深度学习融合超宽带雷达图谱的跌倒检测研究

何密 平钦文 戴然

何密, 平钦文, 戴然. 深度学习融合超宽带雷达图谱的跌倒检测研究[J]. 雷达学报, 2023, 12(2): 343–355. doi: 10.12000/JR22169
引用本文: 何密, 平钦文, 戴然. 深度学习融合超宽带雷达图谱的跌倒检测研究[J]. 雷达学报, 2023, 12(2): 343–355. doi: 10.12000/JR22169
HE Mi, PING Qinwen, and DAI Ran. Fall detection based on deep learning fusing ultrawideband radar spectrograms[J]. Journal of Radars, 2023, 12(2): 343–355. doi: 10.12000/JR22169
Citation: HE Mi, PING Qinwen, and DAI Ran. Fall detection based on deep learning fusing ultrawideband radar spectrograms[J]. Journal of Radars, 2023, 12(2): 343–355. doi: 10.12000/JR22169

深度学习融合超宽带雷达图谱的跌倒检测研究

doi: 10.12000/JR22169
基金项目: 陆军军医大学校级课题(2019XYY04),国家部委基金(BLJ18J005)
详细信息
    作者简介:

    何 密,博士,副教授,硕士生导师,主要研究方向为智能生命遥感技术

    平钦文,学士,科研助理,主要研究方向为深度学习应用

    戴 然,硕士生,主要研究方向为雷达跌倒检测技术

    通讯作者:

    何密 hmcherry@126.com

  • 责任主编:金添 Corresponding Editor: JIN Tian
  • 中图分类号: TN957

Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms

Funds: Army Medical University-level Project (2019XYY04), The National Ministry Fundation (BLJ18J005)
More Information
  • 摘要: 相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有P值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。

     

  • 图  1  深度学习融合超宽带雷达图谱检测跌倒的整体研究框图

    Figure  1.  Overall research block diagram of deep learning fusing ultrawideband radar spectrograms for fall detection

    图  2  FMCW雷达发射和接收波形示意图

    Figure  2.  Schematic diagram of transmitting and receiving waveforms of the FMCW radar

    图  3  距离时间矩阵RT的排列示意图

    Figure  3.  Arrangement diagram of range-time matrix RT

    图  4  跌倒和行走的距离时间谱图

    Figure  4.  Range-time spectrograms of fall and walk

    图  5  距离多普勒矩阵RD的排列示意图

    Figure  5.  Arrangement diagram of range-Doppler matrix RD

    图  6  跌倒和行走的距离多普勒谱图

    Figure  6.  Range-Doppler spectrograms of fall and walk

    图  7  跌倒和行走的时间多普勒谱图

    Figure  7.  Time-Doppler spectrograms of fall and walk

    图  8  MobileNet-V3的核心结构

    Figure  8.  Core structure of MobileNet-V3

    图  9  数据级融合网络的结构示意图

    Figure  9.  Structure diagram of data level fusion network

    图  10  特征级融合网络的结构示意图

    Figure  10.  Structure diagram of feature level fusion network

    图  11  决策级融合网络的结构示意图

    Figure  11.  Structure diagram of decision level fusion network

    图  12  K波段UWB雷达跌倒检测系统

    Figure  12.  K band UWB radar fall detection system

    图  13  实测实验设计的日常行为与跌倒部分动作示意图

    Figure  13.  Schematic diagram of daily behaviors and a part of falls designed in the experiment

    图  14  实测实验多场景示意图

    Figure  14.  Multi-scene schematic diagram of the experiment

    图  15  仅用单图谱检测跌倒的5折交叉验证的准确率及交叉熵损失随训练轮数的变化曲线

    Figure  15.  Curves of accuracy and cross entropy loss of 5-fold cross-validation using one kind of spectrograms for fall detection

    图  16  融合方法检测跌倒的5折交叉验证的准确率及交叉熵损失随训练轮数的变化曲线

    Figure  16.  Curves of accuracy and cross entropy loss of 5-fold cross-validation using fusion methods for fall detection

    图  17  用场景2数据测试各种模型时得到的混淆矩阵

    Figure  17.  Confusion matrix obtained when testing various models using data of Scene 2

    1  K波段超宽带雷达跌倒检测图谱数据集-1.0发布网页

    1.  Release webpage of K band UWB radar spectrogram dataset-1.0 for fall detection

    表  1  MobileNet-V3网络和融合网络的大小及耗时对比

    Table  1.   Comparison of size and time consumption of MobileNet-V3 network and fusion networks

    网络类型训练耗时(h)网络大小(MB)测试平均耗时(s)
    MobileNet-V3(距离时间谱)0.28335.90820.0035
    数据级2.35005.90920.0030
    特征级1.544711.90720.0046
    决策级0.850017.72460.1030
    下载: 导出CSV

    表  2  跌倒检测5折交叉验证评价指标对比(场景1)

    Table  2.   Comparison of evaluation indicators for 5-fold cross-validation of fall detection (Scene 1)

    模型AcPrSeSpF1-score
    单种图谱距离时间谱0.99230.98990.98890.99500.9894
    距离多普勒谱0.98220.97120.97560.98560.9734
    时间多普勒谱0.98930.98340.98440.99170.9839
    融合方法数据级融合0.99330.99110.98890.99560.9900
    特征级融合0.98660.97570.98440.98780.9801
    决策级融合0.99560.99330.99330.99670.9933
    下载: 导出CSV

    表  3  不同模型之间跌倒检测性能的对比(场景2)

    Table  3.   Comparison of fall detection performance between different models (Scene 2)

    模型AcPrSeSpF1-score
    单种图谱距离时间谱0.95370.92350.93890.96110.9313
    距离多普勒谱0.91670.85710.90000.92500.8781
    时间多普勒谱0.95190.92310.93330.96110.9282
    融合方法数据级融合0.95740.97010.90000.98610.9337
    特征级融合0.94820.97500.86670.98890.9177
    决策级融合0.97780.98830.94440.99440.9659
    下载: 导出CSV
  • [1] DOS SANTOS R B, LAGO G N, JENCIUS M C, et al. Older adults’ views on barriers and facilitators to participate in a multifactorial falls prevention program: Results from Prevquedas Brasil[J]. Archives of Gerontology and Geriatrics, 2021, 92: 104287. doi: 10.1016/j.archger.2020.104287
    [2] HU Zhan and PENG Xizhe. Strategic changes and policy choices in the governance of China’s aging society[J]. Social Sciences in China, 2020, 41(4): 185–208. doi: 10.1080/02529203.2020.1844451
    [3] DAVIS J C, ROBERTSON M C, ASHE M C, et al. International comparison of cost of falls in older adults living in the community: A systematic review[J]. Osteoporosis International, 2010, 21(8): 1295–1306. doi: 10.1007/s00198-009-1162-0
    [4] IIO T, SHIOMI M, KAMEI K, et al. Social acceptance by senior citizens and caregivers of a fall detection system using range sensors in a nursing home[J]. Advanced Robotics, 2016, 30(3): 190–205. doi: 10.1080/01691864.2015.1120241
    [5] NOORUDDIN S, ISLAM M, SHARNA F A, et al. Sensor-based fall detection systems: A Review[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(5): 2735–2751. doi: 10.1007/s12652-021-03248-z
    [6] XEFTERIS V R, TSANOUSA A, MEDITSKOS G, et al. Performance, challenges, and limitations in multimodal fall detection systems: A review[J]. IEEE Sensors Journal, 2021, 21(17): 18398–18409. doi: 10.1109/JSEN.2021.3090454
    [7] SALEH M and LE BOUQUIN JEANNÈS R. Elderly fall detection using wearable sensors: A low cost highly accurate algorithm[J]. IEEE Sensors Journal, 2019, 19(8): 3156–3164. doi: 10.1109/JSEN.2019.2891128
    [8] RASTOGI S and SINGH J. A systematic review on machine learning for fall detection system[J]. Computational Intelligence, 2021, 37(2): 951–974. doi: 10.1111/coin.12441
    [9] GRACEWELL J J and PAVALARAJAN S. RETRACTED ARTICLE: Fall detection based on posture classification for smart home environment[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(3): 3581–3588. doi: 10.1007/s12652-019-01600-y
    [10] LU Na, WU Yidan, FENG Li, et al. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 314–323. doi: 10.1109/JBHI.2018.2808281
    [11] CIPPITELLI E, FIORANELLI F, GAMBI E, et al. Radar and RGB-depth sensors for fall detection: A review[J]. IEEE Sensors Journal, 2017, 17(12): 3585–3604. doi: 10.1109/JSEN.2017.2697077
    [12] TARAMASCO C, RODENAS T, MARTINEZ F, et al. A novel monitoring system for fall detection in older people[J]. IEEE Access, 2018, 6: 43563–43574. doi: 10.1109/ACCESS.2018.2861331
    [13] ABOBAKR A, HOSSNY M, and NAHAVANDI S. A skeleton-free fall detection system from depth images using random decision forest[J]. IEEE Systems Journal, 2018, 12(3): 2994–3005. doi: 10.1109/JSYST.2017.2780260
    [14] LE H T, PHUNG S L, and BOUZERDOUM A. A fast and compact deep Gabor network for micro-Doppler signal processing and human motion classification[J]. IEEE Sensors Journal, 2021, 21(20): 23085–23097. doi: 10.1109/JSEN.2021.3106300
    [15] SU W C, WU Xuanxin, HORNG T S, et al. Hybrid continuous-wave and self-injection-locking monopulse radar for posture and fall detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(3): 1686–1695. doi: 10.1109/TMTT.2022.3142142
    [16] SAHO K, HAYASHI S, TSUYAMA M, et al. Machine learning-based classification of human behaviors and falls in restroom via dual Doppler radar measurements[J]. Sensors, 2022, 22(5): 1721. doi: 10.3390/s22051721
    [17] WANG Yongchuan, YANG Song, LI Fan, et al. FallViewer: A fine-grained indoor fall detection system with ubiquitous Wi-Fi devices[J]. IEEE Internet of Things Journal, 2021, 8(15): 12455–12466. doi: 10.1109/JIOT.2021.3063531
    [18] GURBUZ S Z and AMIN M G. Radar-based human-motion recognition with deep learning: Promising applications for indoor monitoring[J]. IEEE Signal Processing Magazine, 2019, 36(4): 16–28. doi: 10.1109/MSP.2018.2890128
    [19] MAITRE J, BOUCHARD K, and GABOURY S. Fall detection with UWB radars and CNN-LSTM architecture[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(4): 1273–1283. doi: 10.1109/JBHI.2020.3027967
    [20] SADREAZAMI H, BOLIC M, and RAJAN S. Contactless fall detection using time-frequency analysis and convolutional neural networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6842–6851. doi: 10.1109/TII.2021.3049342
    [21] GURBUZ S Z, CLEMENTE C, BALLERI A, et al. Micro-Doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems[J]. IET Radar, Sonar & Navigation, 2017, 11(1): 107–115. doi: 10.1049/iet-rsn.2016.0055
    [22] AMIN M G, ZHANG Y D, AHMAD F, et al. Radar signal processing for elderly fall detection: The future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33(2): 71–80. doi: 10.1109/MSP.2015.2502784
    [23] MA Liang, LIU Meng, WANG Na, et al. Room-level fall detection based on ultra-wideband (UWB) monostatic radar and convolutional long short-term memory (LSTM)[J]. Sensors, 2020, 20(4): 1105. doi: 10.3390/s20041105
    [24] JOKANOVIĆ B and AMIN M. Fall detection using deep learning in range-Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 180–189. doi: 10.1109/TAES.2017.2740098
    [25] EROL B and AMIN M G. Radar data cube analysis for fall detection[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 2446–2450.
    [26] WANG Mingyang, CUI Guolong, YANG Xiaobo, et al. Human body and limb motion recognition via stacked gated recurrent units network[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1046–1051. doi: 10.1049/iet-rsn.2018.5054
    [27] TAYLOR W, DASHTIPOUR K, SHAH S A, et al. Radar sensing for activity classification in elderly people exploiting micro-Doppler signatures using machine learning[J]. Sensors, 2021, 21(11): 3881. doi: 10.3390/s21113881
    [28] ANISHCHENKO L, ZHURAVLEV A, and CHIZH M. Fall detection using multiple bioradars and convolutional neural networks[J]. Sensors, 2019, 19(24): 5569. doi: 10.3390/s19245569
    [29] ARAB H, GHAFFARI I, CHIOUKH L, et al. A convolutional neural network for human motion recognition and classification using a millimeter-wave Doppler radar[J]. IEEE Sensors Journal, 2022, 22(5): 4494–4502. doi: 10.1109/JSEN.2022.3140787
    [30] HE Mi, YANG Yi, PING Qinwen, et al. Optimum target range bin selection method for time-frequency analysis to detect falls using wideband radar and a lightweight network[J]. Biomedical Signal Processing and Control, 2022, 77: 103741. doi: 10.1016/j.bspc.2022.103741
    [31] HE Mi, NIAN Yongjian, and GONG Yushun. Novel signal processing method for vital sign monitoring using FMCW radar[J]. Biomedical Signal Processing and Control, 2017, 33: 335–345. doi: 10.1016/j.bspc.2016.12.008
    [32] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 1314–1324.
    [33] SU Boyu, HO K C, RANTZ M J, et al. Doppler radar fall activity detection using the wavelet transform[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(3): 865–875. doi: 10.1109/TBME.2014.2367038
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  1252
  • HTML全文浏览量:  769
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2022-10-05
  • 网络出版日期:  2022-10-16
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回