地基大视场SAR形变监测的非均匀大气相位校正方法

白泽朝 王彦平 王振海 胡俊 李洋 林赟

白泽朝, 王彦平, 王振海, 等. 地基大视场SAR形变监测的非均匀大气相位校正方法[J]. 雷达学报, 2023, 12(1): 53–63. doi: 10.12000/JR22120
引用本文: 白泽朝, 王彦平, 王振海, 等. 地基大视场SAR形变监测的非均匀大气相位校正方法[J]. 雷达学报, 2023, 12(1): 53–63. doi: 10.12000/JR22120
BAI Zechao, WANG Yanping, WANG Zhenhai, et al. A non-homogenous atmospheric compensation method for deformation monitoring of wide-field ground-based SAR[J]. Journal of Radars, 2023, 12(1): 53–63. doi: 10.12000/JR22120
Citation: BAI Zechao, WANG Yanping, WANG Zhenhai, et al. A non-homogenous atmospheric compensation method for deformation monitoring of wide-field ground-based SAR[J]. Journal of Radars, 2023, 12(1): 53–63. doi: 10.12000/JR22120

地基大视场SAR形变监测的非均匀大气相位校正方法

DOI: 10.12000/JR22120
基金项目: 国家自然科学基金重点国际合作研究项目(61860206013),国家重点研发计划资助(2018YFC1505103)
详细信息
    作者简介:

    白泽朝,博士生,主要研究方向为星载/地基InSAR技术理论和应用

    王彦平,博士,教授,博士生导师,主要研究方向为雷达三维成像、地基SAR系统研制及其应用

    王振海,博士生,主要研究方向为星地联合三维形变监测

    胡 俊,博士,教授,博士生导师,主要研究方向为InSAR大地测量技术及其在地质灾害监测中的应用

    李 洋,博士,副教授,硕士生导师,主要研究方向为极化SAR、混合极化SAR信息处理与应用

    林 赟,博士,副教授,硕士生导师,主要研究方向为合成孔径雷达三维成像技术、多角度SAR图像基础理论与方法

    通讯作者:

    王彦平 wangyp@ncut.edu.cn

  • 责任主编:胡程 Corresponding Editor: HU Cheng
  • 中图分类号: TN95

A Non-homogenous Atmospheric Compensation Method for Deformation Monitoring of Wide-field Ground-based SAR

Funds: The National Natural Science Foundation of China (61860206013), The National Key R&D Program of China (2018YFC1505103)
More Information
  • 摘要: 大气变化是地基干涉合成孔径雷达(GB-InSAR)形变监测的主要干扰因素。由于监测环境的地形复杂,水汽、湿度和温度的空间异质性,基于均匀大气介质假设的校正方法可能导致大气校正精度较低。该文提出了一种两阶段半经验模型,用于估计和校正复杂大气条件下特大滑坡GB-InSAR监测过程中出现的大气相位误差。该方法兼顾线性大气相位和非线性大气相位,首先根据测区的范围和高程对观测到的大气相位进行建模,校正与地形相关的线性大气相位。然后,考虑复杂大气条件和方位向大视场角度场景下出现的空间域非均匀大气情况,选取稳定永久散射体(PS)通过插值的方式获取所有PS点的大气相位,校正非线性大气相位。采用该方法对三峡库区新铺和藕塘特大滑坡的地基大视场雷达图像进行处理,相比于常规方法减小大气相位误差最大约2 mm。能有效校正特大滑坡监测场景下出现的非均匀大气相位,满足特大滑坡广域范围监测需求。

     

  • 图  1  本文算法大气相位校正流程

    Figure  1.  The workflow for atmospheric phase screen processing steps

    图  2  研究区范围

    Figure  2.  The study area

    图  3  GB-InSAR系统

    Figure  3.  The GB-InSAR system

    图  4  GB-InSAR数据参数

    Figure  4.  GB-InSAR data parameters

    图  5  干涉对A相位

    Figure  5.  Interferogram A

    图  6  干涉对B相位

    Figure  6.  Interferogram B

    图  7  干涉对C相位

    Figure  7.  Interferogram C

    图  8  距离-高程校正后干涉对B相位

    Figure  8.  Interferogram B after distance-elevation correction

    图  9  距离-高程校正后干涉对C相位

    Figure  9.  Interferogram C after distance-elevation correction

    图  10  非匀质大气校正后干涉对B相位

    Figure  10.  Interferogram B after correcting nonlinear atmospheric

    图  11  非匀质大气校正后干涉对C相位

    Figure  11.  Interferogram C after correcting nonlinear atmospheric

    图  12  累计形变量

    Figure  12.  Cumulative deformation

    图  13  典型点变形曲线对比

    Figure  13.  Cumulative deformation map

  • [1] WANG Yanping, HONG Wen, ZHANG Yuan, et al. Ground-based differential interferometry SAR: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 43–70. doi: 10.1109/MGRS.2019.2963169
    [2] 刘斌, 葛大庆, 李曼, 等. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01

    LIU Bin, GE Daqing, LI Man, et al. Ground-based interferometric synthetic aperture radar and its applications[J]. Remote Sensing for Land &Resources, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01
    [3] BAI Zechao, WANG Yanping, and BALZ T. Beijing land subsidence revealed using PS-InSAR with long time series TerraSAR-X SAR data[J]. Remote Sensing, 2022, 14(11): 2529. doi: 10.3390/rs14112529
    [4] HU Jun, LIU Jihong, LI Zhiwei, et al. Estimating three-dimensional coseismic deformations with the SM-VCE method based on heterogeneous SAR observations: Selection of homogeneous points and analysis of observation combinations[J]. Remote Sensing of Environment, 2021, 255: 112298. doi: 10.1016/j.rse.2021.112298
    [5] RODELSPERGER S. Real-Time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements[M]. Darmstadt: Technische Universität Darmstadt, 2011.
    [6] IGLESIAS R, AGUASCA A, FABREGAS X, et al. Ground-based polarimetric SAR interferometry for the monitoring of terrain displacement phenomena–Part I: Theoretical description[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 980–993. doi: 10.1109/JSTARS.2014.2360040
    [7] PIERACCINI M and MICCINESI L. Ground-based radar interferometry: A bibliographic review[J]. Remote Sensing, 2019, 11(9): 1029. doi: 10.3390/rs11091029
    [8] LUZI G, PIERACCINI M, MECATTI D, et al. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2454–2466. doi: 10.1109/TGRS.2004.836792
    [9] NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459–1471. doi: 10.1109/TGRS.2005.848707
    [10] PIPIA L, FABREGAS X, AGUASCA A, et al. Atmospheric artifact compensation in ground-based DInSAR applications[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 88–92. doi: 10.1109/LGRS.2007.908364
    [11] 徐亚明, 周校, 王鹏, 等. GB-SAR构建永久散射体网改正气象扰动方法[J]. 武汉大学学报:信息科学版, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507

    XU Yaming, ZHOU Xiao, WANG Peng, et al. A method of constructing permanent scatterers network to correct the meteorological disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507
    [12] 黄其欢, 岳建平. 基于稳定点加权的GBSAR大气扰动校正方法[J]. 西南交通大学学报, 2017, 52(1): 202–208. doi: 10.3969/j.issn.0258-2724.2017.01.028

    HUANG Qihuan and YUE Jianping. GBSAR atmospheric turbulence calibration based on weighted stable points[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 202–208. doi: 10.3969/j.issn.0258-2724.2017.01.028
    [13] IANNINI L and GUARNIERI A M. Atmospheric phase screen in ground-based radar: Statistics and compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 537–541. doi: 10.1109/LGRS.2010.2090647
    [14] IGLESIAS R, FABREGAS X, AGUASCA A, et al. Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2436–2449. doi: 10.1109/TGRS.2013.2261077
    [15] KARUNATHILAKE A and SATO M. Atmospheric phase compensation in extreme weather conditions for ground-based SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3806–3815. doi: 10.1109/JSTARS.2020.3004341
    [16] LIU Jie, YANG Honglei, XU Linlin, et al. Novel model-based approaches for non-homogenous atmospheric compensation of GB-InSAR in the azimuth and horizontal directions[J]. Remote Sensing, 2021, 13(11): 2153. doi: 10.3390/rs13112153
    [17] HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method for a time-space variant atmospheric phase applied to time-series GB-SAR images[J]. Remote Sensing, 2019, 11(20): 2350. doi: 10.3390/rs11202350
    [18] DENG Yunkai, HU Cheng, TIAN Weiming, et al. A grid partition method for atmospheric phase compensation in GB-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5206713. doi: 10.1109/TGRS.2021.3074161
    [19] DENG Yunkai, HU Cheng, TIAN Weiming, et al. 3-D deformation measurement based on three GB-MIMO radar systems: Experimental verification and accuracy analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12): 2092–2096. doi: 10.1109/LGRS.2020.3014342
    [20] 胡程, 邓云开, 田卫明, 等. 地基干涉合成孔径雷达图像非线性大气相位补偿方法[J]. 雷达学报, 2019, 8(6): 831–840. doi: 10.12000/JR19073

    HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method of nonlinear atmospheric phase applied for GB-InSAR images[J]. Journal of Radars, 2019, 8(6): 831–840. doi: 10.12000/JR19073
    [21] IZUMI Y, ZOU Lilong, KIKUTA K, et al. Iterative atmospheric phase screen compensation for near-real-time ground-based InSAR measurements over a mountainous slope[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5955–5968. doi: 10.1109/TGRS.2020.2973533
    [22] FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661
    [23] ROSEN P A, HENSLEY S, ZEBKER H A, et al. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry[J]. Journal of Geophysical Research:Planets, 1996, 101(E10): 23109–23125. doi: 10.1029/96JE01459
    [24] 肖捷夫. 库水涨落和降雨条件下藕塘滑坡变形演化机制及其预测模型研究[D]. [博士论文], 中国地质大学, 2021.

    XIAO Jiefu. Deformation evolution mechanism and displacement prediction model of Outang landslide under water level fluctuation and rainfall[D]. [Ph. D. dissertation], China University of Geosciences, 2021.
  • 加载中
图(13)
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  1030
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-07-11
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回