Loading [MathJax]/jax/output/SVG/jax.js

分布式多传感器多目标跟踪方法综述

曾雅俊 王俊 魏少明 孙进平 雷鹏

万显荣, 孙绪望, 易建新, 吕敏, 饶云华. 分布式数字广播电视外辐射源雷达系统同步设计与测试[J]. 雷达学报, 2017, 6(1): 65-72. doi: 10.12000/JR16134
引用本文: 曾雅俊, 王俊, 魏少明, 等. 分布式多传感器多目标跟踪方法综述[J]. 雷达学报, 2023, 12(1): 197–213. doi: 10.12000/JR22111
Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134
Citation: ZENG Yajun, WANG Jun, WEI Shaoming, et al. Review of the method for distributed multi-sensor multi-target tracking[J]. Journal of Radars, 2023, 12(1): 197–213. doi: 10.12000/JR22111

分布式多传感器多目标跟踪方法综述

DOI: 10.12000/JR22111
基金项目: 国家自然科学基金(62171029, 61671035),预研基金(61404130122),重点实验室基金(6142502180103),教育部产学合作协同育人项目(202101105001)
详细信息
    作者简介:

    曾雅俊,博士生,主要研究方向为多目标跟踪、多源信息融合

    王 俊,博士,教授,主要研究方向为雷达信号处理、FPGA/DSP嵌入式系统、目标识别与跟踪、多传感器数据融合

    魏少明,博士,实验师,主要研究方向为雷达信号处理、多目标跟踪、数据融合、三维成像

    孙进平,教授,博士生导师,主要研究方向为目标跟踪、信号分析检测与估计、稀疏微波成像、图像理解、雷达信号与数据处理的算法及软硬件实现

    雷 鹏,博士,副教授,硕士生导师,主要研究方向为数字信号处理、贝叶斯估计、模式识别

    通讯作者:

    魏少明 shaoming.wei@buaa.edu.cn

  • 责任主编:关键 Corresponding Editor: GUAN Jian
  • 中图分类号: TN951; TN957.51; TN971.+1

Review of the Method for Distributed Multi-sensor Multi-target Tracking(in English)

Funds: The National Natural Science Foundation of China (62171029, 61671035), The Pre-research Foundation (61404130122), The Key Laboratory Foundation (6142502180103), The Ministry of Education’s Industry-University Cooperation and Collaborative Education Project (202101105001)
More Information
  • 摘要: 多传感器多目标跟踪是信息融合领域的热点问题,其通过融合多个局部传感器数据,提高目标跟踪精度和稳定性。多传感器多目标跟踪按融合体系可分为分布式、集中式、混合式3类,其中分布式融合结构对网络通信带宽要求低、可靠性和稳定性强,广泛应用于军事、民用领域。该文聚焦分布式多传感器多目标跟踪涉及的目标跟踪、传感器配准、航迹关联、数据融合4项关键技术,主要分析了各关键技术的理论原理与适用条件,重点介绍了不完整测量条件下的空间配准与航迹关联,并给出仿真结果。最后,该文总结了现有分布式多传感器多目标跟踪关键技术存在的问题,并指出了其未来发展趋势。

     

  • 外辐射源雷达是一种利用非合作辐射源(如广播电视、通讯基站、导航和通信卫星、无线局域网络等)对目标进行探测的双/多基地雷达系统。与传统主动雷达相比,具有无需频率分配、隐蔽性好、抗干扰能力强、电磁兼容性好等诸多优势 [1] 。单发单收结构的双基地外辐射源雷达理论方法及系统设计已日臻成熟,然而双基地架构存在着一些缺陷,如分辨率强烈依赖于收发站几何位置、目标散射截面积受限于目标姿态等,使其在探测稳定性和跟踪连续性上表现出不足 [26] 。采用如 图1 所示的多发多收(包括多发单收、单发多收)分布式探测体制是有效的解决方案之一。中国新一代的数字广播电视广泛采用网络化覆盖模式,如中国移动多媒体广播(China Mobile Multimedia Broadcasting, CMMB)/数字地面多媒体广播(Digital Television Terrestrial Multimedia Broadcasting, DTMB)/数字音频广播(China Digital Radio, CDR),其发射信号普遍利用了多载波体制的正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)调制,信号带宽大,功率稳定,非常适合用作分布式外辐射源雷达的机会照射源。

    分布式外辐射源雷达在系统组成和收发处理上比传统雷达复杂,还有许多特殊的关键技术问题亟待解决,首当其冲的是各单元雷达接收站与辐射源的空间、频率、时间的同步。空间同步即波束同步,是指参与目标探测的雷达接收机和辐射源的主波束必须同时指向到同一个目标空间,才能使接收到的目标回波信号最强。频率同步主要包括载波同步和采样率同步:载波同步是指接收机的本地混频振荡器频率与照射源发射机的载波频率必须一致,才能将信号准确恢复到基带;采样率同步是指接收机实际采样率与标称采样率必须一致,否则,采样率偏差的积累会导致目标跟踪结果异常。时间同步是指各发射站之间和各接收站之间均应有统一的时间基准,这是分布式雷达准确定位目标的前提。

    上述三大同步问题中,空间同步较容易实现,这是因为数字广播电视基站发射天线多具有全向性,只需要人为控制各单元接收站天线波束指向同一目标空间即可。而由于发射站的不可控性,外辐射源雷达系统频率同步和时间同步的方案设计依赖于所用照射源发射系统本身的同步方式,并且系统同步性能的测试也比主动雷达更难。故本文重点讨论频率同步和时间同步的设计和测试问题。

    传统双(多)基地雷达的同步方法可分为直接法、间接法和独立式法 [7] ,其中直接法多适用于主动雷达,独立式法的同步稳定性及精度相比而言都较差,因此分布式外辐射源雷达一般采用间接法。间接法是在各雷达站分别设置一个相同的高稳定度时钟,通过定期校准时钟,用来作为时间基准实现各雷达站间的时间频率同步。校准时钟信号的授时技术有:微波授时技术、光纤授时技术、卫星授时技术、激光授时技术。这些方法各有优劣,其中微波传输距离短,光纤缺乏机动性,激光易受遮挡,而卫星作用范围广、不受视距限制、且有良好的机动性,因此在实际应用中多基地外辐射源雷达的同步方式多采用卫星授时技术。文献[8]指出,地面数字电视广播基站发射系统采用GPS接收机提供频率参考和时间参考,因此,基于此辐射源的分布式外辐射源雷达系统亦需采用GPS授时技术实现时间和频率同步。本文提出的同步方案核心是为每个单元接收站配置一个GPS接收模块,该模块为接收机提供高精度高稳定的10 MHz频率源和精确的1PPS(1 Pulse Per Second)定时信号,使系统实现频率同步和时间同步。并且,通过分析CMMB信号帧结构特点,本文提出了一种基于CMMB帧同步信号的同步性能测试方法,然后结合在江西南昌开展的分布式多站实验,通过实测数据分析,验证了系统同步的可靠性。

    图  1  多发多收体制系统示意图
    Figure  1.  Diagram of multi-transmitters and multi-receivers system

    数字广播电视信号广泛采用OFDM调制,OFDM调制技术具有良好的抗多径能力,各符号间带有保护间隔且子载波间是相互正交的。外辐射源雷达系统通常设有两个通道:参考通道和监测通道,其中参考通道波束一般正对信号发射站,用来接收直达波信号;监测通道波束对准目标空间,接收目标回波信号。与常规双(多)基地雷达一样,外辐射源雷达系统工作时,发射端将基带信号调制至射频进行发射,接收端通过混频等方式将信号解调到基带,这要求各单元接收机的本地混频载波与发射端上变频调制的载波频率一致。当接收站与发射站存在载波频偏(Carrier Frequency Offset, CFO)时,系统的探测性能会受到影响:(1)使子信道之间产生干扰,影响OFDM波形信号子载波的正交性,从而会影响参考信号的重构,而参考信号的重构效果又会直接影响杂波抑制和匹配滤波的效果 [9] ;(2)影响监测信号中直达波和多径回波与参考信号之间的时域相关性,从而会影响杂波抑制效果 [9]

    外辐射源雷达接收系统与发射系统采用的时钟源相互独立,那么,发射端数模转换的采样时钟频率与接收端模数转换的采样时钟频率不可避免地存在偏差。在实际情况下,对外辐射源雷达来说,一般认为发射系统采样时钟频率高度精确稳定。此时,采样率偏差为接收系统实际采样率与标称采样率的偏差,在时域上表现为一定时间内采样数据点数与理论值有偏差。该偏差同样对系统探测性能存在不利影响:(1)使OFDM信号帧起始位置与采样时刻不对应,导致同步算法计算结果错误,影响参考信号的重构 [10] ;(2)使杂波对消后残余能量变多,同时也会降低重构信号和目标信号的相关积累增益 [11]

    对于传统主动双基地雷达,准确测距的前提之一是接收系统与发射系统间有相同的时间参考,在主动多基地雷达中,还要求各发射站之间和各接收站之间时间同步。外辐射源雷达则有所不同,其发射系统不受控且发射信号未知,因此无法也无需实现接收站与发射站之间的时间同步。外辐射源雷达通过在接收端设置参考通道获取参考信号,将其提纯后与监测通道信号作匹配滤波计算来获取距离-多普勒谱。对于分布式数字广播电视外辐射源雷达系统而言,各发射站间的时间同步已由开发商完成,因此只需要考虑各接收站之间的时间同步。

    分布式外辐射源雷达多站时间同步精度首先影响目标的双基距离,在时差定位时进一步影响定位精度。以单发多收结构为例。若多站时间同步精确,各单元接收站与照射源构成的双基地椭圆交于一点,即能准确定位目标 [12] 。若多站时间同步存在偏差,则各单元接收站与照射源构成的双基地椭圆并不交于一点,而是由椭圆两两相交形成一个目标区域,由此导致目标定位不精确。

    分布式外辐射源雷达进行目标定位时,若每个单元接收站均能获得良好的参考信号,那么各单元接收站都能准确测得目标双基地距离。若各站存在时间同步偏差 τ ,那么,各站对目标定位偏差由目标速度 υτ 的乘积表征。然而,在实际环境中,各接收站所在位置的环境差异性很大,导致所获取的参考信号质量有好有坏,甚至于部分接收站所获取的参考信号重构效果极差而无法使用,那么需选用其中一个接收站的高质量参考信号作为其他接收站的参考信号,才能实现多站联合探测目标。此时,各站对目标定位偏差由电波传播速度c与 τ 的乘积表征 [13] 。显然,实际情况下分布式外辐射源雷达系统对各接收站时间同步精度提出了更高的要求。

    一般情况下,多基地外辐射源雷达系统接收站与发射站的空间位置分布稀疏且相距较远,采用全球卫星导航系统(Global Navigation Satellite System, GNSS)授时技术是较符合实际且精度较高的同步方案 [14] 。其中,GPS是4种主要GNSS之一,应用最广泛,同时考虑到目前数字广播电视基站发射系统普遍采用基于GPS的同步方式,因此,本文设计的基于数字广播电视分布式外辐射源雷达系统同步方案选用GPS接收模块,为接收机提供精确的同步频率源和时钟源,使各接收站联合形成一个统一的雷达探测网。系统如 图2 所示,GPS接收模块获取GPS定位与时间信息,并产生与GPS卫星时间高度同步的1PPS和用1PPS驯服恒温晶振而得到的高精度高稳定性10 MHz时钟信号。把该驯服时钟作倍频处理后,用作雷达接收机的工作时钟,使分布式外辐射源雷达系统实现频率同步。同时,各单元接收机响应1PPS信号上升沿,产生启动采样指令,使分布式外辐射源雷达系统实现时间同步。

    图  2  系统同步框图
    Figure  2.  Diagram of system synchronization

    系统选用的GPS接收模块是某款集成了恒温高稳晶振OCXO和高精度授时型GPS OEM板,采用大规模集成电路和GPS频率测控技术,产生并发送精确稳定的定时信号(1PPS)和频率信号(10 MHz),为系统提供高精度的时间和频率参考信号。 表1 为输出10 MHz频率信号参数, 表2 为1PPS信号参数。

    表  1  10 MHz频率信号参数
    Table  1.  Parameters of the 10 MHz signal
    参数 参数值
    准确度 <10 –12 (24小时平均值)
    保持精度 <5×10 –12 (GPS断开,24小时内)
    每秒稳定度 <10 –11
    相位噪声 –80 dBc/Hz@1 Hz; –140 dBc/Hz@1 kHz
    下载: 导出CSV 
    | 显示表格
    表  2  1PPS信号参数
    Table  2.  Parameters of the 1PPS signal
    参数 参数值
    授时精度 30 ns (RMS)
    上升沿时间 <10 ns
    占空比 1:1
    下载: 导出CSV 
    | 显示表格

    在前述的国内3种已投入商用的数字广播电视中,CMMB因其特殊的信号帧结构 [15] ,可以用来验证分布式外辐射源雷达系统同步性能。CMMB信号帧结构如 图3 所示,定义1帧信号时长为1 s,并将其划分为40个时隙,每个时隙长25 ms,又可划分为1个CMMB信标和53个OFDM符号。其中信标是同步的关键,它包括1个发射机标识信号(TxID)以及2个内容完全一样的同步信号,同步信号存在于每个时隙的起始位置,时长为409.6 μs。OFDM符号的有效子载波分配为数据子载波、离散导频和连续导频,其中连续导频中包含时隙号信息,离散导频包含384个子载波。

    图  3  CMMB信号帧结构
    Figure  3.  Framing structure of CMMB signal

    4.2.1载波同步 利用CMMB同步信号的时域相关性和频域共轭特性可估计接收机系统的CFO [16] 。先对采样数据进行符号粗同步,找到CMMB时隙中同步信号的大概位置,然后利用同步信号进行CFO估计,计算出采样信号CFO值。

    符号粗同步是利用加窗检测峰值的方法捕获同步信号的大致位置 [17] ,表达式为:

    R(n)=|n+Nsynci=nx(i)×x(i+Nsync)|,1n2N (1)

    其中, n 对应采样点的序号, N sync为同步信号的长度, x ( i )是采样得到CMMB信号, N 为1个时隙的CMMB信号长度。滑动相关后的峰值点位置即为粗同步所捕获的同步信号的起始位置。

    捕获到同步信号位置后,取出两个同步信号为 x 1( n )和 x 2( n ),在存在载波偏差 Δ f 的情况下, x 1( n )和 x 2( n )表达为:

    x1(n)=sync(n)exp(j2πΔfnTb/Nb+jΔφ)     +awgn(nTb/Nb) (2)
    x2(n)=sync(n)exp(j2πΔf(n+Nb)Tb/Nb+jΔφ)+awgn(nTb/Nb) (3)

    其中,sync( n )为发射端产生的同步信号, T b为同步信号时长, N b为同步信号采样点数, Δφ 为信号中固定相位偏转,awgn( n )为噪声。信号信噪比较高时,忽略噪声的影响,对 x 1( n )和 x 2( n )按式(1)运算有:

    R=Nbn=1x1(n)x2(n)=exp(j2πΔfTb)Nbn=1|sync(n)|2 (4)

    R 求相位得angle( R ),则频偏表达式为:

    Δf=angle(R)2πTb (5)

    angle( R )的范围为[– π , π ),归一化频偏值范围为[–0.5, 0.5),将这种方法估计得到的频偏值称作小数倍频偏,所估计频偏值最大为同步信号子载波间隔的一半,当频率偏差继续增大时,需再估计整数倍频率偏差 ΔF 。在粗同步有 m 个样值偏差的情形下,此时 x 2( n )写为:

    x2(n)=sync(nm)exp(j2πΔF(nm)Tb/Nb+jΔφ)+awgn(nTb/Nb) (6)

    忽略噪声影响,对式(6)作FFT处理,得到频域同步信号为:

    X2(k)=exp(jΔφ)exp(j2πkm/Nb)SYNC(kΔF/TbNb) (7)

    其中,SYNC为sync对应的频域信号。由式(7)可见,整数倍的频率偏差会造成频域数据的循环移位,样值偏差则会引起频域数据的线性相位旋转。利用频域同步信号前后采样点共轭特性消除样值偏差后,将接收的频域同步信号与本地已知的同步信号进行循环移位相关,则可以求出整数倍频率偏差 ΔF 的大小, ΔF + Δf 即系统的总载波频偏。

    4.2.2 采样率同步 采样率不准确会引起实际采样数据点数与理论值偏差。对于CMMB信号,当标称采样率为10 MHz时,理论上一帧信号有10 7 个采样数据。由上述载波频偏估计算法算得采样信号的CFO后,先补偿该CFO,然后进行符号精同步可以得到同步信号准确位置,计算相邻信号帧第1个同步峰间隔的数据点数,与理论值比较,即可验证采样率同步性能。

    补偿采样信号的CFO后,进行符号精同步。文献[ 16]已证明,CMMB时域同步信号 x b( k )具有共轭对称的特性:

    xb(k)=xb(Nbk),k0 (8)

    且同步信号一共存在4对长为1024点的共轭对称的数据块,基于共轭数据块的相关结果呈现离散单峰的特性,可以准确地找到时隙同步位置。选取第1和第4个共轭数据块作相关:

    R(k)=10241n=0xb(k+n)xb(k+4096n) (9)

    k 为滑动相关的起始点。同步信号的能量为:

    P(k)=10241n=0(|xb(k+n)|2+|xb(k+4096n)|2) (10)

    最强峰值对应准确的同步位置 k ML为:

    kML=argmaxk(|R(k)|2/P(k))2 (11)

    发射站信号到达各单元接收站的时间差与相应收发对间距离差成正比关系,比例系数为电波传播速度。通过GPS接收模块获取发射站与接收站的位置信息,可计算得收发站间距离差,进而计算得信号到达各单元接收站的理论时间差。然后通过分析各单元接收站的采样数据,计算出信号到达各单元接收站的量测时间差。比较量测时间差与理论时间差即可验证系统时间同步性能。

    采样数据序列经过精同步处理后得到的最强峰位置 k ML与采样数据起点的时间差为:

    Δt=kML/fs (12)

    其中, f s为系统采样率。以 图4 所示站位场景为例,发射站标记为Tx,选取两个单元接收站,分别标记为Rx m , Rx n 。取距Tx最远的单元接收站Rx m 为参考,接收站Rx m , Rx n 采样数据中同一帧中同一时隙的同步信号相关峰值位置分别记为 k ML, m , k ML, n k ML, m , k ML, n 与各自采样数据起点的时间差记为 Δtm , Δtn , 那么信号到达Rx m , Rx n 量测时间差为:

    Δtmn=ΔtmΔtn=kML,mkML,nfs (13)

    通过GPS定位信息可以获知Rx m , Rx n 到Tx的基线距离差 ΔLmn ,电波传播速度记为c,取值3×10 8 m/s,由此计算得信号到达Rx m , Rx n 的理论时间差 Δtmn 为:

    Δtmn=ΔLmnc (14)

    ΔtmnΔtmn 的误差 εmn 为:

    εmn=|ΔtmnΔtmn| (15)
    图  4  分布式站位场景图
    Figure  4.  Scene diagram of distributed system

    为测试该分布式外辐射源雷达系统同步性能,武汉大学于2016年7月在江西省南昌市开展了多站实验。实验系统包含3个单元接收站和1个非合作照射源,系统参数如 表3 所示。实验站位场景图如 图5 所示,其中3个接收站单元Rx1, Rx2, Rx3分别位于南昌大学前湖校区、华东交通大学、江西农业大学,照射源Tx位于江西省电视台,各接收站参考通道天线均正对照射源,监测通道天线指向同一目标区域。根据GPS获取的各站点经纬度计算得Rx1, Rx2, Rx3距照射源Tx的距离量测值分别为12.714 km, 9.081 km, 13.749 km。

    图  5  实验站位场景图
    Figure  5.  Scene diagram of the experiment
    表  3  实验系统参数
    Table  3.  Parameters of the experiment system
    参数 参数值
    Rx1位置 (E115.7941°, N28.6643°)
    Rx2位置 (E115.8653°, N28.7406°)
    Rx3位置 (E115.8277°, N28.7676°)
    Tx位置 (E115.9234°, N28.6767°)
    采样率 10 MHz
    载波中心频率 714 MHz
    信号带宽 8 MHz
    下载: 导出CSV 
    | 显示表格

    5.2.1 频率同步——载波同步 分析各站连续100帧实测数据,每一帧做一次频偏估计,计算得到接收系统的载波频偏如 图6 所示。可以看出,接收系统的载波频偏小于1 Hz。文献[ 8]提出,单频网中各发射机频率精度偏差为1 Hz是可行的,因此本设计实现的载波同步精度满足基于此的分布式外辐射源雷达的同步需求。通过后续CFO补偿可以进一步减小该CFO对杂波抑制和目标检测的影响。

    图  6  系统载波频偏估计值
    Figure  6.  Measured values of system CFO

    5.2.2 频率同步——采样率同步 分析各站连续100帧实测数据,计算相邻信号帧的第1个同步峰间隔采样点数与理论值10 7 的偏差,结果如 图7 所示,偏差均为0。这表明,接收站实际采样率相对标称采样率的误差远小于10 –7 ,完全满足基于数字广播电视外辐射源雷达接收系统的采样率同步需求。

    图  7  系统采样率偏差估计值
    Figure  7.  Measured values of system sampling rate error

    5.2.3 时间同步对 3个接收站多次同时启动采样的数据做同步分析,以距照射源Tx最远的接收站Rx3的同步峰位置为参考,接收站Rx1, Rx2与Rx3同步峰间隔采样点数分别稳定为35, 156,三站同步峰相对位置如 图8 所示,根据式(13)计算信号到达Rx1, Rx2, Rx3的量测时间差 Δt31 , Δt32

    Δt31=(kML3kML1)/fs=35107s=3.5×106s 
    Δt32=(kML3kML2)/fs=156107s=1.56×105s

    根据GPS定位信息,以接收站Rx3为参考,根据式(14)计算可得信号到达Rx1, Rx2, Rx3的理论时间差为:

    Δt31=ΔL31c=13.749km12.714kmc=3.450×106s
    Δt32=ΔL32c=13.749km9.081kmc=1.556×105s

    将量测时间差与理论时间差对比,三站时间同步误差分别为:

    ε31=|Δt31Δt31|=5×108s
    ε32=|Δt32Δt32|=4×108s

    可以看出,该误差量级为10 –8 ,且误差值非常接近GPS接收模块的标称定时精度,表明系统时间同步设计性能良好,符合基于数字广播电视分布式外辐射源雷达接收系统的同步需求。需要指出的是,上述分析所得误差不仅来源于多站同步时间误差,还来源于GPS接收模块定位误差和接收机采样的时间量化误差,但此结果仍能说明该分布式外辐射源雷达系统的时间同步性能良好。

    图  8  三站同步信号相对位置
    Figure  8.  Relative positions of the synchronization signals received by the receivers

    本文针对数字广播电视发射系统的同步原理,设计并实现了基于此照射源的分布式外辐射源雷达系统同步方案。该方案采用GPS接收模块为接收系统提供精确稳定的10 MHz频率源和1PPS定时信号,以实现雷达接收站与照射源、接收站与接收站之间的时间、频率同步。然后利用CMMB信号帧结构的特殊性,提出了一种同步性能测试方法,结合实验实测数据分析,验证了该同步方案基本满足分布式外辐射源雷达系统的同步需求。另外,分布式外辐射源雷达系统工作时,往往默认发射站之间同步性能良好,然而实际中难免存在发射站间频率和时间异步情况,此时,利用本文设计的同步性能良好的接收系统,通过文中提出的测试方法,同样可以测试发射站间的同步情况。

    致谢: 论文相关实验得到南昌大学王玉皞教授、赵志欣博士、洪升博士的协助,在此表示感谢!
  • 图  1  分布式多传感器多目标跟踪流程图

    Figure  1.  Flowchart of distributed multi-sensor multi-target tracking

    图  2  时间配准方法

    Figure  2.  Time registration methods

    图  3  空间配准几何示意图

    Figure  3.  Illustration of spatial registration

    图  4  空间配准场景

    Figure  4.  Scene of spatial registration

    图  5  WGS84坐标系下配准前后显著性目标位置[82]

    Figure  5.  Registration results before and after registration in the WGS84 coordinate system[82]

    图  6  典型的航迹关联方法及分类

    Figure  6.  Classification of track-to-track association methods

    图  7  航迹关联场景

    Figure  7.  Scene of track-to-track association

    图  8  航迹关联正确率[82]

    Figure  8.  Accuracy of track association[82]

    图  9  航迹关联与空间配准关系[82]

    Figure  9.  Relationship of track-track association and spatial registration[82]

    图  10  分布式多传感器估计融合

    Figure  10.  Distributed multi-sensor estimation fusion

    图  1  Flowchart of distributed multi-sensor multi-target tracking

    图  2  Time registration methods

    图  3  Illustration of spatial registration

    图  4  Scene of spatial registration

    图  5  Registration results before and after registration in the WGS84 coordinate system [ 82]

    图  6  Classification of track-to-track association methods

    图  7  Scene of track-to-track association

    图  8  Accuracy of track association [ 82]

    图  9  Relationship of track-track association and spatial registration [ 82]

    图  10  Distributed multi-sensor estimation fusion

    表  1  典型的多目标跟踪方法性能对比

    Table  1.   Performance comparison of different multi-target tracking methods

    多目标跟踪类型跟踪方法跟踪精度运算量
    数据关联类GNN
    JPDA中等中等
    JIPDA中等中等
    MHT
    随机有限集类PHD
    CPHD中等中等
    TPHD中等
    TCPHD中等中等
    MeMBer中等中等
    PMBM中等
    GLMB
    LMB中等
    下载: 导出CSV

    表  2  多传感器时间配准方法性能对比

    Table  2.   Comparison of multi-sensor time registration methods

    配准类型配准方法配准精度计算量目标运动状态
    插值类内插外推较低匀速
    曲线插值中等较高匀速\非匀速
    曲线拟合中等较高匀速\非匀速
    参数估计类最小二乘中等中等匀速
    卡尔曼滤波较高较高匀速\非匀速
    下载: 导出CSV

    表  3  多传感器非合作目标空间配准方法分类

    Table  3.   Classification of multi-sensor spatial registration methods based on non-cooperative targets

    配准方法实时性是否能估计
    目标位置
    参与传感器
    个数
    传感器类型
    RTQC离线两个同类
    LS离线两个同类
    GLS离线两个同类
    EML离线两个同类
    KF在线多个同类
    RFS在线多个同类
    MLR离线多个同类\异类
    RBER离线多个同类\异类
    下载: 导出CSV

    表  4  航迹关联性能对比

    Table  4.   Comparison of multi-sensor track-to-track association methods

    航迹关联方法航迹关联正确率(%)时间开销(s)
    SMBTANTD[82]99.63.4
    Generalized Likelihood[15]97.42.8
    Fuzzy function[89]96.78.1
    下载: 导出CSV

    表  5  多传感器估计融合方法对比

    Table  5.   Comparison of multi-sensor estimation fusion methods

    估计融合方法是否考虑
    航迹相关
    计算量融合
    精度
    传感器
    类型
    简单凸组合融合同类
    Bar-Shalom-Campo融合较高较高同类
    基于MAP较高较高同类
    CI融合较高较高同类
    GCI融合较高较高同类/异类
    AA融合较高较高同类/异类
    基于EKF融合较高较高同类/异类
    基于UKF融合较高较高同类/异类
    基于PF融合同类/异类
    下载: 导出CSV

    表  6  典型的多传感器多目标跟踪方法性能对比

    Table  6.   Performance comparison of multi-sensor multi-target tracking methods

    多目标跟踪类型融合准则跟踪方法运算量跟踪精度
    数据关联类CI融合JPDA中等中等
    简单凸组合融合MHT中等
    随机有限集类GCI/GA融合PHD
    CPHD中等中等
    MeMBer中等中等
    GLMB
    LMB中等
    AA融合PHD
    CPHD中等中等
    MeMBer中等中等
    GLMB
    LMB中等
    下载: 导出CSV

    表  1  Performance comparison of different multi-target tracking methods

    Types of multiple target tracking Tracking methods Tracking accuracy Computational complexity
    Data association GNN Low Low
    JPDA Medium Medium
    JIPDA Medium Medium
    MHT High High
    Random finite set PHD Low Low
    CPHD Medium Medium
    TPHD Medium Low
    TCPHD Medium Medium
    MeMBer Medium Medium
    PMBM High Medium
    GLMB High High
    LMB High Medium
    下载: 导出CSV

    表  2  Comparison of multi-sensor time registration methods

    Registration types Registration methods Registration accuracy Computational complexity Target motion state
    Interpolation class Interpolation and extrapolation Lower Lower Uniform
    Curve interpolation Medium Higher Uniform \ Non-uniform
    Curve fitting Medium Higher Uniform \ Non-uniform
    Parameter estimation Least squares Medium Medium Uniform
    Kalman filter Higher Higher Uniform \ Non-uniform
    下载: 导出CSV

    表  3  Classification of multi-sensor spatial registration methods based on non-cooperative targets

    Registration methods Real-time Can the target position be estimated? Number of sensors Sensor type
    RTQC Offline No Two Homogeneous
    LS Offline No Two Homogeneous
    GLS Offline No Two Homogeneous
    EML Offline Yes Two Homogeneous
    KF Online Yes Multiple Homogeneous
    RFS Online Yes Multiple Homogeneous
    MLR Offline Yes Multiple Homogeneous \ Heterogeneous
    RBER Offline Yes Multiple Homogeneous \ Heterogeneous
    下载: 导出CSV

    表  4  Comparison of multi-sensor track-to-track association methods

    Association algorithm Association rate (%) Time consumed
    (s)
    SMBTANTD [ 82] 99.6 3.4
    Generalized likelihood [ 15] 97.4 2.8
    Fuzzy function [ 89] 96.7 8.1
    下载: 导出CSV

    表  5  Comparison of multi-sensor estimation fusion methods

    Estimation fusion method Whether to consider track correlation Computational
    complexity
    Fusion accuracy Sensor type
    Simple convex combination fusion No Low Low Homogeneous
    Bar-Shalom-Campo fusion Yes Higher Higher Homogeneous
    MAP fusion Yes Higher Higher Homogeneous
    CI fusion Yes Higher Higher Homogeneous
    GCI fusion Yes Higher Higher Homogeneous \ Heterogeneous
    AA fusion Yes Higher Higher Homogeneous \ Heterogeneous
    EKF fusion No Higher Higher Homogeneous \ Heterogeneous
    UKF fusion No Higher Higher Homogeneous \ Heterogeneous
    PF fusion No High High Homogeneous \ Heterogeneous
    下载: 导出CSV

    表  6  Performance comparison of multi-sensor multi-target tracking methods

    Types of multiple target tracking Fusion criteria Tracking methods Computational complexity Tracking accuracy
    Data association CI Fusion JPDA Medium Medium
    Simple convex combination fusion MHT High Medium
    Random finite set GCI/GA fusion PHD Low Low
    CPHD Medium Medium
    MeMBer Medium Medium
    GLMB High High
    LMB Medium High
    AA fusion PHD Low Low
    CPHD Medium Medium
    MeMBer Medium Medium
    GLMB High High
    LMB Medium High
    下载: 导出CSV
  • [1] 韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合[M]. 北京: 清华大学出版社, 2006: 1–13.

    HAN Chongzhao, ZHU Hongyan, DUAN Zhansheng, et al. Multi-Source Information Fusion[M]. Beijing: Tsinghua University Press, 2006: 1–13.
    [2] 陈科文, 张祖平, 龙军. 多源信息融合关键问题、研究进展与新动向[J]. 计算机科学, 2013, 40(8): 6–13. doi: 10.3969/j.issn.1002-137X.2013.08.002.

    CHEN Kewen, ZHANG Zuping, and LONG Jun. Multisource information fusion: Key issues, research progress and new trends[J]. Computer Science, 2013, 40(8): 6–13. doi: 10.3969/j.issn.1002-137X.2013.08.002.
    [3] 李龙飘. 多传感器系统中信息融合技术的研究[D]. [硕士论文], 中北大学, 2009.

    LI Longpiao. Research on data fusion technique of multi-sensor system[D]. [Master dissertation], North University of China, 2009.
    [4] 苏军平. 多传感器信息融合关键技术研究[D]. [硕士论文], 西安电子科技大学, 2018.

    SU Junping. Research on the key technology of the multi-sensor information fusion[D]. [Master dissertation], Xidian University, 2018.
    [5] 王晓丽. 基于雷达组网提高空中目标航迹测量精度的数据融合方法研究[D]. [硕士论文], 电子科技大学, 2012.

    WANG Xiaoli. Research on data fusion based on netted radar to improve measurement precision of aerial targets’ flight track[D]. [Master dissertation], University of Electronic Science and Technology of China, 2012.
    [6] ZHU Shanshan. Multi-source information fusion technology and its engineering application[J]. Research in Health Science, 2020, 4(4): 408–422. doi: 10.22158/rhs.v4n4p408.
    [7] ANITHA R, RENUKA S, and ABUDHAHIR A. Multi sensor data fusion algorithms for target tracking using multiple measurements[C]. 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi, India, 2013: 1–4.
    [8] AEBERHARD M, SCHLICHTHARLE S, KAEMPCHEN N, et al. Track-to-track fusion with asynchronous sensors using information matrix fusion for surround environment perception[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1717–1726. doi: 10.1109/TITS.2012.2202229.
    [9] SHEN Qiang, LIU Jieyu, ZHOU Xiaogang, et al. Centralized fusion methods for multi-sensor system with bounded disturbances[J]. IEEE Access, 2019, 7: 141612–141626. doi: 10.1109/ACCESS.2019.2943163.
    [10] 赵蕊, 贺建军. 多传感器信息融合技术[J]. 计算机测量与控制, 2007, 15(9): 1124–1126, 1134. doi: 10.3969/j.issn.1671-4598.2007.09.001.

    ZHAO Rui and HE Jianjun. Technology of multi-sensor information fusion[J]. Computer Measurement &Control, 2007, 15(9): 1124–1126, 1134. doi: 10.3969/j.issn.1671-4598.2007.09.001.
    [11] 吕漫丽, 孙灵芳. 多传感器信息融合技术[J]. 自动化技术与应用, 2008, 27(2): 79–82. doi: 10.3969/j.issn.1003-7241.2008.02.025.

    LV Manli and SUN Lingfang. Multi-sensor information fusion technology[J]. Techniques of Automation and Applications, 2008, 27(2): 79–82. doi: 10.3969/j.issn.1003-7241.2008.02.025.
    [12] 何友, 彭应宁, 陆大絟. 多传感器数据融合模型综述[J]. 清华大学学报: 自然科学版, 1996, 36(9): 14–20.

    HE You, PENG Yingning, and LU Dajin. Survey of multisensor data fusion models[J]. Journal of Tsinghua University:Science and Technology, 1996, 36(9): 14–20.
    [13] WANG Zhangjing, WU Yu, and NIU Qingqing. Multi-sensor fusion in automated driving: A survey[J]. IEEE Access, 2020, 8: 2847–2868. doi: 10.1109/ACCESS.2019.2962554.
    [14] LIN Xiangdong, BAR-SHALOM Y, and KIRUBARAJAN T. Multisensor multitarget bias estimation for general asynchronous sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 899–921. doi: 10.1109/TAES.2005.1541438.
    [15] 何友, 王国宏, 陆大絟, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000: 2–11.

    HE You, WANG Guohong, LU Dajin, et al. Multisensor Information Fusion with Applications[M]. Beijing: Publishing House of Electronics Industry, 2000: 2–11.
    [16] 高青. 多传感器数据融合算法研究[D]. [硕士论文], 西安电子科技大学, 2008.

    GAO Qing. Algorithms research on multisensor data fusion[D]. [Master dissertation], Xidian University, 2008.
    [17] 肖斌. 多传感器信息融合及其在工业中的应用[D]. [硕士论文], 太原理工大学, 2008.

    XIAO Bin. Multi-sensor information fusion and its application in industry[D]. [Master dissertation], Taiyuan University of Technology, 2008.
    [18] 陈文辉, 马铁华. 多传感器信息融合技术的研究与进展[J]. 科技情报开发与经济, 2006, 16(19): 212–213. doi: 10.3969/j.issn.1005-6033.2006.19.124.

    CHEN Wenhui and MA Tiehua. The research and progress of multi-sensor information fusion techniques[J]. Sci-Tech Information Development &Economy, 2006, 16(19): 212–213. doi: 10.3969/j.issn.1005-6033.2006.19.124.
    [19] NAZARI M, PASHAZADEH S, and MOHAMMAD-KHANLI L. An adaptive density-based fuzzy clustering track association for distributed tracking system[J]. IEEE Access, 2019, 7: 135972–135981. doi: 10.1109/ACCESS.2019.2941184.
    [20] DASH D and JAYARAMAN V. A probabilistic model for sensor fusion using range-only measurements in multistatic radar[J]. IEEE Sensors Letters, 2020, 4(6): 1–4. doi: 10.1109/LSENS.2020.2993589.
    [21] SHARMA A and CHAUHAN S. Sensor fusion for distributed detection of mobile intruders in surveillance wireless sensor networks[J]. IEEE Sensors Journal, 2020, 20(24): 15224–15231. doi: 10.1109/JSEN.2020.3009828.
    [22] KUMAR M, GARG D P, and ZACHERY R A. A method for judicious fusion of inconsistent multiple sensor data[J]. IEEE Sensors Journal, 2007, 7(5): 723–733. doi: 10.1109/JSEN.2007.894905.
    [23] LLINAS J and HALL D L. An introduction to multi-sensor data fusion[C]. The 1998 IEEE International Symposium on Circuits & Systems, Monterey, USA, 1998: 537–540.
    [24] HU Jinwen, ZHENG Boyin, WANG Ce, et al. A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments[J]. Frontiers of Information Technology &Electronic Engineering, 2020, 21(5): 675–692. doi: 10.1631/FITEE.1900518.
    [25] XIAO Fuyuan. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion, 2019, 46: 23–32. doi: 10.1016/j.inffus.2018.04.003.
    [26] KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion: A review of the state-of-the-art[J]. Information Fusion, 2013, 14(1): 28–44. doi: 10.1016/j.inffus.2011.08.001.
    [27] LIGGINS II M, POULARIKAS A D, HALL D, et al. Handbook of Multisensor Data Fusion: Theory and Practice[M]. 2nd ed. Boca Raton: CRC Press, 2009: 3–16.
    [28] GAO Shesheng, ZHONG Yongmin, and LI Wei. Random weighting method for multisensor data fusion[J]. IEEE Sensors Journal, 2011, 11(9): 1955–1961. doi: 10.1109/JSEN.2011.2107896.
    [29] CARON F, DAVY M, DUFLOS E, et al. Particle filtering for multisensor data fusion with switching observation models: Application to land vehicle positioning[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2703–2719. doi: 10.1109/TSP.2007.893914.
    [30] MITCHELL H B. Multi-Sensor Data Fusion: An Introduction[M]. Berlin: Springer, 2007: 1–22.
    [31] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, Inc., 2007: 305–682.
    [32] DALEY R. Estimating the wind field from chemical constituent observations: Experiments with a one-dimensional extended Kalman filter[J]. Monthly Weather Review, 1995, 123(1): 181–198. doi: 10.1175/1520-0493(1995)123<0181:ETWFFC>2.0.CO;2.
    [33] WAN E A and VAN DER MERWE R. The Unscented Kalman Filter[M]. HAYKIN S. Kalman Filtering and Neural Networks. New York: John Wiley & Sons, Inc., 2001: 221–280.
    [34] ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254–1269. doi: 10.1109/TAC.2009.2019800.
    [35] GUSTAFSSON F. Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53–82. doi: 10.1109/MAES.2010.5546308.
    [36] VO B N, MALLICK M, BAR-SHALOM Y, et al. Multitarget Tracking[M]. WEBSTER J G. Wiley Encyclopedia of Electrical and Electronics Engineering. New York: John Wiley & Sons, 2015: 1–11.
    [37] BAR-SHALOM Y. Multitarget-Multisensor Tracking: Applications and Advances[M]. Boston: Artech House, 1990: 2–9.
    [38] FORTMANN T, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE journal of Oceanic Engineering, 1983, 8(3): 173–184. doi: 10.1109/JOE.1983.1145560.
    [39] COLGROVE S B, DAVIS A W, and AYLIFFE J K. Track initiation and nearest neighbours incorporated into probabilistic data association[J]. Journal of Electrical and Electronics Engineers,Australia, 1986, 6(3): 191–198.
    [40] CHANG K C and BAR-SHALOM Y. Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers[J]. IEEE Transactions on Automatic Control, 1984, 29(7): 585–594. doi: 10.1109/TAC.1984.1103597.
    [41] MUSICKI D and EVANS R. Joint integrated probabilistic data association-JIPDA[C]. The 5th International Conference on Information Fusion, Annapolis, USA, 2002: 1120–1125.
    [42] SINGER R A and SEA R G. New results in optimizing surveillance system tracking and data correlation performance in dense multitarget environments[J]. IEEE Transactions on Automatic Control, 1973, 18(6): 571–582. doi: 10.1109/TAC.1973.1100421.
    [43] SONG T L, LEE D G, and RYU J. A probabilistic nearest neighbor filter algorithm for tracking in a clutter environment[J]. Signal Processing, 2005, 85(10): 2044–2053. doi: 10.1016/j.sigpro.2005.01.016.
    [44] REID D B. An algorithm for tracking multiple targets[J]. IEEE transactions on Automatic Control, 1979, 24(6): 843–854. doi: 10.1109/TAC.1979.1102177.
    [45] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5–18. doi: 10.1109/MAES.2004.1263228.
    [46] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119.
    [47] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543. doi: 10.1109/TAES.2007.4441756.
    [48] GARCÍA-FERNÁNDEZ Á F and SVENSSON L. Trajectory PHD and CPHD filters[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5702–5714. doi: 10.1109/TSP.2019.2943234.
    [49] VO B T, VO B N, and CANTONI A. On multi-Bernoulli approximations to the Bayes multi-target filter[C]. International Conference on Information Fusion, Xi’an, China, 2007: 1–8.
    [50] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924.
    [51] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822.
    [52] PAPI F, VO B N, VO B T, et al. Generalized labeled multi-Bernoulli approximation of multi-object densities[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5487–5497. doi: 10.1109/TSP.2015.2454478.
    [53] REUTER S, VO B T, VO B N, et al. The Labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064.
    [54] GARCÍA-FERNÁNDEZ Á F, WILLIAMS J L, GRANSTRÖM K, et al. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1883–1901. doi: 10.1109/TAES.2018.2805153.
    [55] LIN Xiangdong, BAR-SHALOM Y, and KIRUBARAJAN T. Exact multisensor dynamic bias estimation with local tracks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 576–590. doi: 10.1109/TAES.2004.1310006.
    [56] BLAIR W D, RICE T R, ALOUANI A T, et al. Asynchronous data fusion for target tracking with a multitasking radar and optical sensor[C]. The SPIE of 1482, Acquisition, Tracking, and Pointing V, Orlando, USA, 1991: 234–245.
    [57] 李莉. 最小二乘法时间配准在测量数据融合中的应用[J]. 仪表技术, 2017(12): 35–36, 49. doi: 10.19432/j.cnki.issn1006-2394.2017.12.010.

    LI Li. Application of time registration of the least square method in measurement data fusion[J]. Instrumentation Technology, 2017(12): 35–36, 49. doi: 10.19432/j.cnki.issn1006-2394.2017.12.010.
    [58] 吴聪, 王红, 李志淮, 等. 基于最小二乘曲线拟合的时间配准方法研究[J]. 舰船电子对抗, 2013, 36(4): 44–47, 51. doi: 10.16426/j.cnki.jcdzdk.2013.04.018.

    WU Cong, WANG Hong, LI Zhihuai, et al. Research into time registration method based on least-square curve fitting[J]. Shipboard Electronic Countermeasure, 2013, 36(4): 44–47, 51. doi: 10.16426/j.cnki.jcdzdk.2013.04.018.
    [59] 张圣华, 王书基, 孙潮义. 多雷达数据融合中时间对准问题的研究[J]. 舰船电子工程, 2001, 21(2): 23–25. doi: 10.3969/j.issn.1627-9730.2001.02.005.

    ZHANG Shenghua, WANG Shuji, and SUN Chaoyi. Research on time registration in multi-radar data fusion[J]. Ship Electronic Engineering, 2001, 21(2): 23–25. doi: 10.3969/j.issn.1627-9730.2001.02.005.
    [60] 梁凯, 潘泉, 宋国明, 等. 基于曲线拟合的多传感器时间对准方法研究[J]. 火力与指挥控制, 2006, 31(12): 51–53. doi: 10.3969/j.issn.1002-0640.2006.12.015.

    LIANG Kai, PAN Quan, SONG Guoming, et al. The study of multi-sensor time registration method based on curve fitting[J]. Fire Control and Command Control, 2006, 31(12): 51–53. doi: 10.3969/j.issn.1002-0640.2006.12.015.
    [61] YU Hongbo, WANG Guohong, and CAO Qian. A novel approach for time registration of multi-radar data[J]. Applied Mechanics and Materials, 2013, 385/386: 1377–1380. doi: 10.4028/www.scientific.net/AMM.385-386.1377.
    [62] LI Song, CHENG Yongmei, BROWN D, et al. Comprehensive time-offset estimation for multisensor target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2351–2373. doi: 10.1109/TAES.2019.2948517.
    [63] TAGHAVI E, THARMARASA R, KIRUBARAJAN T, et al. A practical bias estimation algorithm for multisensor-multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 2–19. doi: 10.1109/TAES.2015.140574.
    [64] OKELLO N N and CHALLA S. Joint sensor registration and track-to-track fusion for distributed trackers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 808–823. doi: 10.1109/TAES.2004.1337456.
    [65] RHODE S, USEVICH K, MARKOVSKY I, et al. A recursive restricted total least-squares algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5652–5662. doi: 10.1109/TSP.2014.2350959.
    [66] FORTUNATI S, FARINA A, GINI F, et al. Least squares estimation and Cramér-Rao type lower bounds for relative sensor registration process[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1075–1087. doi: 10.1109/TSP.2010.2097258.
    [67] PULFORD G W. Analysis of a nonlinear least squares procedure used in global positioning systems[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4526–4534. doi: 10.1109/TSP.2010.2050061.
    [68] BAI Shulin and ZHANG Yumei. Error registration of netted radar by using GLS algorithm[C]. The 33rd Chinese Control Conference, Nanjing, China, 2014: 7430–7433.
    [69] LU Chenyang, WANG Xiaorui, and KOUTSOUKOS X. Feedback utilization control in distributed real-time systems with end-to-end tasks[J]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(6): 550–561. doi: 10.1109/TPDS.2005.73.
    [70] ZHOU Yifeng, LEUNG H, and YIP P C. An exact maximum likelihood registration algorithm for data fusion[J]. IEEE Transactions on Signal Processing, 1997, 45(6): 1560–1573. doi: 10.1109/78.599998.
    [71] CHITOUR Y and PASCAL F. Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4563–4573. doi: 10.1109/TSP.2008.927464.
    [72] OKELLO N N and RISTIC B. Maximum likelihood registration for multiple dissimilar sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1074–1083. doi: 10.1109/TAES.2003.1238759.
    [73] MCMICHAEL D W and OKELLO N N. Maximum likelihood registration of dissimilar sensors[C]. The 1st Australian Data Fusion Symposium, Adelaide, Australia, 1996: 31–34.
    [74] HELMICK R E and RICE T R. Removal of alignment errors in an integrated system of two 3-D sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4): 1333–1343. doi: 10.1109/7.259537.
    [75] KOSUGE Y and OKADA T. Bias estimation of two 3-dimensional radars using Kalman filter[C]. The 4th IEEE International Workshop on Advanced Motion Control, Mie, Japan, 1996: 377–382.
    [76] NABAA N and BISHOP R H. Solution to a multisensor tracking problem with sensor registration errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 354–363. doi: 10.1109/7.745706.
    [77] LI W, LEUNG H, and ZHOU Yifeng. Space-time registration of radar and ESM using unscented Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 824–836. doi: 10.1109/TAES.2004.1337457.
    [78] 胡洪涛, 敬忠良, 胡士强. 一种基于Unscented卡尔曼滤波的多平台多传感器配准算法[J]. 上海交通大学学报, 2005, 39(9): 1518–1521. doi: 10.16183/j.cnki.jsjtu.2005.09.030.

    HU Hongtao, JING Zhongliang, and HU Shiqiang. An unscented Kalman filter based multi-platform multi-sensor registration[J]. Journal of Shanghai Jiaotong University, 2005, 39(9): 1518–1521. doi: 10.16183/j.cnki.jsjtu.2005.09.030.
    [79] LI Wenling, JIA Yingmin, DU Junping, et al. Gaussian mixture PHD filter for multi-sensor multi-target tracking with registration errors[J]. Signal Processing, 2013, 93(1): 86–99. doi: 10.1016/j.sigpro.2012.06.030.
    [80] LI Minzhe, JING Zhongliang, PAN Han, et al. Joint registration and multi-target tracking based on labelled random finite set and expectation maximisation[J]. IET Radar,Sonar &Navigation, 2018, 12(3): 312–322. doi: 10.1049/iet-rsn.2017.0137.
    [81] LIAN Feng, HAN Chongzhao, LIU Weifeng, et al. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter[J]. IET Radar,Sonar &Navigation, 2011, 5(4): 441–448. doi: 10.1049/iet-rsn.2010.0057.
    [82] WANG Jun, ZENG Yajun, WEI Shaoming, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3337–3350. doi: 10.1109/TSP.2021.3084533.
    [83] KANYUCK A J and SINGER R A. Correlation of multiple-site track data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(2): 180–187. doi: 10.1109/TAES.1970.310100.
    [84] BAR-SHALOM Y. On the track-to-track correlation problem[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 571–572. doi: 10.1109/TAC.1981.1102635.
    [85] 何友, 唐劲松, 王国宏. 多雷达跟踪系统中航迹质量管理的优化[J]. 现代雷达, 1995, 17(1): 14–19, 54. doi: 10.16592/j.cnki.1004-7859.1995.01.002.

    HE You, TANG Jinsong, and WANG Guohong. Optimal tracking-quality-management in multiradar tracking systems[J]. Modern Radar, 1995, 17(1): 14–19, 54. doi: 10.16592/j.cnki.1004-7859.1995.01.002.
    [86] 黄晓冬, 何友, 赵峰. 几种典型情况下的航迹关联研究[J]. 系统仿真学报, 2005, 17(9): 2085–2088, 2174. doi: 10.3969/j.issn.1004-731X.2005.09.011.

    HUANG Xiaodong, HE You, and ZHAO Feng. Study of track association in typical cases[J]. Journal of System Simulation, 2005, 17(9): 2085–2088, 2174. doi: 10.3969/j.issn.1004-731X.2005.09.011.
    [87] 齐林, 王海鹏, 刘瑜. 基于统计双门限的中断航迹配对关联算法[J]. 雷达学报, 2015, 4(3): 301–308. doi: 10.12000/JR14077.

    QI Lin, WANG Haipeng, and LIU Yu. Track segment association algorithm based on statistical binary thresholds[J]. Journal of Radars, 2015, 4(3): 301–308. doi: 10.12000/JR14077.
    [88] HONG Shuaixin, PENG Dongliang, and SHI Yifang. Track-to-track association using fuzzy membership function and clustering for distributed information fusion[C]. The 37th Chinese Control Conference, Wuhan, China, 2018: 4028–4032.
    [89] AZIZ A M. A new fuzzy clustering approach for data association and track fusion in multisensor-multitarget environment[C]. 2011 IEEE Aerospace Conference, Big Sky, USA, 2011: 1–10.
    [90] 徐亚圣, 丁赤飚, 任文娟, 等. 基于直方统计特征的多特征组合航迹关联[J]. 雷达学报, 2019, 8(1): 25–35. doi: 10.12000/JR18028.

    XU Yasheng, DING Chibiao, REN Wenjuan, et al. Multi-feature combination track-to-track association based on histogram statistics feature[J]. Journal of Radars, 2019, 8(1): 25–35. doi: 10.12000/JR18028.
    [91] POORE A P and RIJAVEC N. A lagrangian relaxation algorithm for multidimensional assignment problems arising from multitarget tracking[J]. SIAM Journal on Optimization, 1993, 3(3): 544–563. doi: 10.1137/0803027.
    [92] POPP R L, PATTIPATI K R, and BAR-SHALOM Y. M-best S-D assignment algorithm with application to multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 22–39. doi: 10.1109/7.913665.
    [93] BAR-SHALOM Y. On the sequential track correlation algorithm in a multisensor data fusion system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 396–396. doi: 10.1109/TAES.2008.4517016.
    [94] 宋文彬. 传感器数据空间配准算法研究进展[J]. 传感器与微系统, 2012, 31(8): 5–8. doi: 10.13873/j.1000-97872012.08.027.

    SONG Wenbin. Research progress of spatial registration algorithms for sensor data[J]. Transducer and Microsystem Technologies, 2012, 31(8): 5–8. doi: 10.13873/j.1000-97872012.08.027.
    [95] TIAN Wei, WANG Yue, SHAN Xiuming, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4): 449–453. doi: 10.1109/LSP.2014.2305305.
    [96] TIAN Wei. Reference pattern-based track-to-track association with biased data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 501–512. doi: 10.1109/TAES.2015.140433.
    [97] LI Zhenhua, CHEN Siyue, LEUNG H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 496–507. doi: 10.1109/TAES.2010.5461637.
    [98] 田威, 王钺, 山秀明, 等. 稳健的联合航迹关联与系统误差估计[J]. 清华大学学报:自然科学版, 2013, 53(7): 946–950. doi: 10.16511/j.cnki.qhdxxb.2013.07.009.

    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Robust method for joint track association and sensor bias estimation[J]. Journal of Tsinghua University:Science and Technology, 2013, 53(7): 946–950. doi: 10.16511/j.cnki.qhdxxb.2013.07.009.
    [99] LEVEDAHL M. Explicit pattern matching assignment algorithm[C]. The SPIE of 4728, Signal and Data Processing of Small Targets 2002, Orlando, USA, 2002: 461–469.
    [100] SHI Yue, WANG Yue, and SHAN Xiuming. A novel fuzzy pattern recognition data association method for biased sensor data[C]. The 9th International Conference on Information Fusion, Florence, Italy, 2006: 1–5.
    [101] CHAIR Z and VARSHNEY P K. Optimal data fusion in multiple sensor detection systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(1): 98–101. doi: 10.1109/TAES.1986.310699.
    [102] SINGER R A and KANYUCK A J. Computer control of multiple site track correlation[J]. Automatica, 1971, 7(4): 455–463. doi: 10.1016/0005-1098(71)90096-3.
    [103] ROECKER J A and MCGILLEM C D. Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 447–449. doi: 10.1109/7.7186.
    [104] BAR-SHALOM Y and CAMPO L. The effect of the common process noise on the two-sensor fused-track covariance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(6): 803–805. doi: 10.1109/TAES.1986.310815.
    [105] UHLMANN J K. General data fusion for estimates with unknown cross covariances[C]. The SPIE of 2755, Signal Processing, Sensor Fusion, and Target Recognition V, Orlando, USA, 1996: 536–547.
    [106] HURLEY M B. An information theoretic justification for covariance intersection and its generalization[C]. The 5th International Conference on Information Fusion, Annapolis, USA, 2002: 505–511.
    [107] CHANG K C, TIAN Zhi, and MORI S. Performance evaluation for MAP state estimate fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 706–714. doi: 10.1109/TAES.2004.1310015.
    [108] DRUMMOND O E. Track fusion with feedback[C]. The SPIE of 2759, Signal and Data Processing of Small Targets 1996, Orlando, USA, 1996: 342–360.
    [109] DRUMMOND O E. Hybrid sensor fusion algorithm architecture and tracklets[C]. The SPIE of 3163, Signal and Data Processing of Small Targets 1997, San Diego, USA, 1997: 512–524.
    [110] ZHU Yunmin, YOU Zhisheng, ZHAO Juan, et al. The optimality for the distributed Kalman filtering fusion with feedback[J]. Automatica, 2001, 37(9): 1489–1493. doi: 10.1016/S0005-1098(01)00074-7.
    [111] YUAN Ting, BAR-SHALOM Y, and TIAN Xin. Heterogeneous track-to-track fusion[C]. The 14th International Conference on Information Fusion, Chicago, USA, 2011: 1–8.
    [112] CHANG K C, SAHA R K, and BAR-SHALOM Y. On optimal track-to-track fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1271–1276. doi: 10.1109/7.625124.
    [113] TIAN Xin. Track-to-track fusion configurations and association in a sliding window[J]. Journal of Advances in Information Fusion, 2009, 4(2): 146–164.
    [114] LI Tiancheng, FAN Hongqi, GARCÍA J, et al. Second-order statistics analysis and comparison between arithmetic and geometric average fusion: Application to multi-sensor target tracking[J]. Information Fusion, 2019, 51: 233–243. doi: 10.1016/j.inffus.2019.02.009.
    [115] LI Tiancheng, WANG Xiaoxu, LIANG Yan, et al. On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking[J]. IEEE Transactions on Signal Processing, 2020, 68: 2883–2896. doi: 10.1109/TSP.2020.2985643.
    [116] LI Tiancheng and HLAWATSCH F. A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters[J]. Information Fusion, 2021, 73: 111–124. doi: 10.1016/j.inffus.2021.02.020.
    [117] LI Tiancheng, CORCHADO J M, and SUN Shudong. Partial consensus and conservative fusion of Gaussian mixtures for distributed PHD fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2150–2163. doi: 10.1109/TAES.2018.2882960.
    [118] TIAN Xin, BAR-SHALOM Y, YUAN Ting, et al. A generalized information matrix fusion based heterogeneous track-to-track fusion algorithm[C]. The SPIE 8050, Signal Processing, Sensor Fusion, and Target Recognition XX, Orlando, USA, 2011: 805015.
    [119] TIAN Xin, YUAN Ting, and BAR-SHALOM Y. Track-to-track Fusion in Linear and Nonlinear Systems[M]. CHOUKROUN D, OSHMAN Y, THIENEL J, et al. Advances in Estimation, Navigation, and Spacecraft Control. Berlin, Heidelberg: Springer, 2015: 21–41.
    [120] MALLICK M, CHANG K C, ARULAMPALAM S, et al. Heterogeneous track-to-track fusion in 3-D using IRST sensor and air MTI radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3062–3079. doi: 10.1109/TAES.2019.2898302.
    [121] MENEGAZ H M T, ISHIHARA J Y, and KUSSABA H T M. Unscented Kalman filters for riemannian state-space systems[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1487–1502. doi: 10.1109/TAC.2018.2846684.
    [122] YEE D, REILLY J P, KIRUBARAJAN T, et al. Approximate conditional mean particle filtering for linear/nonlinear dynamic state space models[J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5790–5803. doi: 10.1109/TSP.2008.929660.
    [123] BATTISTELLI G, CHISCI L, FANTACCI C, et al. Distributed peer-to-peer multitarget tracking with association-based track fusion[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–7.
    [124] CHONG C Y, MORI S, and CHANG K C. Information fusion in distributed sensor networks[C]. American Control Conference, Boston, USA, 1985: 830–835.
    [125] CORALUPPI S, RAGO C, CARTHEL C, et al. Distributed MHT with passive sensors[C]. The 24th International Conference on Information Fusion, Sun City, South Africa, 2021: 1–8.
    [126] ÜNEY M, CLARK D E, and JULIER S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. doi: 10.1109/JSTSP.2013.2257162.
    [127] BATTISTELLI G, CHISCI L, FANTACCI C, et al. Consensus CPHD filter for distributed multitarget tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508–520. doi: 10.1109/JSTSP.2013.2250911.
    [128] WANG Bailu, YI Wei, HOSEINNEZHAD R, et al. Distributed fusion with multi-Bernoulli filter based on generalized covariance intersection[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 242–255. doi: 10.1109/TSP.2016.2617825.
    [129] FANTACCI C, VO B N, VO B T, et al. Robust fusion for multisensor multiobject tracking[J]. IEEE Signal Processing Letters, 2018, 25(5): 640–644. doi: 10.1109/LSP.2018.2811750.
    [130] LI Suqi, BATTISTELLI G, CHISCI L, et al. Multi-sensor multi-object tracking with different fields-of-view using the LMB filter[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1201–1208.
    [131] LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Robust distributed fusion with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 278–293. doi: 10.1109/TSP.2017.2760286.
    [132] GAO Lin, BATTISTELLI G, and CHISCI L. Multiobject fusion with minimum information loss[J]. IEEE Signal Processing Letters, 2020, 27: 201–205. doi: 10.1109/LSP.2019.2963817.
    [133] GAO Lin, BATTISTELLI G, and CHISCI L. Fusion of labeled RFS densities with minimum information loss[J]. IEEE Transactions on Signal Processing, 2020, 68: 5855–5868. doi: 10.1109/TSP.2020.3028496.
  • 期刊类型引用(21)

    1. 张晶,陈楚舒,王博. 基于密度锥削阵sin-FDA的波束方向图研究. 指挥控制与仿真. 2024(02): 122-127 . 百度学术
    2. 陈小龙,何肖阳,邓振华,关键,杜晓林,薛伟,苏宁远,王金豪. 雷达微弱目标智能化处理技术与应用. 雷达学报. 2024(03): 501-524 . 本站查看
    3. 张顺生,刘美慧,王文钦. 基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测. 雷达学报. 2022(04): 666-675 . 本站查看
    4. 兰岚,许京伟,朱圣棋,廖桂生,张玉洪. 波形分集阵列雷达抗干扰进展. 系统工程与电子技术. 2021(06): 1437-1451 . 百度学术
    5. 张军涛,李尚生,王旭坤. 基于灰色关联-模糊综合评判的雷达抗干扰性能评估方法. 系统工程与电子技术. 2021(06): 1557-1563 . 百度学术
    6. 王博,雷腾,张君鹏,方浩百,张晶. 基于双程方向图的FDA干扰性能分析. 火力与指挥控制. 2021(06): 12-20 . 百度学术
    7. 王博,陈楚舒,李洁,孙浩然,王丁皓. 非线性FDA多假目标干扰方法研究. 空军预警学院学报. 2021(04): 244-247 . 百度学术
    8. 王博,陈楚舒,马学亮,朱鹏羽. 基于对数稀布阵的FDA-MIMO干扰抑制. 空军工程大学学报(自然科学版). 2021(05): 37-42 . 百度学术
    9. 王博,谢军伟,张晶,王梓人. PFDA阵列点状波束形成及干扰抑制特性研究. 系统工程与电子技术. 2020(02): 253-262 . 百度学术
    10. 王博,谢军伟,张晶,孙渤森. 频率分集阵列负型模糊函数特性仿真. 北京航空航天大学学报. 2020(01): 122-132 . 百度学术
    11. 王博,谢军伟,葛佳昂,张晶. FDA发射干扰机对无源雷达干涉仪测向系统的欺骗机理. 华南理工大学学报(自然科学版). 2020(01): 93-103 . 百度学术
    12. 王博,谢军伟,张晶,李凡. 脉冲压缩雷达信号的FDA特性研究. 电子科技大学学报. 2020(01): 56-63 . 百度学术
    13. 王博,谢军伟,张晶,葛佳昂. 对数频偏FDA方向图解耦优化. 系统工程与电子技术. 2020(03): 505-512 . 百度学术
    14. 王博,谢军伟,张晶,赵敏. 基于Capon的CSB sin-FDA稳健波束形成. 北京理工大学学报. 2020(01): 53-61 . 百度学术
    15. 王博,谢军伟,葛佳昂,张晶. FDA对比幅法单脉冲测向的角度欺骗. 北京航空航天大学学报. 2020(03): 643-650 . 百度学术
    16. 王博,谢军伟,张晶,葛佳昂. 低快拍下基于RBF的CSB sin-FDA稳健波束形成. 振动与冲击. 2020(06): 117-124 . 百度学术
    17. 王博,谢军伟,张晶,孙渤森. 基于遗传算法的FDA方向图非时变解耦. 雷达科学与技术. 2020(01): 87-93+108 . 百度学术
    18. 陈小龙,黄勇,关键,宋伟健,薛永华. MIMO雷达微弱目标长时积累技术综述. 信号处理. 2020(12): 1947-1964 . 百度学术
    19. 王博,谢军伟,张晶,孙渤森. 子阵结构FDA阵列模糊函数建模与研究. 空军工程大学学报(自然科学版). 2019(04): 90-96 . 百度学术
    20. 王博,谢军伟,张晶,葛佳昂. 基于SD-LCMV算法的FDA平台外干扰抑制. 北京航空航天大学学报. 2019(11): 2247-2256 . 百度学术
    21. 王博,谢军伟,葛佳昂,张晶. FDA对测向时差组合定位的欺骗研究. 空军工程大学学报(自然科学版). 2019(06): 72-78 . 百度学术

    其他类型引用(10)

  • 加载中
图(20) / 表(12)
计量
  • 文章访问数: 5412
  • HTML全文浏览量: 1683
  • PDF下载量: 1334
  • 被引次数: 31
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-08-02
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2023-02-28

目录

/

返回文章
返回