设置的因素包括外形差异和俯仰角差异[82]。通常一类(Class)目标中包括若干不同的类型(Type),用于评价ATR算法在目标外形差异条件下的扩展性;部分目标还具有多个差异较大俯仰角的观测图像,用于评价ATR算法在不同成像视角条件下的扩展性。文献[83]总结了如何正确使用MSTAR数据开展SAR ATR评价工作。文献[84]对MSTAR数据所发挥的作用进行了分析,总结了1995—2020年使用该数据论文的引用次数,如图7所示。

    图  7  MSTAR数据引文进展[84]
    Figure  7.  MSTAR citation progression[84]

    在光学图像ATR技术领域,包含海量图像的数据集为ATR系统提供了比较接近真实环境的测试条件,从而极大地促进了数据驱动的ATR技术飞速发展。其中,颇具代表性的图像数据集有PASCAL VOC[85,86], ImageNet[87], MS COCO[88]和Open Images[89]等。这些数据集经常被作为目标检测、模式识别等领域中ATR算法性能测试的基准条件。

    分析表1不难发现,混淆矩阵由于其记录结果难以直观比较,需要转换为反映特定性能的概率型指标;而体现“检测-虚警”“精确率-召回率”等概率型指标之间相互约束关系的ROC曲线、P-R曲线等,也是以概率指标作为基础。由于实际测试次数的限制,基于概率型指标的性能评价通常被归结为统计推断问题,下面结合实例进行详细介绍。

    以识别率指标为例,在统计学中可抽象为Bernoulli试验的成败概率。记n个测试样本中正确识别的次数为X,X为服从二项分布的随机变量。X=k (k=0, 1, 2, ···, n)的概率为

    P{X=k}=(nk)pk(1p)nk (1)

    n较大时(至少要求n≥30),识别率指标的测试结果 ˆp=X/n 可以用正态分布近似,在置信度1–α下识别率指标的区间估计结果为

    [ˆpzα/2ˆp(1ˆp)n,ˆp+zα/2ˆp(1ˆp)n] (2)

    其中,zα/2表示标准正态分布N(0,1)的α/2分位数。

    对ATR算法性能评价中特别关心的识别率达标问题,可以通过构建检验统计量进行假设检验予以判断。例如,合同对ATR算法的识别率指标要求为p0,可以构建如下的原假设H0和备选假设H1来判断识别率精确率是否达标[73]

    H0:pp0H1:p<p0z0=ˆpp0ˆp(1ˆp)nN(0,1) (3)

    其中的检验统计量z0由测试结果 ˆp 、合同要求值p0和样本容量n共同计算。若该假设检验的显著性水平取α,则当z0>–zα时,判定识别率指标达到规定值。

    文献[90]在上述正态近似假设前提下,对等价误识率的估计精度、区分度等问题进行了详细讨论,其研究结果表明需要大量的测试样本才能保证推断结果具有统计意义。对任意测试样本容量的一般情况,文献[91]提出了一种基于特定事件贝叶斯后验概率的评价方法,有效解决了根据概率型指标进行ATR算法考核检验、比较排序等评价问题。

    上述评价方法都只是根据某个关键的概率型指标进行评价,但实际中的ATR系统具有多方面属性,需要构建合适的评价指标体系才能开展全面评价。ATR系统评价所面临的多指标综合评价问题,在决策分析领域中被称为多属性决策(Multi-Attribute Decision-Making, MADM)问题,一般可采用分值模型或关系模型进行多指标聚合。

    顾名思义,分值模型通过获取综合评分来实现多指标综合评价,类似于雷达等技术领域中广泛使用质量因数(Figure of Metric, FoM)[92]对系统的整体性能进行综合描述。FoM的通式可概括为

    FoM=ni=1aiwi (4)

    其中,ai表示第i个指标的评分值,wi表示该项指标的权重。

    为得到ATR系统的综合评分值,Klimack等人[93]将决策分析(Decision Analysis, DA)理论引入ATR系统评价,以价值函数和效用函数作为获取指标评分值的量化工具,然后再用一种混合价值/效用(Hybrid Value-Utility)[94]的分值模型聚合多个指标的评分值。文献[95]结合某ATR系统评价给出了详细的指标分解、赋权和评分过程,并且归纳出一个通用的评分决策模型,如图8[95]所示。图8中底层的红色曲线表示各指标值的概率分布,倒数第二级的绿色曲线表示每个指标对应的价值函数或效用函数,需要根据具体的应用场景进行构建。

    图  8  通用决策分析模型结构[95]
    Figure  8.  Common decision analysis model structure[95]

    除分值模型之外,关系模型是另一类常见的评价决策模型。关系模型从形式上可以概况为[96]:称(U,R)为评价关系模型,其中U={x1, x2, ···, xn}为评价对象集,R为评价对象之间的关系集

    R=[R(x1,x1)R(x1,x2)R(x1,xn)R(x2,x1)R(x2,x2)R(x2,xn)R(xn,x1)R(xn,x2)R(xn,xn)] (5)

    其中,R(xi,xj)表示评价对象xixj之间的某种优劣关系。

    不同于分值模型,关系模型避开了不同数据类型指标的评分要求,不需要为每个评价指标构造价值函数或效用函数。例如,对ATR系统评价中最为常见的实数型、风险型和区间型指标,文献[97]通过建立基于标准优劣差异x的偏好映射实现对式(5)中矩阵元素的赋值,从而完成了混合3种数据类型的多指标ATR系统综合评价。

    第3节分别对ATR评价方法研究中的性能指标定义、测试条件构建、推断与决策等方面的成果进行了归纳总结,本节继续对一些最新的研究进展进行分析与评述。

    性能指标定义方面,消除评价指标不确定性的归一化方法研究已经开始引起关注。例如,对于识别率等具有不确定性的概率型指标,文献[98]提出一种前景函数构建方法,将识别率的增量转变成前景价值,其所设计的前景价值函数不仅具有边际递减效应,而且不敏感于测试样本容量的变化。另外,随着深度学习方法在ATR技术领域的广泛应用,对于ATR算法可解释性[99,100]的要求日益强烈,成为这类ATR算法评价的研究热点。可解释性研究的重点在于提出可量化的指标,但是当前常见的一些方法(如LIME[101], Grad-CAM[102]等)尚缺乏被一致认可的量化指标。

    测试条件构建方面,随着国内学界对数据的逐渐重视,国内多个研究机构陆续发布了可用于ATR算法研究与系统测评的数据资源,包括雷达[103105]、红外[106,107]等多种传感器采集的数据。代表测试条件的数据集质量问题,也开始引起人们的广泛关注。例如,文献[108]分别针对图像数据集和文本数据集,提出了面向任务的数据集质量评价和数据选择方法,实现了任务相关性和内容多样性的量化度量。当实测数据不能完全满足工作条件的多样性需求时,人工合成及仿真计算等方法也逐步成为一种有益的补充手段[109112]。通过不断提高所构建测试条件与实际工作条件的逼真度,ATR系统的有效性可以用在测试数据集上的扩展性来等效近似。

    推断与决策方面,适用于ATR评价的混合型多属性决策问题已引起国内外的普遍关注,陆续提出了多种混合型多属性决策方法[113,114]。国内学者对区间数[115,116]、模糊型[117,118]和语言变量[119]等类型的多数属性决策问题抱有较浓厚的研究兴趣。文献[120]总结了各类不确定性和混合型多属性决策方法,给出了一些新的决策方法与应用实例。ATR系统评价方法研究中,借鉴这些最新决策理论成果的报道较为少见。文献[121]针对制导装置提出了基于区间直觉模糊集的性能评价方法,但是评价方法的合理性仍有待实际应用检验。

    ATR评价方法的研究伴随着ATR技术发展,陆续取得了不少研究成果。理论上,测评方法分为理论分析和实验测量两种技术途径,本文只涉及基于测试的评价方法。这是由于ATR技术与实际应用结合紧密,大部分的ATR算法和ATR系统的性能指标需要根据实际测试结果计算,因而制约了理论分析方法的发展。对基于测试的ATR评价方法,获取识别率等关键指标的边界值是一个难点问题。作者认为,如果将ATR算法作为结构未知的“黑箱”进行测试,始终难以从根本上解决ATR算法的可信应用问题。基于理论分析的方法研究,则有可能从对ATR算法内部认知的角度突破该难题。

    下面根据当前的研究现状,提出两个值得深入思考和持续研究的方向。

    (1) 借鉴多属性决策理论,进行综合评价方法创新。

    现阶段对于不确定性多属性决策方法、不确定信息下的案例推理决策方法等方面的研究成果颇为丰富,但对ATR系统评价而言,最为关键的问题是根据评价指标自身的定义与内涵,谨慎选择合适的不确定信息类型予以描述和度量,然后再从众多的已有方法成果中挑选合适的决策模型(亦称为集结算子)来融合决策者的主观偏好。这些研究工作貌似只是对现有理论方法的修改,却灵活解决了ATR评价工作所要面临的各种实际问题,也是构建ATR评价指标体系的理论依据所在。因此,有必要针对ATR评价问题中特有的混合型多属性决策问题,研究相应的决策模型及综合评价方法,解决多指标的ATR综合评价问题。

    (2) 持续数据工程建设,提升测试样本数据质量。

    ATR算法技术主流从最初的模板匹配到后面的模型驱动,再到现在的以深度学习为代表的数据驱动,对于训练数据和测试数据的需求都在不断增加。ATR评价主要关心如何适当减少测试数据,同时又能够保证测试样本涵盖实际工作条件的各类场景,实际上提出了数据使用规范与数据集质量评价这两个方面的需求。因此,还需进一步加强测试流程的规范化研究,重点分析测试样本的数据质量,构建合理的质量指标体系对测试数据集进行量化考核,保证测试结果反映ATR系统的真实性能表现。

    ATR评价方法的研究已取得一定成果,但仍然跟不上ATR技术的发展需求。随着相关学科领域的发展及ATR技术自身的持续深入研究,建议在ATR技术领域中将ATR评价设立为一个独立的研究方向,为模式分类、目标检测、敌我识别、无人作战等高新技术应用提供科学的检验标准与决策依据。

  • 图  1  全息凝视雷达体制概念示意图

    Figure  1.  Schematic diagram of holographic staring radar

    图  2  OLPI雷达[12]

    Figure  2.  OLPI radar[12]

    图  3  Aveillant公司全息雷达系统[24-30]

    Figure  3.  Holographic staring radars of Aveillant[24-30]

    图  4  QinetiQ公司全息雷达系统[41-43]

    Figure  4.  Holographic staring radars of QinetiQ[41-43]

    图  5  OMEGA360全息凝视雷达[44-46]

    Figure  5.  OMEGA360 holographic staring radar[44-46]

    图  6  L波段全息凝视雷达

    Figure  6.  L band holographic staring radar

    图  7  S波段全息凝视雷达

    Figure  7.  S band holographic staring radar

    图  8  全息凝视雷达机场鸟情感知试验

    Figure  8.  Birds detection trials in airport

    图  9  集群目标速度分辨结果

    Figure  9.  Group target detection results

    图  10  针对边防应用的外场探测试验

    Figure  10.  Target detection trials for frontier defense applications

    图  11  海面目标探测试验

    Figure  11.  Sea surface target detection trials

    图  12  多波束凝视成像示意图[75]

    Figure  12.  Schematic diagram of staring digital multiple beams SAR[75]

    图  13  澳大利亚HILOW超视距雷达试验发射阵列[81]

    Figure  13.  Photograph of the OTHR transmitter array used in the HILOW experiment[81]

    图  14  自动驾驶雷达波束示意图[1]

    Figure  14.  The illumination beam and multiple receive beams of a vehicular radar system[1]

    图  15  亨索尔特公司Twinvis被动雷达[1]

    Figure  15.  The Hensoldt Twinvis passive radar system[1]

    图  16  全息凝视雷达信号处理流程

    Figure  16.  The signal processing diagram of holographic staring radars

    图  17  波束展宽前后的波束图[89]

    Figure  17.  Beam before and after broadening[89]

    图  18  混合积累原理示意图[143]

    Figure  18.  Diagram of the principle of hybrid integration[143]

    图  19  复杂阵地低空目标俯仰角估计模型[157]

    Figure  19.  Multipath signal model for locating low-altitude small target in complex terrain environment[157]

    图  20  雷达多工作模式示意图[166]

    Figure  20.  Schematic diagram of multifunctional radar[166]

    图  21  分布式全息雷达协同探测

    Figure  21.  Schematic diagram of distributed holographic staring radar

    表  1  相控阵雷达、全息凝视雷达和MIMO雷达对比

    Table  1.   The comparison of phased array radar, holographic staring radar and MIMO radar

    对比项相控阵雷达全息凝视雷达MIMO雷达
    工作模式示意图[7]
    发射波束特点单个集中波束发射发射宽波束多个发射天线发射分集波形
    接收波束特点单个集中波束接收同时多波束接收同时多波束接收
    相同发射总功率、
    积累时间输出信噪比[6,7]
    SNRPASNRPA/e (e为波束展宽倍数)SNRPA/N (N为发射阵元数)
    角度分辨率[6]由接收天线孔径决定由接收天线孔径决定由发射阵列与接收阵列卷积得到虚拟阵列孔径决定
    优势相同孔径发射增益大多目标跟踪能力强、同时多功能、
    多普勒分辨率高、射频隐身性高等
    多目标跟踪能力强、虚拟孔径扩展测角精度高、
    多普勒分辨率高、射频隐身性高等
    劣势相同孔径观测范围小相同孔径发射增益低、计算量大、
    不适合单目标跟踪
    相同孔径发射增益低、计算量大、
    脉冲综合距离副瓣高、不适合单目标跟踪
    下载: 导出CSV

    表  2  Aveillant公司全息雷达系统参数[24-30]

    Table  2.   Basic technical parameters of Aveillant's holographic radar[24-30]

    参数名称原理样机Gamekeeper 16UTheia 64AQUAD (128)
    频率L波段L波段L波段L波段
    带宽~2 MHz~2 MHz~2 MHz~2 MHz
    发射功率~1 kW~1 kW~10 kW\
    接收通道数8×84×1632×8\
    方位覆盖范围90°90°90°360°
    俯仰覆盖范围90°30°90°90°
    PRF\~7.5 kHz~3.8 kHz\
    更新率\~0.25 s~0.5 s~1 s
    探测距离5 n mile (@RCS 1 m2)5 km (@RCS 0.01 m2)20 n mile (@RCS 0.01 m2)40 n mile (@RCS 0.01 m2)
    探测距离精度\\<50 m\
    探测方位精度<250 m
    速度分辨率<0.5 m/s
    下载: 导出CSV

    表  3  中山大学全息雷达系统参数

    Table  3.   Basic parameters of the holographic staring radar developed by SYSU

    参数名称L波段全息凝视雷达S波段全息凝视雷达
    频率L波段S波段
    带宽2~16 MHz2~10 MHz
    发射功率~500 W~400 W
    接收通道数8×84×16
    方位覆盖范围90°90°
    俯仰覆盖范围22.5°, 30.0°, 45.0°, 60.0°
    (可设定)
    30°
    PRF~5 kHz~7.5 kHz
    更新率~1 s~1 s
    探测距离10 km
    (@RCS 0.01 m2)
    8 km
    (@RCS 0.01 m2)
    探测距离精度<10 m<15 m
    方位角分辨精度<1.5°<0.75°
    速度分辨率<0.1 m/s<0.05 m/s
    下载: 导出CSV
  • [1] OSWALD G and BAKER C. Holographic Staring Radar[M]. London, United Kingdom: Institution of Engineering and Technology, 2021: 7–35.
    [2] 汤小为, 汤俊, 彭应宁, 等. 一种新体制雷达——“泛探”雷达的关键技术研究[C]. 第十届全国雷达学术年会论文集, 北京, 2008: 43–46.

    TANG Xiaowei, TANG Jun, PENG Yingning, et al. Research on some key techniques of a new radar syestem ubiquitous radar[C]. The 10th Annual Radar Conference of China, Beijing, China, 2008: 43–46.
    [3] RADAR SYSTEMS PANEL. IEEE standard for radar definitions[R]. IEEE Std 686, 2017.
    [4] 王盛利. 多波束凝视雷达[M]. 北京: 国防工业出版社, 2017: 1–10.

    WANG Shengli. Multibeam Staring Radar[M]. Beijing: National Defense Industry Press, 2017: 1–10.
    [5] 赵永波, 刘宏伟. MIMO雷达技术综述[J]. 数据采集与处理, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001

    ZHAO Yongbo and LIU Hongwei. Overview on MIMO radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001
    [6] 何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128

    HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128
    [7] RABIDEAU D J and PARKER P. Ubiquitous MIMO multifunction digital array radar[C]. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 1057–1064.
    [8] DOREY J, BLANCHARD Y, and CHRISTOPHE F. The RIAS project, a new approach to air surveillance radar[J]. Radiant, Journal of the Dutch Meteor Society, 1984: 113–118.
    [9] LUCE A S, MOLINA H, MULLER D, et al. Experimental results on RIAS digital beamforming radar[C]. 92 International Conference on Radar, Brighton, UK, 1992: 74–77.
    [10] COLIN J M. Phased array radars in France: Present and future[C]. International Symposium on Phased Array Systems and Technology, Boston, USA, 1996: 458–462.
    [11] WIRTH W D. Long term coherent integration for a floodlight radar[C]. International Radar Conference, Alexandria, USA, 1995: 698–703.
    [12] WIRTH W D. Radar Techniques Using Array Antennas[M]. London: Institution of Engineering and Technology, 2013: 419–446.
    [13] WIRTH W D. Omnidirectional low probability of intercept radar[C]. International Conference on Radar, Paris, France, 1989: 25–30.
    [14] 保铮, 张庆文. 一种新型的米波雷达—综合脉冲与孔径雷达[J]. 现代雷达, 1995, 17(1): 1–13. doi: 10.16592/j.cnki.1004-7859.1995.01.001

    BAO Zheng and ZHANG Qingwen. A new style metric wave radar — Synthetic impulse and aperture radar[J]. Modern Radar, 1995, 17(1): 1–13. doi: 10.16592/j.cnki.1004-7859.1995.01.001
    [15] 陈伯孝, 张守宏. 稀布阵综合脉冲孔径雷达时域与频域脉冲综合方法[J]. 现代雷达, 1997, 19(6): 12–17. doi: 10.16592/j.cnki.1004-7859.1997.06.003

    CHEN Boxiao and ZHANG Shouhong. Synthetic pulse processing in frequency-domain and time-domain for sparse-array synthetic impulse and aperture radar[J]. Modern Radar, 1997, 19(6): 12–17. doi: 10.16592/j.cnki.1004-7859.1997.06.003
    [16] 陈伯孝, 张守宏, 赵永波. 稀布阵综合脉冲孔径雷达旁瓣对消性能分析[J]. 现代雷达, 1998, 20(5): 55–61. doi: 10.16592/j.cnki.1004-7859.1998.05.010

    CHEN Boxiao, ZHANG Shouhong, and ZHAO Yongbo. The performance analysis of interference cancellation for sparse-array synthetic impulse and aperture radar[J]. Modern Radar, 1998, 20(5): 55–61. doi: 10.16592/j.cnki.1004-7859.1998.05.010
    [17] 党晓方. 微波综合脉冲孔径雷达若干关键技术研究[D]. [博士论文], 西安电子科技大学, 2014: 1–8.

    DANG Xiaofang. Study on some key issues of microwave array synthetic impulse and aperture radar[D]. [Ph. D. dissertation], Xidian University, 2014: 1–8.
    [18] 吴剑旗, 阮信畅. 稀布阵综合脉冲孔径雷达主要性能分析[J]. 现代电子, 1994(3): 1–6.

    WU Jianqi and RUAN Xinchang. Main performance analysis of sparse array synthetic pulse aperture radar[J]. Modern Electronics, 1994(3): 1–6.
    [19] SKOLNIK M. Improvements for air-surveillance radar[C]. 1999 IEEE Radar Conference. Radar into the Next Millennium, Waltham, USA, 1999: 18–21.
    [20] SKOLNIK M. Systems aspects of digital beam forming ubiquitous radar[R]. NRL Report: NRLhlW 5007-02-8625, June 28, 2002.
    [21] SKOLNIK M. Attributes of the ubiquitous phased array radar[C]. IEEE International Symposium on Phased Array Systems and Technology, 2003, Boston, USA, 2003: 101–106.
    [22] ALTER J J, WHITE R M, KRETSCHMER F F, et al. Ubiquitous radar: An implementation concept[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 65–70.
    [23] JAHANGIR M and QUILTER T. The practicality and benefit of a 3-D wide-area persistent surveillance micro-Doppler radar[C]. 2015 16th International Radar Symposium (IRS), Dresden, Germany, 2015: 272–277.
    [24] JAHANGIR M. Target centric wide-area 3-D surveillance using a non-scanning multibeam receiver array[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 652–657.
    [25] JAHANGIR M and BAKER C. Robust detection of micro-UAS drones with L-band 3-D holographic radar[C]. 2016 Sensor Signal Processing for Defence, Edinburgh, UK, 2016: 1–5.
    [26] JAHANGIR M and BAKER C. Persistence surveillance of difficult to detect micro-drones with L-band 3-D holographic radar™[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5.
    [27] JAHANGIR M and BAKER C J. Extended dwell Doppler characteristics of birds and micro-UAS at l-band[C]. 2017 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–10.
    [28] JAHANGIR M, BAKER C J, and OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1052–1057.
    [29] JAHANGIR M and BAKER C J. L-band staring radar performance against micro-drones[C]. 2018 19th International Radar Symposium, Bonn, Germany, 2018: 1–10.
    [30] BENNETT C, JAHANGIR M, FIORANELLI F, et al. Use of symmetrical peak extraction in drone micro-doppler classification for staring radar[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [31] JAHANGIR M, AHMAD B I, and BAKER C J. Robust drone classification using two-stage decision trees and results from SESAR SAFIR trials[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 636–641.
    [32] JAHANGIR M, AHMAD B I, and BAKER C J. The application of performance metrics to staring radar for drone surveillance[C]. 2020 17th European Radar Conference, Utrecht, Netherlands, 2021: 382–385.
    [33] JAHANGIR M, ATKINSON G M, ANTONIOU M, et al. Measurements of birds and drones with L-band staring radar[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–10.
    [34] GHAZALLI N, BALLERI A, JAHANGIR M, et al. Passive detection using a staring radar illuminator of opportunity[C]. 2019 International Radar Conference, Toulon, France, 2019: 1–5.
    [35] JAHANGIR M and BAKER C J. CLASS U-space drone test flight results for non-cooperative surveillance using an L-band 3-D staring radar[C]. 2019 20th International Radar Symposium, Ulm, Germany, 2019: 1–11.
    [36] DALE H, BAKER C, ANTONIOU M, et al. An initial investigation into using convolutional neural networks for classification of drones[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 618–623.
    [37] DALE H, BAKER C, ANTONIOU M, et al. A comparison of convolutional neural networks for low SNR radar classification of drones[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–5.
    [38] GRIFFIN B, BALLERI A, BAKER C, et al. Optimal receiver placement in staring cooperative radar networks for detection of drones[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [39] GRIFFIN B, BALLERI A, BAKER C, et al. Prototyping a dual-channel receiver for use in a staring cooperative radar network for the detection of drones[C]. 2021 21st International Radar Symposium, Berlin, Germany, 2021: 1–7.
    [40] JAHANGIR M, BAKER C J, ANTONIOU M, et al. Advanced cognitive networked radar surveillance[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–6.
    [41] HARMAN S. A comparison of staring radars with scanning radars for UAV detection: Introducing the Alarm™ staring radar[C]. 2015 European Radar Conference, Paris, France, 2015: 185–188.
    [42] HARMAN S A and HUME A L. Applications of staring surveillance radars[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 270–273.
    [43] HARMAN S. Analysis of the radar return of micro-UAVs in flight[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1159–1164.
    [44] MASSARDO M and STALLONE R. Experimental validation of a frustum of cone antenna applied to Omega 360 ubiquitous 2D radar[C]. 2017 IEEE International Workshop on Metrology for AeroSpace, Padua, Italy, 2017: 36–39.
    [45] FRANCO S and QUATTROCIOCCHI S. Experimental validation of a frustum of cone antenna radiation patterns[C]. 2017 IEEE International Workshop on Metrology for AeroSpace, Padua, Italy, 2017: 32–35.
    [46] STALLONE R, MASSARDO M, MONTANARI G, et al. Omega360 an innovative radar for detection and tracking of small drones[C]. 2019 International Radar Conference, Toulon, France, 2019: 1–5.
    [47] 陈曾平, 张月, 鲍庆龙. 数字阵列雷达及其关键技术进展[J]. 国防科技大学学报, 2010, 32(6): 1–7. doi: 10.3969/j.issn.1001-2486.2010.06.001

    CHEN Zengping, ZHANG Yue, and BAO Qinglong. Advance in digital array radar and its key technologies[J]. Journal of National University of Defense Technology, 2010, 32(6): 1–7. doi: 10.3969/j.issn.1001-2486.2010.06.001
    [48] 张月, 邹江威, 陈曾平. 泛探雷达长时间相参积累目标检测方法研究[J]. 国防科技大学学报, 2010, 32(6): 15–20. doi: 10.3969/j.issn.1001-2486.2010.06.003

    ZHANG Yue, ZOU Jiangwei, and CHEN Zengping. Long-time coherent integration targets detection method for ubiquitous radar[J]. Journal of National University of Defense Technology, 2010, 32(6): 15–20. doi: 10.3969/j.issn.1001-2486.2010.06.003
    [49] 鲍庆龙, 张月, 吴桐, 等. 泛探雷达时-空级联目标检测与DOA估计算法[J]. 国防科技大学学报, 2010, 32(6): 21–25. doi: 10.3969/j.issn.1001-2486.2010.06.004

    BAO Qinglong, ZHANG Yue, WU Tong, et al. Joint time-space target detection and DOA estimation algorithm on ubiquitous radar[J]. Journal of National University of Defense Technology, 2010, 32(6): 21–25. doi: 10.3969/j.issn.1001-2486.2010.06.004
    [50] 郭瑞. 主被动一体化数字阵列雷达波达方向估计技术研究[D]. [博士论文], 国防科技大学, 2017: 1–13.

    GUO Rui. Research on direction of arrival estimation for integrated active-passive digital array radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2017: 1–13.
    [51] 赵英潇. 全息雷达长时间积累目标检测关键技术研究[D]. [博士论文], 国防科技大学, 2019.

    ZHAO Yingxiao. Long time integration and target detection technologies applied in holographic radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2019.
    [52] 田瑞琦. 泛探雷达微弱目标检测关键技术研究[D]. [博士论文], 国防科技大学, 2018: 1–112.

    TIAN Ruiqi. Research on key technology of ubiquitous radar weak target detection[D]. [Ph. D. dissertation], National University of Defense Technology, 2018: 1–112.
    [53] ZHANG Yue, GUO Yongqiang, and CHEN Zengping. Range-Doppler domain signal processing for medium PRF ubiquitous radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4.
    [54] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [55] CHEN Xiaolong, ZHANG Hai, SONG Jie, et al. Micro-motion classification of flying bird and rotor drones via data augmentation and modified multi-scale CNN[J]. Remote Sensing, 2022, 14(5): 1107. doi: 10.3390/rs14051107
    [56] 陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar micro-doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    [57] 陈小龙, 南钊, 张海, 等. 飞鸟与旋翼无人机雷达微多普勒测量实验研究[J]. 电波科学学报, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192

    CHEN Xiaolong, NAN Zhao, ZHANG Hai, et al. Experimental research on radar micro-Doppler of flying bird and rotor UAV[J]. Chinese Journal of Radio Science, 2021, 36(5): 704–714. doi: 10.12265/j.cjors.2020192
    [58] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068

    CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068
    [59] WU Qi, CHEN Jie, LU Yue, et al. A complete automatic target recognition system of low altitude, small RCS and slow speed (LSS) targets based on multi-dimensional feature fusion[J]. Sensors, 2019, 19(22): 5048. doi: 10.3390/s19225048
    [60] WU Qi, CHEN Jie, WU Hongming, et al. Experimental study on micro-doppler effect and micro-motion characteristics of aerial targets based on holographic staring radar[C]. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 2019: 1186–1190.
    [61] DAI Ting, XU Shiyou, TIAN Biao, et al. Extraction of micro-doppler feature using LMD algorithm combined supplement feature for UAVs and birds classification[J]. Remote Sensing, 2022, 14(9): 2196. doi: 10.3390/rs14092196
    [62] ELTA Systems Lt. Persistent ground & coastal surveillance radar family[OL]. https://www.iai.co.il/p/elm-2112.
    [63] ELTA Systems Lt. Persistent foliage penetration radar[OL]. https://www.iai.co.il/p/elm-2112fp.
    [64] ELTA Systems Lt. Persistent perimeter detection radar[OL]. https://www.iai.co.il/p/elm-2114.
    [65] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Drone detection and RCS measurements with ubiquitous radar[C]. 2018 International Conference on Radar, Brisbane, Australia, 2018: 1–6.
    [66] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. X-band ubiquitous radar system: First experimental results[C]. 2017 IEEE SENSORS, Glasgow, UK, 2017: 1–3.
    [67] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Remotely piloted aircraft detection with persistent radar[C]. 2018 15th European Radar Conference, Madrid, Spain, 2018: 317–320.
    [68] DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Drone detection with X-band ubiquitous radar[C]. 2018 19th International Radar Symposium (IRS), Bonn, Germany, 2018: 1–10.
    [69] URZAIZ F I, DE QUEVEDO Á D, AYUSO A M, et al. Design, implementation and first experimental results of an X-band ubiquitous radar system[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1150–1155.
    [70] Elbit Systems. Multi Beam Radar MBR 16-V1 real-time detection and tracking of moving ground and naval targets[OL]. https://elbitsystems.com/product/mbr-2/
    [71] Propatria Inc. Ground & Air Surveillance Radar[OL]. https://propatria-inc.com/products/radars/mbr-3d.
    [72] SUESS M, GRAFMUELLER B, and ZAHN R. A novel high resolution, wide swath SAR system[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 1013–1015.
    [73] WANG Wei, WANG Robert, DENG Yunkai, et al. Improved digital beam-forming approach with scaling function for range multi-channel synthetic aperture radar system[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 379–385. doi: 10.1049/iet-rsn.2015.0276
    [74] KRIEGER G and MOREIRA A. Spaceborne bi- and multistatic SAR: Potential and challenges[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(3): 184–198. doi: 10.1049/ip-rsn:20045111
    [75] 江涛, 陈翼, 王盛利. 凝视数字多波束合成孔径雷达系统性能分析[J]. 系统工程与电子技术, 2013, 35(4): 745–752. doi: 10.3969/j.issn.1001-506X.2013.04.12

    JIANG Tao, CHEN Yi, and WANG Shengli. System performance analysis of staring digital multiple beam synthetic aperture radar[J]. Systems Engineering and Electronics, 2013, 35(4): 745–752. doi: 10.3969/j.issn.1001-506X.2013.04.12
    [76] RINCON R F, VEGA M A, BUENFIL M, et al. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3622–3628. doi: 10.1109/TGRS.2011.2157971
    [77] REIGBER A, NOTTENSTEINER A, LIMBACH M, et al. DBFSAR: An airborne very high-resolution digital beamforming SAR system[C]. 2017 European Radar Conference, Nuremberg, Germany, 2017: 175–178.
    [78] REIGBER A, SCHREIBER E, TRAPPSCHUH K, et al. The high-resolution digital-beamforming airborne SAR system DBFSAR[J]. Remote Sensing, 2020, 12(11): 1710. doi: 10.3390/rs12111710
    [79] ZHOU Yashi, WANG Wei, CHEN Zhen, et al. Digital beamforming synthetic aperture radar (DBSAR): Experiments and performance analysis in support of 16-channel airborne X-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6784–6798. doi: 10.1109/tgrs.2020.3027691
    [80] WANG Hui, DAI Shoulun, and ZHENG Shichao. Airborne Ka-band digital beamforming SAR system and flight test[C]. 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4.
    [81] FRAZER G J, ABRAMOVICH Y I, JOHNSON B A, et al. Recent results in MIMO over-the-horizon radar[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6.
    [82] 万显荣, 易建新, 占伟杰, 等. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939–958. doi: 10.12000/JR20143

    WAN Xianrong, YI Jianxin, ZHAN Weijie, et al. Research progress and development trend of the multi-illuminator-based passive radar[J]. Journal of Radars, 2020, 9(6): 939–958. doi: 10.12000/JR20143
    [83] MOFRAD R F, SADEGHZADEH R A, and ALIDOOST S. Comparison of antenna beam broadening methods for phased array radar applications[C]. 2011 Loughborough Antennas & Propagation Conference, Loughborough, UK, 2011: 1–4.
    [84] MARCANO D and DURAN F. Synthesis of antenna arrays using genetic algorithms[J]. IEEE Antennas and Propagation Magazine, 2000, 42(3): 12–20. doi: 10.1109/74.848944
    [85] KHZMALYAN A D and KONDRAT'YEV A S. Phase-only synthesis of antenna array amplitude pattern[J]. International Journal of Electronics, 1996, 81(5): 585–589. doi: 10.1080/002072196136490
    [86] ALP Y K, ALTIPARMAK F, GOK G, et al. Two different approaches for wide beam synthesis: Second order cone programming and swarm intelligence[C]. 20th European Signal Processing Conference, Bucharest, Romania, 2012: 1329–1333.
    [87] SAYIDMARIE K, SULTAN Q H. Synthesis of wide beam array patterns using quadratic-phase excitations[J]. International Journal of Electromagnetics and Applications, 2013, 3(6): 127–135. doi: 10.5923/j.ijea.20130306.01
    [88] SAYIDMARIE K H and SULTAN Q H. Synthesis of wide beam array patterns using random phase weights[C]. 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering, Mosul, Iraq, 2013: 52–57.
    [89] BROWN G C, KERCE J C, and MITCHELL M A. Extreme beam broadening using phase only pattern synthesis[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006, Waltham, USA, 2006: 36–39.
    [90] ERÇIL E. An alternative method for phase only array pattern synthesis[C]. 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, 2012: 1–2.
    [91] KINSEY R. Phased array beam spoiling technique[C]. IEEE Antennas and Propagation Society International Symposium, Montreal, Canada, 1997: 698–701.
    [92] LEIFER M C. Revisiting a method of beam shaping using phase weights[C]. 2016 IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2016: 1–3.
    [93] LEIFER M C. An airborne radar phased array with low sidelobes and a spoiled beam[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 72–76.
    [94] BUCKLEY K. Spatial/Spectral filtering with linearly constrained minimum variance beamformers[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 249–266. doi: 10.1109/tassp.1987.1165142
    [95] GRIFFITHS L and JIM C. An alternative approach to linearly constrained adaptive beamforming[J]. IEEE Transactions on Antennas and Propagation, 1982, 30(1): 27–34. doi: 10.1109/TAP.1982.1142739
    [96] XU Jingwei, LIAO Guisheng, and ZHU Shengqi. Robust LCMV beamforming based on phase response constraint[J]. Electronics Letters, 2012, 48(20): 1304–1306. doi: 10.1049/el.2012.2619
    [97] COX H, ZESKIND R, and OWEN M. Robust adaptive beamforming[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(10): 1365–1376. doi: 10.1109/TASSP.1987.1165054
    [98] FELDMAN D D and GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867–876. doi: 10.1109/78.285650
    [99] LEE C C and LEE J H. Eigenspace-based adaptive array beamforming with robust capabilities[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(12): 1711–1716. doi: 10.1109/8.650188
    [100] LORENZ R G and BOYD S P. Robust minimum variance beamforming[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1684–1696. doi: 10.1109/TSP.2005.845436
    [101] VOROBYOV S A, GERSHMAN A B, and LUO Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865
    [102] LI Jian, STOICA P, and WANG Zhisong. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702–1715. doi: 10.1109/TSP.2003.812831
    [103] LIE J P, SER W, and SEE C M S. Adaptive uncertainty based iterative robust capon beamformer using steering vector mismatch estimation[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4483–4488. doi: 10.1109/TSP.2011.2157500
    [104] LIE J P, LI Xiaohui, SER W, et al. Adaptive uncertainty based iterative robust capon beamformer[C]. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, USA, 2010: 2526–2529.
    [105] NAI S E, SER W, YU Zhuliang, et al. Iterative robust minimum variance beamforming[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1601–1611. doi: 10.1109/TSP.2010.2096222
    [106] CHEN Yilun, WIESEL A, ELDAR Y C, et al. Shrinkage algorithms for MMSE covariance estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5016–5029. doi: 10.1109/TSP.2010.2053029
    [107] DONG Mei, ZHENG Qiaozhen, and SU Hongtao. Automatic robust adaptive beamforming via ridge regression using l1-norm approximation[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 385–387.
    [108] GONG C, HUANG L, XU D, et al. Knowledge-aided robust adaptive beamforming with small snapshots[J]. Electronics Letters, 2013, 49(20): 1258–1259. doi: 10.1049/el.2013.2198
    [109] GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289
    [110] MALLIPEDDI R, LIE J, RAZUL S G, et al. Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch[J]. Progress in Electromagnetics Research Letters, 2011, 25: 37–46. doi: 10.2528/PIERL11040104
    [111] D'ADDIO E, FARINA A, and STUDER F A. Performance compparison of optimum and conventional MTI and Doppler processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(6): 707–715. doi: 10.1109/taes.1984.310453
    [112] 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001

    CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001
    [113] ZHENG Jibin, SU Tao, ZHU Wentao, et al. Radar high-speed target detection based on the scaled inverse fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1108–1119. doi: 10.1109/JSTARS.2014.2368174
    [114] KONG Lingjiang, LI Xiaolong, CUI Guolong, et al. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4474–4486. doi: 10.1109/TSP.2015.2437844
    [115] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Long-time coherent integration for weak maneuvering target detection and high-order motion parameter estimation based on keystone transform[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 4013–4026. doi: 10.1109/TSP.2016.2558161
    [116] ZHANG Jiancheng, SU Tao, ZHENG Jibin, et al. Novel fast coherent detection algorithm for radar maneuvering target with jerk motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 1792–1803. doi: 10.1109/JSTARS.2017.2651156
    [117] CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via radon-fractional fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [118] LI Xiaolong, CUI Guolong, YI Wei, et al. Coherent integration for maneuvering target detection based on radon-Lv’s distribution[J]. IEEE Signal Processing Letters, 2015, 22(9): 1467–1471. doi: 10.1109/LSP.2015.2390777
    [119] LI Xiaolong, KONG Lingjiang, CUI Guolong, et al. ISAR imaging of maneuvering target with complex motions based on ACCF-LVD[J]. Digital Signal Processing, 2015, 46: 191–200. doi: 10.1016/j.dsp.2015.06.015
    [120] LI Xiaolong, SUN Zhi, YI Wei, et al. Detection of maneuvering target with complex motions based on ACCF and FRFT[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 17–20.
    [121] LI Xiaolong, CUI Guolong, YI Wei, et al. A fast non-searching method for maneuvering target detection based on ACCF[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 11–14.
    [122] WANG Genyuan, XIA Xianggen, ROOT B T, et al. Maneuvering target detection in over-the-horizon radar by using adaptive chirplet transform and subspace clutter rejection[C]. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 2003: 49–52.
    [123] NAMIAS V. The fractional order fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3): 241–265. doi: 10.1093/imamat/25.3.241
    [124] 陈小龙, 刘宁波, 黄勇, 等. 雷达目标检测分数域理论及应用[M]. 北京: 科学出版社, 2022: 56–80.

    CHEN Xiaolong, LIU Ningbo, HUANG Yong, et al. Fractional Domain Theory and Application of Fractional Domain for Radar Target Detection[M]. Beijing: Science Press, 2022: 56–80.
    [125] LV Xiaolei, BI Guoan, WAN Chunru, et al. Lv’s distribution: Principle, implementation, properties, and performance[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3576–3591. doi: 10.1109/TSP.2011.2155651
    [126] LUO Shan, BI Guoan, LV Xiaolei, et al. Performance analysis on Lv distribution and its applications[J]. Digital Signal Processing, 2013, 23(3): 797–807. doi: 10.1016/j.dsp.2012.11.011
    [127] XU Jia, YU Ji, PENG Yingning, et al. Radon-fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251
    [128] XU Jia, YU Ji, PENG Yingning, et al. Radon-fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645
    [129] YU Ji, XU Jia, PENG Yingning, et al. Radon-fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    [130] XU Jia, XIA Xianggen, PENG Shibao, et al. Radar maneuvering target motion estimation based on generalized radon-fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/TSP.2012.2217137
    [131] 陈小龙, 刘宁波, 王国庆, 等. 基于Radon-分数阶傅里叶变换的雷达动目标检测方法[J]. 电子学报, 2014, 42(6): 1074–1080. doi: 10.3969/j.issn.0372-2112.2014.06.006

    CHEN Xiaolong, LIU Ningbo, WANG Guoqing, et al. Radar detection method for moving target based on radon-fourier fractional fourier transform[J]. Acta Electronica Sinica, 2014, 42(6): 1074–1080. doi: 10.3969/j.issn.0372-2112.2014.06.006
    [132] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. I. System concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410
    [133] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. II. Detection statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 109–115. doi: 10.1109/7.250411
    [134] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. III. Detection performance with binary integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 116–125. doi: 10.1109/7.250412
    [135] CARRETERO-MOYA J, GISMERO-MENOYO J, ASENSIO-LOPEZ A, et al. Small-target detection in sea clutter based on the Radon Transform[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008: 610–615.
    [136] COPELAND A C, RAVICHANDRAN G, and TRIVEDI M M. Localized radon transform-based detection of ship wakes in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1): 35–45. doi: 10.1109/36.368224
    [137] BARNIV Y and KELLA O. Dynamic programming solution for detecting dim moving targets part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6): 776–788. doi: 10.1109/TAES.1987.310914
    [138] TONISSEN S M and EVANS R J. Peformance of dynamic programming techniques for Track-Before-Detect[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1440–1451. doi: 10.1109/7.543865
    [139] SALMOND D J and BIRCH H. A particle filter for track-before-detect[C]. 2001 American Control Conference, Arlington, USA, 2001: 3755–3760.
    [140] HOSEINNEZHAD R, VO B N, and VO B T. Visual tracking in background subtracted image sequences via multi-bernoulli filtering[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 392–397. doi: 10.1109/TSP.2012.2222389
    [141] 童慧思, 张颢, 孟华东, 等. PHD滤波器在多目标检测前跟踪中的应用[J]. 电子学报, 2011, 39(9): 2046–2051.

    TONG Huisi, ZHANG Hao, MENG Huadong, et al. Probability hypothesis density filter multitarget track-before-detect application[J]. Acta Electronica Sinica, 2011, 39(9): 2046–2051.
    [142] XU Jia, ZHOU Xu, QIAN Lichang, et al. Hybrid integration for highly maneuvering radar target detection based on generalized radon-fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. doi: 10.1109/TAES.2016.150076
    [143] DING Zegang, YOU Pengjie, QIAN Lichang, et al. A subspace hybrid integration method for high-speed and maneuvering target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 630–644. doi: 10.1109/TAES.2019.2919478
    [144] HOWARD D D, SHERMAN S M, THOMSON D N, et al. Experimental results of the complex indicated angle techique for multipath correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 779–787. doi: 10.1109/TAES.1974.307884
    [145] WHITE W D. Double null technique for low angle tracking[J]. Microwave Journal, 1976, 19: 35–38, 60.
    [146] 吴剑旗, 杨雪亚. 一种基于空域滤波的米波雷达测高新方法[J]. 现代雷达, 2015, 37(3): 1–4. doi: 10.3969/j.issn.1004-7859.2015.03.001

    WU Jianqi and YANG Xueya. Novel height finding technique based on spatial filtering in meter-wave radar[J]. Modern Radar, 2015, 37(3): 1–4. doi: 10.3969/j.issn.1004-7859.2015.03.001
    [147] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    [148] BOHME J. Estimation of source parameters by maximum likelihood and nonlinear regression[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, USA, 1984: 271–274.
    [149] STOICA P, OTTERSTEN B, VIBERG M, et al. Maximum likelihood array processing for stochastic coherent sources[J]. IEEE Transactions on Signal Processing, 1996, 44(1): 96–105. doi: 10.1109/78.482015
    [150] 赵光辉, 陈伯孝, 董玫. 基于交替投影的DOA估计方法及其在米波雷达中的应用[J]. 电子与信息学报, 2008, 30(1): 224–227. doi: 10.3724/SP.J.1146.2006.00835

    ZHAO Guanghui, CHEN Baixiao, and DONG Mei. A new DOA estimator based on alternating projection and its application in VHF radar[J]. Journal of Electronics &Information Technology, 2008, 30(1): 224–227. doi: 10.3724/SP.J.1146.2006.00835
    [151] LO T and LITVA J. Use of a highly deterministic multipath signal model in low-angle tracking[J]. IEE Proceedings F - Radar and Signal Processing, 1991, 138(2): 163–171. doi: 10.1049/ip-f-2.1991.0022
    [152] LO T and LITVA J. Low-angle tracking using a multifrequency sampled aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(5): 797–805. doi: 10.1109/7.97325
    [153] LI Cunxu, CHEN Baixiao, ZHENG Yisong, et al. Altitude measurement of low elevation target in complex terrain based on orthogonal matching pursuit[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 745–751. doi: 10.1049/iet-rsn.2016.0468
    [154] LI Cunxu, CHEN Baixiao, YANG Minglei, et al. Altitude measurement of low-elevation target for VHF radar based on weighted sparse bayesian learning[J]. IET Signal Processing, 2018, 12(4): 403–409. doi: 10.1049/iet-spr.2016.0738
    [155] ZHU Wei and CHEN Baixiao. Altitude measurement based on terrain matching in VHF array radar[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 647–662. doi: 10.1007/s00034-012-9472-4
    [156] LIU Yuan, JIU Bo, XIA Xianggen, et al. Height measurement of low-angle target using MIMO radar under multipath interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 808–818. doi: 10.1109/TAES.2017.2767919
    [157] GUO Rui, PENG Xiangyu, TIAN Biao, et al. Low elevation target altitude measurement for ubiquitous radar based on known transmitted waveform and sparse representation[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 346–355. doi: 10.1049/rsn2.12187
    [158] GUO Rui, ZHANG Yue, TIAN Biao, et al. Height measurement of micro-UAVs with L-band staring radar[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 7967–7970.
    [159] 时晨光, 董璟, 周建江, 等. 飞行器射频隐身技术研究综述[J]. 系统工程与电子技术, 2021, 43(6): 1452–1467. doi: 10.12305/j.issn.1001-506X.2021.06.02

    SHI Chenguang, DONG Jing, ZHOU Jianjiang, et al. Overview of aircraft radio frequency stealth technology[J]. Systems Engineering and Electronics, 2021, 43(6): 1452–1467. doi: 10.12305/j.issn.1001-506X.2021.06.02
    [160] 王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945

    WANG Qianzhe, HE Zhaoyang, SONG Bowen, et al. Overview on RF stealth technology research[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945
    [161] 余显斌, 吕治东, 李涟漪, 等. 太赫兹感知通信一体化波形设计与信号处理[J]. 通信学报, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015

    YU Xianbin, LYU Zhidong, LI Lianyi, et al. Waveform design and signal processing for terahertz integrated sensing and communication[J]. Journal on Communications, 2022, 43(2): 76–88. doi: 10.11959/j.issn.1000-436x.2022015
    [162] 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146
    [163] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023
    [164] RABIDEAU D J. MIMO radar waveforms and cancellation ratio[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1167–1178. doi: 10.1109/TAES.2012.6178055
    [165] SUN Hongbo, BRIGUI F, and LESTURGIE M. Analysis and comparison of MIMO radar waveforms[C]. 2014 International Radar Conference, Lille, France, 2014: 1–6.
    [166] Lockheed Martin. TPY-4 next generation multi-mission radar[OL]. https://www.lockheedmartin.com/en-us/products/ground-based-air-surveillance-radars/tpy-4.html.
  • 期刊类型引用(2)

    1. 王中宝,尹奎英. 一种无人机载高分辨率SAR图像目标快速检测方法. 指挥控制与仿真. 2023(05): 43-50 . 百度学术
    2. 邹焕新,李美霖,曹旭,李润林,秦先祥. 一种基于测地线距离的极化SAR图像快速超像素分割算法. 雷达学报. 2021(01): 20-34 . 本站查看

    其他类型引用(2)

  • 加载中
图(21) / 表(3)
计量
  • 文章访问数: 3364
  • HTML全文浏览量: 1207
  • PDF下载量: 808
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-10-20
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-04-28

目录

/

返回文章
返回