分布式多传感器多目标跟踪方法综述

曾雅俊 王俊 魏少明 孙进平 雷鹏

曾雅俊, 王俊, 魏少明, 等. 分布式多传感器多目标跟踪方法综述[J]. 雷达学报, 2023, 12(1): 197–213. doi: 10.12000/JR22111
引用本文: 曾雅俊, 王俊, 魏少明, 等. 分布式多传感器多目标跟踪方法综述[J]. 雷达学报, 2023, 12(1): 197–213. doi: 10.12000/JR22111
ZENG Yajun, WANG Jun, WEI Shaoming, et al. Review of the method for distributed multi-sensor multi-target tracking[J]. Journal of Radars, 2023, 12(1): 197–213. doi: 10.12000/JR22111
Citation: ZENG Yajun, WANG Jun, WEI Shaoming, et al. Review of the method for distributed multi-sensor multi-target tracking[J]. Journal of Radars, 2023, 12(1): 197–213. doi: 10.12000/JR22111

分布式多传感器多目标跟踪方法综述

DOI: 10.12000/JR22111
基金项目: 国家自然科学基金(62171029, 61671035),预研基金(61404130122),重点实验室基金(6142502180103),教育部产学合作协同育人项目(202101105001)
详细信息
    作者简介:

    曾雅俊,博士生,主要研究方向为多目标跟踪、多源信息融合

    王 俊,博士,教授,主要研究方向为雷达信号处理、FPGA/DSP嵌入式系统、目标识别与跟踪、多传感器数据融合

    魏少明,博士,实验师,主要研究方向为雷达信号处理、多目标跟踪、数据融合、三维成像

    孙进平,教授,博士生导师,主要研究方向为目标跟踪、信号分析检测与估计、稀疏微波成像、图像理解、雷达信号与数据处理的算法及软硬件实现

    雷 鹏,博士,副教授,硕士生导师,主要研究方向为数字信号处理、贝叶斯估计、模式识别

    通讯作者:

    魏少明 shaoming.wei@buaa.edu.cn

  • 责任主编:关键 Corresponding Editor: GUAN Jian
  • 中图分类号: TN951; TN957.51; TN971.+1

Review of the Method for Distributed Multi-sensor Multi-target Tracking

Funds: The National Natural Science Foundation of China (62171029, 61671035), The Pre-research Foundation (61404130122), The Key Laboratory Foundation (6142502180103), The Ministry of Education’s Industry-University Cooperation and Collaborative Education Project (202101105001)
More Information
  • 摘要: 多传感器多目标跟踪是信息融合领域的热点问题,其通过融合多个局部传感器数据,提高目标跟踪精度和稳定性。多传感器多目标跟踪按融合体系可分为分布式、集中式、混合式3类,其中分布式融合结构对网络通信带宽要求低、可靠性和稳定性强,广泛应用于军事、民用领域。该文聚焦分布式多传感器多目标跟踪涉及的目标跟踪、传感器配准、航迹关联、数据融合4项关键技术,主要分析了各关键技术的理论原理与适用条件,重点介绍了不完整测量条件下的空间配准与航迹关联,并给出仿真结果。最后,该文总结了现有分布式多传感器多目标跟踪关键技术存在的问题,并指出了其未来发展趋势。

     

  • 图  1  分布式多传感器多目标跟踪流程图

    Figure  1.  Flowchart of distributed multi-sensor multi-target tracking

    图  2  时间配准方法

    Figure  2.  Time registration methods

    图  3  空间配准几何示意图

    Figure  3.  Illustration of spatial registration

    图  4  空间配准场景

    Figure  4.  Scene of spatial registration

    图  5  WGS84坐标系下配准前后显著性目标位置[82]

    Figure  5.  Registration results before and after registration in the WGS84 coordinate system[82]

    图  6  典型的航迹关联方法及分类

    Figure  6.  Classification of track-to-track association methods

    图  7  航迹关联场景

    Figure  7.  Scene of track-to-track association

    图  8  航迹关联正确率[82]

    Figure  8.  Accuracy of track association[82]

    图  9  航迹关联与空间配准关系[82]

    Figure  9.  Relationship of track-track association and spatial registration[82]

    图  10  分布式多传感器估计融合

    Figure  10.  Distributed multi-sensor estimation fusion

    表  1  典型的多目标跟踪方法性能对比

    Table  1.   Performance comparison of different multi-target tracking methods

    多目标跟踪类型跟踪方法跟踪精度运算量
    数据关联类GNN
    JPDA中等中等
    JIPDA中等中等
    MHT
    随机有限集类PHD
    CPHD中等中等
    TPHD中等
    TCPHD中等中等
    MeMBer中等中等
    PMBM中等
    GLMB
    LMB中等
    下载: 导出CSV

    表  2  多传感器时间配准方法性能对比

    Table  2.   Comparison of multi-sensor time registration methods

    配准类型配准方法配准精度计算量目标运动状态
    插值类内插外推较低匀速
    曲线插值中等较高匀速\非匀速
    曲线拟合中等较高匀速\非匀速
    参数估计类最小二乘中等中等匀速
    卡尔曼滤波较高较高匀速\非匀速
    下载: 导出CSV

    表  3  多传感器非合作目标空间配准方法分类

    Table  3.   Classification of multi-sensor spatial registration methods based on non-cooperative targets

    配准方法实时性是否能估计
    目标位置
    参与传感器
    个数
    传感器类型
    RTQC离线两个同类
    LS离线两个同类
    GLS离线两个同类
    EML离线两个同类
    KF在线多个同类
    RFS在线多个同类
    MLR离线多个同类\异类
    RBER离线多个同类\异类
    下载: 导出CSV

    表  4  航迹关联性能对比

    Table  4.   Comparison of multi-sensor track-to-track association methods

    航迹关联方法航迹关联正确率(%)时间开销(s)
    SMBTANTD[82]99.63.4
    Generalized Likelihood[15]97.42.8
    Fuzzy function[89]96.78.1
    下载: 导出CSV

    表  5  多传感器估计融合方法对比

    Table  5.   Comparison of multi-sensor estimation fusion methods

    估计融合方法是否考虑
    航迹相关
    计算量融合
    精度
    传感器
    类型
    简单凸组合融合同类
    Bar-Shalom-Campo融合较高较高同类
    基于MAP较高较高同类
    CI融合较高较高同类
    GCI融合较高较高同类/异类
    AA融合较高较高同类/异类
    基于EKF融合较高较高同类/异类
    基于UKF融合较高较高同类/异类
    基于PF融合同类/异类
    下载: 导出CSV

    表  6  典型的多传感器多目标跟踪方法性能对比

    Table  6.   Performance comparison of multi-sensor multi-target tracking methods

    多目标跟踪类型融合准则跟踪方法运算量跟踪精度
    数据关联类CI融合JPDA中等中等
    简单凸组合融合MHT中等
    随机有限集类GCI/GA融合PHD
    CPHD中等中等
    MeMBer中等中等
    GLMB
    LMB中等
    AA融合PHD
    CPHD中等中等
    MeMBer中等中等
    GLMB
    LMB中等
    下载: 导出CSV
  • [1] 韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合[M]. 北京: 清华大学出版社, 2006: 1–13.

    HAN Chongzhao, ZHU Hongyan, DUAN Zhansheng, et al. Multi-Source Information Fusion[M]. Beijing: Tsinghua University Press, 2006: 1–13.
    [2] 陈科文, 张祖平, 龙军. 多源信息融合关键问题、研究进展与新动向[J]. 计算机科学, 2013, 40(8): 6–13. doi: 10.3969/j.issn.1002-137X.2013.08.002

    CHEN Kewen, ZHANG Zuping, and LONG Jun. Multisource information fusion: Key issues, research progress and new trends[J]. Computer Science, 2013, 40(8): 6–13. doi: 10.3969/j.issn.1002-137X.2013.08.002
    [3] 李龙飘. 多传感器系统中信息融合技术的研究[D]. [硕士论文], 中北大学, 2009.

    LI Longpiao. Research on data fusion technique of multi-sensor system[D]. [Master dissertation], North University of China, 2009.
    [4] 苏军平. 多传感器信息融合关键技术研究[D]. [硕士论文], 西安电子科技大学, 2018.

    SU Junping. Research on the key technology of the multi-sensor information fusion[D]. [Master dissertation], Xidian University, 2018.
    [5] 王晓丽. 基于雷达组网提高空中目标航迹测量精度的数据融合方法研究[D]. [硕士论文], 电子科技大学, 2012.

    WANG Xiaoli. Research on data fusion based on netted radar to improve measurement precision of aerial targets’ flight track[D]. [Master dissertation], University of Electronic Science and Technology of China, 2012.
    [6] ZHU Shanshan. Multi-source information fusion technology and its engineering application[J]. Research in Health Science, 2020, 4(4): 408–422. doi: 10.22158/rhs.v4n4p408
    [7] ANITHA R, RENUKA S, and ABUDHAHIR A. Multi sensor data fusion algorithms for target tracking using multiple measurements[C]. 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi, India, 2013: 1–4.
    [8] AEBERHARD M, SCHLICHTHARLE S, KAEMPCHEN N, et al. Track-to-track fusion with asynchronous sensors using information matrix fusion for surround environment perception[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1717–1726. doi: 10.1109/TITS.2012.2202229
    [9] SHEN Qiang, LIU Jieyu, ZHOU Xiaogang, et al. Centralized fusion methods for multi-sensor system with bounded disturbances[J]. IEEE Access, 2019, 7: 141612–141626. doi: 10.1109/ACCESS.2019.2943163
    [10] 赵蕊, 贺建军. 多传感器信息融合技术[J]. 计算机测量与控制, 2007, 15(9): 1124–1126, 1134. doi: 10.3969/j.issn.1671-4598.2007.09.001

    ZHAO Rui and HE Jianjun. Technology of multi-sensor information fusion[J]. Computer Measurement &Control, 2007, 15(9): 1124–1126, 1134. doi: 10.3969/j.issn.1671-4598.2007.09.001
    [11] 吕漫丽, 孙灵芳. 多传感器信息融合技术[J]. 自动化技术与应用, 2008, 27(2): 79–82. doi: 10.3969/j.issn.1003-7241.2008.02.025

    LV Manli and SUN Lingfang. Multi-sensor information fusion technology[J]. Techniques of Automation and Applications, 2008, 27(2): 79–82. doi: 10.3969/j.issn.1003-7241.2008.02.025
    [12] 何友, 彭应宁, 陆大絟. 多传感器数据融合模型综述[J]. 清华大学学报: 自然科学版, 1996, 36(9): 14–20.

    HE You, PENG Yingning, and LU Dajin. Survey of multisensor data fusion models[J]. Journal of Tsinghua University:Science and Technology, 1996, 36(9): 14–20.
    [13] WANG Zhangjing, WU Yu, and NIU Qingqing. Multi-sensor fusion in automated driving: A survey[J]. IEEE Access, 2020, 8: 2847–2868. doi: 10.1109/ACCESS.2019.2962554
    [14] LIN Xiangdong, BAR-SHALOM Y, and KIRUBARAJAN T. Multisensor multitarget bias estimation for general asynchronous sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 899–921. doi: 10.1109/TAES.2005.1541438
    [15] 何友, 王国宏, 陆大絟, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000: 2–11.

    HE You, WANG Guohong, LU Dajin, et al. Multisensor Information Fusion with Applications[M]. Beijing: Publishing House of Electronics Industry, 2000: 2–11.
    [16] 高青. 多传感器数据融合算法研究[D]. [硕士论文], 西安电子科技大学, 2008.

    GAO Qing. Algorithms research on multisensor data fusion[D]. [Master dissertation], Xidian University, 2008.
    [17] 肖斌. 多传感器信息融合及其在工业中的应用[D]. [硕士论文], 太原理工大学, 2008.

    XIAO Bin. Multi-sensor information fusion and its application in industry[D]. [Master dissertation], Taiyuan University of Technology, 2008.
    [18] 陈文辉, 马铁华. 多传感器信息融合技术的研究与进展[J]. 科技情报开发与经济, 2006, 16(19): 212–213. doi: 10.3969/j.issn.1005-6033.2006.19.124

    CHEN Wenhui and MA Tiehua. The research and progress of multi-sensor information fusion techniques[J]. Sci-Tech Information Development &Economy, 2006, 16(19): 212–213. doi: 10.3969/j.issn.1005-6033.2006.19.124
    [19] NAZARI M, PASHAZADEH S, and MOHAMMAD-KHANLI L. An adaptive density-based fuzzy clustering track association for distributed tracking system[J]. IEEE Access, 2019, 7: 135972–135981. doi: 10.1109/ACCESS.2019.2941184
    [20] DASH D and JAYARAMAN V. A probabilistic model for sensor fusion using range-only measurements in multistatic radar[J]. IEEE Sensors Letters, 2020, 4(6): 1–4. doi: 10.1109/LSENS.2020.2993589
    [21] SHARMA A and CHAUHAN S. Sensor fusion for distributed detection of mobile intruders in surveillance wireless sensor networks[J]. IEEE Sensors Journal, 2020, 20(24): 15224–15231. doi: 10.1109/JSEN.2020.3009828
    [22] KUMAR M, GARG D P, and ZACHERY R A. A method for judicious fusion of inconsistent multiple sensor data[J]. IEEE Sensors Journal, 2007, 7(5): 723–733. doi: 10.1109/JSEN.2007.894905
    [23] LLINAS J and HALL D L. An introduction to multi-sensor data fusion[C]. The 1998 IEEE International Symposium on Circuits & Systems, Monterey, USA, 1998: 537–540.
    [24] HU Jinwen, ZHENG Boyin, WANG Ce, et al. A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 675–692. doi: 10.1631/FITEE.1900518
    [25] XIAO Fuyuan. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion, 2019, 46: 23–32. doi: 10.1016/j.inffus.2018.04.003
    [26] KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion: A review of the state-of-the-art[J]. Information Fusion, 2013, 14(1): 28–44. doi: 10.1016/j.inffus.2011.08.001
    [27] LIGGINS II M, POULARIKAS A D, HALL D, et al. Handbook of Multisensor Data Fusion: Theory and Practice[M]. 2nd ed. Boca Raton: CRC Press, 2009: 3–16.
    [28] GAO Shesheng, ZHONG Yongmin, and LI Wei. Random weighting method for multisensor data fusion[J]. IEEE Sensors Journal, 2011, 11(9): 1955–1961. doi: 10.1109/JSEN.2011.2107896
    [29] CARON F, DAVY M, DUFLOS E, et al. Particle filtering for multisensor data fusion with switching observation models: Application to land vehicle positioning[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2703–2719. doi: 10.1109/TSP.2007.893914
    [30] MITCHELL H B. Multi-Sensor Data Fusion: An Introduction[M]. Berlin: Springer, 2007: 1–22.
    [31] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, Inc., 2007: 305–682.
    [32] DALEY R. Estimating the wind field from chemical constituent observations: Experiments with a one-dimensional extended Kalman filter[J]. Monthly Weather Review, 1995, 123(1): 181–198. doi: 10.1175/1520-0493(1995)123<0181:ETWFFC>2.0.CO;2
    [33] WAN E A and VAN DER MERWE R. The Unscented Kalman Filter[M]. HAYKIN S. Kalman Filtering and Neural Networks. New York: John Wiley & Sons, Inc., 2001: 221–280.
    [34] ARASARATNAM I and HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254–1269. doi: 10.1109/TAC.2009.2019800
    [35] GUSTAFSSON F. Particle filter theory and practice with positioning applications[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53–82. doi: 10.1109/MAES.2010.5546308
    [36] VO B N, MALLICK M, BAR-SHALOM Y, et al. Multitarget Tracking[M]. WEBSTER J G. Wiley Encyclopedia of Electrical and Electronics Engineering. New York: John Wiley & Sons, 2015: 1–11.
    [37] BAR-SHALOM Y. Multitarget-Multisensor Tracking: Applications and Advances[M]. Boston: Artech House, 1990: 2–9.
    [38] FORTMANN T, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE journal of Oceanic Engineering, 1983, 8(3): 173–184. doi: 10.1109/JOE.1983.1145560
    [39] COLGROVE S B, DAVIS A W, and AYLIFFE J K. Track initiation and nearest neighbours incorporated into probabilistic data association[J]. Journal of Electrical and Electronics Engineers, Australia, 1986, 6(3): 191–198.
    [40] CHANG K C and BAR-SHALOM Y. Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers[J]. IEEE Transactions on Automatic Control, 1984, 29(7): 585–594. doi: 10.1109/TAC.1984.1103597
    [41] MUSICKI D and EVANS R. Joint integrated probabilistic data association-JIPDA[C]. The 5th International Conference on Information Fusion, Annapolis, USA, 2002: 1120–1125.
    [42] SINGER R A and SEA R G. New results in optimizing surveillance system tracking and data correlation performance in dense multitarget environments[J]. IEEE Transactions on Automatic Control, 1973, 18(6): 571–582. doi: 10.1109/TAC.1973.1100421
    [43] SONG T L, LEE D G, and RYU J. A probabilistic nearest neighbor filter algorithm for tracking in a clutter environment[J]. Signal Processing, 2005, 85(10): 2044–2053. doi: 10.1016/j.sigpro.2005.01.016
    [44] REID D B. An algorithm for tracking multiple targets[J]. IEEE transactions on Automatic Control, 1979, 24(6): 843–854. doi: 10.1109/TAC.1979.1102177
    [45] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5–18. doi: 10.1109/MAES.2004.1263228
    [46] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [47] MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543. doi: 10.1109/TAES.2007.4441756
    [48] GARCÍA-FERNÁNDEZ Á F and SVENSSON L. Trajectory PHD and CPHD filters[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5702–5714. doi: 10.1109/TSP.2019.2943234
    [49] VO B T, VO B N, and CANTONI A. On multi-Bernoulli approximations to the Bayes multi-target filter[C]. International Conference on Information Fusion, Xi’an, China, 2007: 1–8.
    [50] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [51] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [52] PAPI F, VO B N, VO B T, et al. Generalized labeled multi-Bernoulli approximation of multi-object densities[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5487–5497. doi: 10.1109/TSP.2015.2454478
    [53] REUTER S, VO B T, VO B N, et al. The Labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064
    [54] GARCÍA-FERNÁNDEZ Á F, WILLIAMS J L, GRANSTRÖM K, et al. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1883–1901. doi: 10.1109/TAES.2018.2805153
    [55] LIN Xiangdong, BAR-SHALOM Y, and KIRUBARAJAN T. Exact multisensor dynamic bias estimation with local tracks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 576–590. doi: 10.1109/TAES.2004.1310006
    [56] BLAIR W D, RICE T R, ALOUANI A T, et al. Asynchronous data fusion for target tracking with a multitasking radar and optical sensor[C]. The SPIE of 1482, Acquisition, Tracking, and Pointing V, Orlando, USA, 1991: 234–245.
    [57] 李莉. 最小二乘法时间配准在测量数据融合中的应用[J]. 仪表技术, 2017(12): 35–36, 49. doi: 10.19432/j.cnki.issn1006-2394.2017.12.010

    LI Li. Application of time registration of the least square method in measurement data fusion[J]. Instrumentation Technology, 2017(12): 35–36, 49. doi: 10.19432/j.cnki.issn1006-2394.2017.12.010
    [58] 吴聪, 王红, 李志淮, 等. 基于最小二乘曲线拟合的时间配准方法研究[J]. 舰船电子对抗, 2013, 36(4): 44–47, 51. doi: 10.16426/j.cnki.jcdzdk.2013.04.018

    WU Cong, WANG Hong, LI Zhihuai, et al. Research into time registration method based on least-square curve fitting[J]. Shipboard Electronic Countermeasure, 2013, 36(4): 44–47, 51. doi: 10.16426/j.cnki.jcdzdk.2013.04.018
    [59] 张圣华, 王书基, 孙潮义. 多雷达数据融合中时间对准问题的研究[J]. 舰船电子工程, 2001, 21(2): 23–25. doi: 10.3969/j.issn.1627-9730.2001.02.005

    ZHANG Shenghua, WANG Shuji, and SUN Chaoyi. Research on time registration in multi-radar data fusion[J]. Ship Electronic Engineering, 2001, 21(2): 23–25. doi: 10.3969/j.issn.1627-9730.2001.02.005
    [60] 梁凯, 潘泉, 宋国明, 等. 基于曲线拟合的多传感器时间对准方法研究[J]. 火力与指挥控制, 2006, 31(12): 51–53. doi: 10.3969/j.issn.1002-0640.2006.12.015

    LIANG Kai, PAN Quan, SONG Guoming, et al. The study of multi-sensor time registration method based on curve fitting[J]. Fire Control and Command Control, 2006, 31(12): 51–53. doi: 10.3969/j.issn.1002-0640.2006.12.015
    [61] YU Hongbo, WANG Guohong, and CAO Qian. A novel approach for time registration of multi-radar data[J]. Applied Mechanics and Materials, 2013, 385/386: 1377–1380. doi: 10.4028/www.scientific.net/AMM.385-386.1377
    [62] LI Song, CHENG Yongmei, BROWN D, et al. Comprehensive time-offset estimation for multisensor target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2351–2373. doi: 10.1109/TAES.2019.2948517
    [63] TAGHAVI E, THARMARASA R, KIRUBARAJAN T, et al. A practical bias estimation algorithm for multisensor-multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 2–19. doi: 10.1109/TAES.2015.140574
    [64] OKELLO N N and CHALLA S. Joint sensor registration and track-to-track fusion for distributed trackers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 808–823. doi: 10.1109/TAES.2004.1337456
    [65] RHODE S, USEVICH K, MARKOVSKY I, et al. A recursive restricted total least-squares algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5652–5662. doi: 10.1109/TSP.2014.2350959
    [66] FORTUNATI S, FARINA A, GINI F, et al. Least squares estimation and Cramér-Rao type lower bounds for relative sensor registration process[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1075–1087. doi: 10.1109/TSP.2010.2097258
    [67] PULFORD G W. Analysis of a nonlinear least squares procedure used in global positioning systems[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4526–4534. doi: 10.1109/TSP.2010.2050061
    [68] BAI Shulin and ZHANG Yumei. Error registration of netted radar by using GLS algorithm[C]. The 33rd Chinese Control Conference, Nanjing, China, 2014: 7430–7433.
    [69] LU Chenyang, WANG Xiaorui, and KOUTSOUKOS X. Feedback utilization control in distributed real-time systems with end-to-end tasks[J]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(6): 550–561. doi: 10.1109/TPDS.2005.73
    [70] ZHOU Yifeng, LEUNG H, and YIP P C. An exact maximum likelihood registration algorithm for data fusion[J]. IEEE Transactions on Signal Processing, 1997, 45(6): 1560–1573. doi: 10.1109/78.599998
    [71] CHITOUR Y and PASCAL F. Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4563–4573. doi: 10.1109/TSP.2008.927464
    [72] OKELLO N N and RISTIC B. Maximum likelihood registration for multiple dissimilar sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1074–1083. doi: 10.1109/TAES.2003.1238759
    [73] MCMICHAEL D W and OKELLO N N. Maximum likelihood registration of dissimilar sensors[C]. The 1st Australian Data Fusion Symposium, Adelaide, Australia, 1996: 31–34.
    [74] HELMICK R E and RICE T R. Removal of alignment errors in an integrated system of two 3-D sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4): 1333–1343. doi: 10.1109/7.259537
    [75] KOSUGE Y and OKADA T. Bias estimation of two 3-dimensional radars using Kalman filter[C]. The 4th IEEE International Workshop on Advanced Motion Control, Mie, Japan, 1996: 377–382.
    [76] NABAA N and BISHOP R H. Solution to a multisensor tracking problem with sensor registration errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 354–363. doi: 10.1109/7.745706
    [77] LI W, LEUNG H, and ZHOU Yifeng. Space-time registration of radar and ESM using unscented Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 824–836. doi: 10.1109/TAES.2004.1337457
    [78] 胡洪涛, 敬忠良, 胡士强. 一种基于Unscented卡尔曼滤波的多平台多传感器配准算法[J]. 上海交通大学学报, 2005, 39(9): 1518–1521. doi: 10.16183/j.cnki.jsjtu.2005.09.030

    HU Hongtao, JING Zhongliang, and HU Shiqiang. An unscented Kalman filter based multi-platform multi-sensor registration[J]. Journal of Shanghai Jiaotong University, 2005, 39(9): 1518–1521. doi: 10.16183/j.cnki.jsjtu.2005.09.030
    [79] LI Wenling, JIA Yingmin, DU Junping, et al. Gaussian mixture PHD filter for multi-sensor multi-target tracking with registration errors[J]. Signal Processing, 2013, 93(1): 86–99. doi: 10.1016/j.sigpro.2012.06.030
    [80] LI Minzhe, JING Zhongliang, PAN Han, et al. Joint registration and multi-target tracking based on labelled random finite set and expectation maximisation[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 312–322. doi: 10.1049/iet-rsn.2017.0137
    [81] LIAN Feng, HAN Chongzhao, LIU Weifeng, et al. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter[J]. IET Radar, Sonar & Navigation, 2011, 5(4): 441–448. doi: 10.1049/iet-rsn.2010.0057
    [82] WANG Jun, ZENG Yajun, WEI Shaoming, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3337–3350. doi: 10.1109/TSP.2021.3084533
    [83] KANYUCK A J and SINGER R A. Correlation of multiple-site track data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(2): 180–187. doi: 10.1109/TAES.1970.310100
    [84] BAR-SHALOM Y. On the track-to-track correlation problem[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 571–572. doi: 10.1109/TAC.1981.1102635
    [85] 何友, 唐劲松, 王国宏. 多雷达跟踪系统中航迹质量管理的优化[J]. 现代雷达, 1995, 17(1): 14–19, 54. doi: 10.16592/j.cnki.1004-7859.1995.01.002

    HE You, TANG Jinsong, and WANG Guohong. Optimal tracking-quality-management in multiradar tracking systems[J]. Modern Radar, 1995, 17(1): 14–19, 54. doi: 10.16592/j.cnki.1004-7859.1995.01.002
    [86] 黄晓冬, 何友, 赵峰. 几种典型情况下的航迹关联研究[J]. 系统仿真学报, 2005, 17(9): 2085–2088, 2174. doi: 10.3969/j.issn.1004-731X.2005.09.011

    HUANG Xiaodong, HE You, and ZHAO Feng. Study of track association in typical cases[J]. Journal of System Simulation, 2005, 17(9): 2085–2088, 2174. doi: 10.3969/j.issn.1004-731X.2005.09.011
    [87] 齐林, 王海鹏, 刘瑜. 基于统计双门限的中断航迹配对关联算法[J]. 雷达学报, 2015, 4(3): 301–308. doi: 10.12000/JR14077

    QI Lin, WANG Haipeng, and LIU Yu. Track segment association algorithm based on statistical binary thresholds[J]. Journal of Radars, 2015, 4(3): 301–308. doi: 10.12000/JR14077
    [88] HONG Shuaixin, PENG Dongliang, and SHI Yifang. Track-to-track association using fuzzy membership function and clustering for distributed information fusion[C]. The 37th Chinese Control Conference, Wuhan, China, 2018: 4028–4032.
    [89] AZIZ A M. A new fuzzy clustering approach for data association and track fusion in multisensor-multitarget environment[C]. 2011 IEEE Aerospace Conference, Big Sky, USA, 2011: 1–10.
    [90] 徐亚圣, 丁赤飚, 任文娟, 等. 基于直方统计特征的多特征组合航迹关联[J]. 雷达学报, 2019, 8(1): 25–35. doi: 10.12000/JR18028

    XU Yasheng, DING Chibiao, REN Wenjuan, et al. Multi-feature combination track-to-track association based on histogram statistics feature[J]. Journal of Radars, 2019, 8(1): 25–35. doi: 10.12000/JR18028
    [91] POORE A P and RIJAVEC N. A lagrangian relaxation algorithm for multidimensional assignment problems arising from multitarget tracking[J]. SIAM Journal on Optimization, 1993, 3(3): 544–563. doi: 10.1137/0803027
    [92] POPP R L, PATTIPATI K R, and BAR-SHALOM Y. M-best S-D assignment algorithm with application to multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 22–39. doi: 10.1109/7.913665
    [93] BAR-SHALOM Y. On the sequential track correlation algorithm in a multisensor data fusion system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 396–396. doi: 10.1109/TAES.2008.4517016
    [94] 宋文彬. 传感器数据空间配准算法研究进展[J]. 传感器与微系统, 2012, 31(8): 5–8. doi: 10.13873/j.1000-97872012.08.027

    SONG Wenbin. Research progress of spatial registration algorithms for sensor data[J]. Transducer and Microsystem Technologies, 2012, 31(8): 5–8. doi: 10.13873/j.1000-97872012.08.027
    [95] TIAN Wei, WANG Yue, SHAN Xiuming, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4): 449–453. doi: 10.1109/LSP.2014.2305305
    [96] TIAN Wei. Reference pattern-based track-to-track association with biased data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 501–512. doi: 10.1109/TAES.2015.140433
    [97] LI Zhenhua, CHEN Siyue, LEUNG H, et al. Joint data association, registration, and fusion using EM-KF[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 496–507. doi: 10.1109/TAES.2010.5461637
    [98] 田威, 王钺, 山秀明, 等. 稳健的联合航迹关联与系统误差估计[J]. 清华大学学报:自然科学版, 2013, 53(7): 946–950. doi: 10.16511/j.cnki.qhdxxb.2013.07.009

    TIAN Wei, WANG Yue, SHAN Xiuming, et al. Robust method for joint track association and sensor bias estimation[J]. Journal of Tsinghua University:Science and Technology, 2013, 53(7): 946–950. doi: 10.16511/j.cnki.qhdxxb.2013.07.009
    [99] LEVEDAHL M. Explicit pattern matching assignment algorithm[C]. The SPIE of 4728, Signal and Data Processing of Small Targets 2002, Orlando, USA, 2002: 461–469.
    [100] SHI Yue, WANG Yue, and SHAN Xiuming. A novel fuzzy pattern recognition data association method for biased sensor data[C]. The 9th International Conference on Information Fusion, Florence, Italy, 2006: 1–5.
    [101] CHAIR Z and VARSHNEY P K. Optimal data fusion in multiple sensor detection systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(1): 98–101. doi: 10.1109/TAES.1986.310699
    [102] SINGER R A and KANYUCK A J. Computer control of multiple site track correlation[J]. Automatica, 1971, 7(4): 455–463. doi: 10.1016/0005-1098(71)90096-3
    [103] ROECKER J A and MCGILLEM C D. Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 447–449. doi: 10.1109/7.7186
    [104] BAR-SHALOM Y and CAMPO L. The effect of the common process noise on the two-sensor fused-track covariance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(6): 803–805. doi: 10.1109/TAES.1986.310815
    [105] UHLMANN J K. General data fusion for estimates with unknown cross covariances[C]. The SPIE of 2755, Signal Processing, Sensor Fusion, and Target Recognition V, Orlando, USA, 1996: 536–547.
    [106] HURLEY M B. An information theoretic justification for covariance intersection and its generalization[C]. The 5th International Conference on Information Fusion, Annapolis, USA, 2002: 505–511.
    [107] CHANG K C, TIAN Zhi, and MORI S. Performance evaluation for MAP state estimate fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 706–714. doi: 10.1109/TAES.2004.1310015
    [108] DRUMMOND O E. Track fusion with feedback[C]. The SPIE of 2759, Signal and Data Processing of Small Targets 1996, Orlando, USA, 1996: 342–360.
    [109] DRUMMOND O E. Hybrid sensor fusion algorithm architecture and tracklets[C]. The SPIE of 3163, Signal and Data Processing of Small Targets 1997, San Diego, USA, 1997: 512–524.
    [110] ZHU Yunmin, YOU Zhisheng, ZHAO Juan, et al. The optimality for the distributed Kalman filtering fusion with feedback[J]. Automatica, 2001, 37(9): 1489–1493. doi: 10.1016/S0005-1098(01)00074-7
    [111] YUAN Ting, BAR-SHALOM Y, and TIAN Xin. Heterogeneous track-to-track fusion[C]. The 14th International Conference on Information Fusion, Chicago, USA, 2011: 1–8.
    [112] CHANG K C, SAHA R K, and BAR-SHALOM Y. On optimal track-to-track fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1271–1276. doi: 10.1109/7.625124
    [113] TIAN Xin. Track-to-track fusion configurations and association in a sliding window[J]. Journal of Advances in Information Fusion, 2009, 4(2): 146–164.
    [114] LI Tiancheng, FAN Hongqi, GARCÍA J, et al. Second-order statistics analysis and comparison between arithmetic and geometric average fusion: Application to multi-sensor target tracking[J]. Information Fusion, 2019, 51: 233–243. doi: 10.1016/j.inffus.2019.02.009
    [115] LI Tiancheng, WANG Xiaoxu, LIANG Yan, et al. On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking[J]. IEEE Transactions on Signal Processing, 2020, 68: 2883–2896. doi: 10.1109/TSP.2020.2985643
    [116] LI Tiancheng and HLAWATSCH F. A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters[J]. Information Fusion, 2021, 73: 111–124. doi: 10.1016/j.inffus.2021.02.020
    [117] LI Tiancheng, CORCHADO J M, and SUN Shudong. Partial consensus and conservative fusion of Gaussian mixtures for distributed PHD fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2150–2163. doi: 10.1109/TAES.2018.2882960
    [118] TIAN Xin, BAR-SHALOM Y, YUAN Ting, et al. A generalized information matrix fusion based heterogeneous track-to-track fusion algorithm[C]. The SPIE 8050, Signal Processing, Sensor Fusion, and Target Recognition XX, Orlando, USA, 2011: 805015.
    [119] TIAN Xin, YUAN Ting, and BAR-SHALOM Y. Track-to-track Fusion in Linear and Nonlinear Systems[M]. CHOUKROUN D, OSHMAN Y, THIENEL J, et al. Advances in Estimation, Navigation, and Spacecraft Control. Berlin, Heidelberg: Springer, 2015: 21–41.
    [120] MALLICK M, CHANG K C, ARULAMPALAM S, et al. Heterogeneous track-to-track fusion in 3-D using IRST sensor and air MTI radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3062–3079. doi: 10.1109/TAES.2019.2898302
    [121] MENEGAZ H M T, ISHIHARA J Y, and KUSSABA H T M. Unscented Kalman filters for riemannian state-space systems[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1487–1502. doi: 10.1109/TAC.2018.2846684
    [122] YEE D, REILLY J P, KIRUBARAJAN T, et al. Approximate conditional mean particle filtering for linear/nonlinear dynamic state space models[J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5790–5803. doi: 10.1109/TSP.2008.929660
    [123] BATTISTELLI G, CHISCI L, FANTACCI C, et al. Distributed peer-to-peer multitarget tracking with association-based track fusion[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–7.
    [124] CHONG C Y, MORI S, and CHANG K C. Information fusion in distributed sensor networks[C]. American Control Conference, Boston, USA, 1985: 830–835.
    [125] CORALUPPI S, RAGO C, CARTHEL C, et al. Distributed MHT with passive sensors[C]. The 24th International Conference on Information Fusion, Sun City, South Africa, 2021: 1–8.
    [126] ÜNEY M, CLARK D E, and JULIER S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. doi: 10.1109/JSTSP.2013.2257162
    [127] BATTISTELLI G, CHISCI L, FANTACCI C, et al. Consensus CPHD filter for distributed multitarget tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508–520. doi: 10.1109/JSTSP.2013.2250911
    [128] WANG Bailu, YI Wei, HOSEINNEZHAD R, et al. Distributed fusion with multi-Bernoulli filter based on generalized covariance intersection[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 242–255. doi: 10.1109/TSP.2016.2617825
    [129] FANTACCI C, VO B N, VO B T, et al. Robust fusion for multisensor multiobject tracking[J]. IEEE Signal Processing Letters, 2018, 25(5): 640–644. doi: 10.1109/LSP.2018.2811750
    [130] LI Suqi, BATTISTELLI G, CHISCI L, et al. Multi-sensor multi-object tracking with different fields-of-view using the LMB filter[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 1201–1208.
    [131] LI Suqi, YI Wei, HOSEINNEZHAD R, et al. Robust distributed fusion with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 278–293. doi: 10.1109/TSP.2017.2760286
    [132] GAO Lin, BATTISTELLI G, and CHISCI L. Multiobject fusion with minimum information loss[J]. IEEE Signal Processing Letters, 2020, 27: 201–205. doi: 10.1109/LSP.2019.2963817
    [133] GAO Lin, BATTISTELLI G, and CHISCI L. Fusion of labeled RFS densities with minimum information loss[J]. IEEE Transactions on Signal Processing, 2020, 68: 5855–5868. doi: 10.1109/TSP.2020.3028496
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  5542
  • HTML全文浏览量:  1958
  • PDF下载量:  1195
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-08-02
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回