基于多照射源的被动雷达研究进展与发展趋势

万显荣 易建新 占伟杰 谢德强 舒刊 宋佳乐 程丰 饶云华 龚子平 柯亨玉

万显荣, 易建新, 占伟杰, 谢德强, 舒刊, 宋佳乐, 程丰, 饶云华, 龚子平, 柯亨玉. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939-958. doi: 10.12000/JR20143
引用本文: 万显荣, 易建新, 占伟杰, 谢德强, 舒刊, 宋佳乐, 程丰, 饶云华, 龚子平, 柯亨玉. 基于多照射源的被动雷达研究进展与发展趋势[J]. 雷达学报, 2020, 9(6): 939-958. doi: 10.12000/JR20143
WAN Xianrong, YI Jianxin, ZHAN Weijie, XIE Deqiang, SHU Kan, SONG Jiale, CHENG Feng, RAO Yunhua, GONG Ziping, KE Hengyu. Research Progress and Development Trend of the Multi-Illuminator-based Passive Radar (in English)[J]. Journal of Radars, 2020, 9(6): 939-958. doi: 10.12000/JR20143
Citation: WAN Xianrong, YI Jianxin, ZHAN Weijie, XIE Deqiang, SHU Kan, SONG Jiale, CHENG Feng, RAO Yunhua, GONG Ziping, KE Hengyu. Research Progress and Development Trend of the Multi-Illuminator-based Passive Radar (in English)[J]. Journal of Radars, 2020, 9(6): 939-958. doi: 10.12000/JR20143

基于多照射源的被动雷达研究进展与发展趋势

DOI: 10.12000/JR20143
基金项目: 国家自然科学基金(61931015, 62071335, 61701350, U1933135, 61831009);国家重点研发计划(2016YFB0502403);湖北省技术创新专项重大项目(2019AAA061)
详细信息
    作者简介:

    万显荣(1975–),男,湖北天门人,博士,武汉大学二级教授,博士生导师,研究方向为新体制雷达设计,如外辐射源雷达、高频超视距雷达系统及信号处理。E-mail: xrwan@whu.edu.cn

    易建新(1989–),男,湖南永州人,博士,武汉大学副研究员,研究方向为外辐射源雷达信号处理、目标跟踪和信息融合。E-mail: jxyi@whu.edu.cn

    占伟杰(1993–),男,福建漳州人,武汉大学博士,研究方向为雷达信号处理、实时信号并行处理和微多普勒效应研究。E-mail: zhanweijie@whu.edu.cn

    谢德强(1995–),男,贵州平塘人,武汉大学博士,研究方向为雷达系统设计与信号处理、大数据与机器学习。E-mail: xdq2013@whu.edu.cn

    舒 刊(1992–),男,湖北黄冈人,武汉大学博士,研究方向为雷达数据处理、目标跟踪与信息融合。E-mail: kanshu@whu.edu.cn

    宋佳乐(1995–),女,湖北武汉人,武汉大学硕士,研究方向为雷达信号处理、模糊函数处理。E-mail: jlsong@whu.edu.cn

    通讯作者:

    万显荣 xrwan@whu.edu.cn

    易建新 jxyi@whu.edu.cn

  • 责任主编:王俊 Corresponding Editor: WANG Jun
  • 中图分类号: TN958.97

Research Progress and Development Trend of the Multi-Illuminator-based Passive Radar (in English)

Funds: The National Natural Science Foundation of China (61931015, 62071335, 61701350, U1933135, 61831009), The National Key Research and Development Program (2016YFB0502403), Technological Innovation Project of Hubei Province of China (2019AAA061)
More Information
  • 摘要: 该文从新体制被动雷达的功能和性能优势出发,首先简要回顾了被动雷达长达80余年的研究历程;然后较为全面地介绍了相关关键技术的研究进展,包括参考信号重构、多径杂波抑制、目标检测、目标跟踪、被动雷达成像等方面;在此基础上,从系统结构、技术参数、性能指标等方面分别展示了国外(尤其是欧洲相关国家)典型被动雷达实验系统的最新研究成果,接着重点介绍了武汉大学基于多照射源的被动雷达(MIPAR)系统的研发情况,给出了不同频段(HF/VHF/UHF/L) MIPAR系统的目标探测结果,展示了MIPAR系统在远程预警及近距离高精度监视等方面的应用潜力;最后从多照射源集成化、系统配置网络化、信息处理智能化等方面总结了被动雷达的发展趋势。

     

  • 图  1  被动雷达探测示意图

    Figure  1.  Detection schematic diagram of passive radar

    图  2  典型被动雷达系统

    Figure  2.  Typical passive radar systems

    图  3  HF波段被动雷达探测结果与目标ADS-B信息对比

    Figure  3.  Comparison between HF-band passive radar detection results and ADS-B information

    图  4  VHF/UHF波段被动雷达目标探测结果

    Figure  4.  Detection results of VHF/UHF-band passive radars

    图  5  LTE被动雷达目标探测结果

    Figure  5.  Detection results LTE-based passive radar

    图  6  多照射源被动雷达网示意图

    Figure  6.  Schematic diagram of multi-illuminator passive radar

    图  7  基于多照射源的被动雷达探测结果

    Figure  7.  Detection results of the multi-illuminator passive radar

    图  8  智能检测算法与恒虚警检测算法结果对比

    Figure  8.  Comparison between the detection results of the intelligent detector and the constant false alarm rate detector

    图  1  Detection schematic diagram of passive radar

    图  2  Typical passive radar systems

    图  3  Comparison between HF-band passive radar detection results and ADS-B information

    图  4  Detection results of VHF/UHF band passive radars

    图  5  Detection results of LTE-based passive radar

    图  6  Schematic of multi-illuminator passive radar

    图  7  Detection results of the multi-illuminator passive radar

    图  8  Comparison between the detection results of the intelligent and constant false alarm rate detectors

  • [1] GRIFFITH H D and BAKER C J. Passive coherent location radar systems. Part 1: Performance prediction[J]. IEE Proceedings – Radar, Sonar and Navigation, 2005, 152(3): 153–159. doi: 10.1049/ip-rsn:20045082.
    [2] BAKER C J, GRIFFITHS H D, and PAPOUTSIS I. Passive coherent location radar systems. Part 2: Waveform properties[J]. IEE Proceedings – Radar, Sonar and Navigation, 2005, 152(3): 160–168. doi: 10.1049/ip-rsn:20045083.
    [3] 万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027.

    WAN Xianrong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027.
    [4] 宋杰, 何友, 蔡复青, 等. 基于非合作雷达辐射源的无源雷达技术综述[J]. 系统工程与电子技术, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.

    SONG Jie, HE You, CAI Fuqing, et al. Overview of passive radar technology based on non-cooperative radar illuminator[J]. Systems Engineering and Electronics, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.
    [5] KUSCHEL H, CRISTALLINI D, and OLSEN K E. Tutorial: Passive radar tutorial[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(2): 2–19. doi: 10.1109/MAES.2018.160146.
    [6] 郑恒, 王俊, 江胜利, 等. 外辐射源雷达[M]. 北京: 国防工业出版社, 2017: 1–10.

    ZHENG Heng, WANG Jun, JIANG Shengli, et al. Passive Bistatic Radar[M]. Beijing: National Defense Industry Press, 2017: 1–10.
    [7] 吕晓德, 仲利华, 刘忠胜, 等. 无源相参雷达系统 —原理、信号处理及设计[M]. 北京: 科学出版社, 2019: 1–22.

    LV Xiaode, ZHONG Lihua, LIU Zhongsheng, et al. Passive Coherent Radar System—Principle, Signal Processing and Design[M]. Beijing: Science Press, 2019: 1–22.
    [8] GRIFFITHS H and WILLIS N. Klein Heidelberg—the first modern bistatic radar system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1571–1588. doi: 10.1109/TAES.2010.5595580.
    [9] GRIFFITHS H D and LONG N R W. Television-based bistatic radar[J]. IEE Proceedings F - Communications, Radar and Signal Processing, 1986, 133(7): 649–657. doi: 10.1049/ip-f-1.1986.0104.
    [10] HOWLAND P E. Target tracking using television-based bistatic radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 1999, 146(3): 166–174. doi: 10.1049/ip-rsn:19990322.
    [11] HOWLAND P E, MAKSIMIUK D, and REITSMA G. FM radio based bistatic radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(3): 107–115. doi: 10.1049/ip-rsn:20045077.
    [12] SAINI R and CHERNIAKOV M. DTV signal ambiguity function analysis for radar application[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(3): 133–142. doi: 10.1049/ip-rsn:20045067.
    [13] POULLIN D. Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(3): 143–152. doi: 10.1049/ip-rsn:20045017.
    [14] 苏卫民, 顾红, 张先义. 基于外辐射源的雷达目标探测与跟踪技术研究[J]. 现代雷达, 2005, 27(4): 19–22. doi: 10.3969/j.issn.1004-7859.2005.04.006.

    SU Weimin, GU Hong, and ZHANG Xianyi. A study on radar target detection and tracking technology based on opportunity transmitter[J]. Modern Radar, 2005, 27(4): 19–22. doi: 10.3969/j.issn.1004-7859.2005.04.006.
    [15] 王俊, 张守宏, 保铮. 基于外照射的无源相干雷达系统及其关键问题[J]. 电波科学学报, 2005, 20(3): 381–385. doi: 10.3969/j.issn.1005-0388.2005.03.021.

    WANG Jun, ZHANG Shouhong, and BAO Zheng. Study on the external illuminator based passive coherent radar experimental system[J]. Chinese Journal of Radio Science, 2005, 20(3): 381–385. doi: 10.3969/j.issn.1005-0388.2005.03.021.
    [16] COLEMAN C and YARDLEY H. Passive bistatic radar based on target illuminations by digital audio broadcasting[J]. IET Radar, Sonar & Navigation, 2008, 2(5): 366–375. doi: 10.1049/iet-rsn:20080019.
    [17] 杨广平. 外辐射源雷达关键技术研究[J]. 现代雷达, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.

    YANG Guangping. A study on key technology of passive radar[J]. Modern Radar, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.
    [18] 万显荣, 邵启红, 柯亨玉, 等. 基于数字调幅广播的无源双基地地波雷达[J]. 雷达科学与技术, 2009, 7(6): 401–405. doi: 10.3969/j.issn.1672-2337.2009.06.001.

    WAN Xianrong, SHAO Qihong, KE Hengyu, et al. HF passive bistatic surface wave radar based on DRM digital AM broadcast[J]. Radar Science and Technology, 2009, 7(6): 401–405. doi: 10.3969/j.issn.1672-2337.2009.06.001.
    [19] 赵兴浩, 陶然. 无源雷达GSM信号模糊函数研究[J]. 现代雷达, 2004, 26(2): 31–34. doi: 10.3969/j.issn.1004-7859.2004.02.009.

    ZHAO Xinghao and TAO Ran. Ambiguity function of GSM signal for passive radar[J]. Modern Radar, 2004, 26(2): 31–34. doi: 10.3969/j.issn.1004-7859.2004.02.009.
    [20] ZEMMARI R, DAUN M, and NICKEL U. Maritime surveillance using GSM passive radar[C]. The 13th International Radar Symposium (IRS), Warsaw, Poland, 2012: 76–82. doi: 10.1109/IRS.2012.6233293.
    [21] COLONE F, FALCONE P, BONGIOANNI C, et al. WiFi-based passive bistatic radar: Data processing schemes and experimental results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1061–1079. doi: 10.1109/TAES.2012.6178049.
    [22] MA Hui, ANTONIOU M, STOVE A G, et al. Maritime moving target localization using passive GNSS-Based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4808–4819. doi: 10.1109/TGRS.2018.2838682.
    [23] VEREMYEV V I, VOROBEV E N, and KOKORINA Y V. Feasibility study of air target detection by passive radar using satellite-based transmitters[C]. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, Saint Petersburg and Moscow, Russia, 2019: 154–157. doi: 10.1109/EIConRus.2019.8656630.
    [24] SANTI F, PIERALICE F, and PASTINA D. Joint detection and localization of vessels at sea with a GNSS-based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5894–5913. doi: 10.1109/TGRS.2019.2902938.
    [25] PASTINA D, SANTI F, PIERALICE F, et al. Passive radar imaging of ship targets with GNSS signals of opportunity[J]. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3005306.
    [26] WANG Yasen, BAO Qinglong, WANG Dinghe, et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1868–1872. doi: 10.1109/LGRS.2015.2432574.
    [27] SONG Jie, CAI Fuqing, ZHANG Caisheng, et al. Experimental results of maritime moving target detection based on passive bistatic radar using non-cooperative radar illuminators[J]. The Journal of Engineering, 2019, 2019(20): 6763–6766. doi: 10.1049/joe.2019.0586.
    [28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 20600-2006 数字电视地面广播传输系统帧结构、信道编码和调制[S]. 北京: 中国标准出版社, 2007.

    General Administration of the People’s Republic of China Quality Supervision and Quarantine, National Standardization Administration of China. GB 20600-2006 Framing structure, channel coding and modulation for digital television terrestrial broadcasting system[S]. Beijing: China Standard Press, 2007.
    [29] 国家广播电影电视总局. GY/T 220.1-2006 移动多媒体广播 第1部分: 广播信道帧结构、信道编码和调制[S]. 中国移动多媒体标准, 2006.

    State Administration of Radio, Film and Television. GY/T 220.1-2006 Mobile multimedia broadcasting part 1: Framing structure channel coding and modulation for broadcasting channel[S]. China Mobile Multimedia Broadcasting Standard, 2006.
    [30] European Telecommunication Standards Institute. ES 201 980 v3.1.1-Digital Radio Mondiale (DRM) System Specification[S]. 2009.
    [31] 王俊, 牛溢华. 基于多电视台的两种无源雷达成像算法[J]. 系统工程与电子技术, 2007, 29(8): 1263–1267. doi: 10.3321/j.issn:1001-506x.2007.08.012.

    WANG Jun and NIU Yihua. Two algorithms for passive radar imaging based on multiple television stations[J]. Systems Engineering and Electronics, 2007, 29(8): 1263–1267. doi: 10.3321/j.issn:1001-506x.2007.08.012.
    [32] 高志文, 陶然, 单涛. DVB-T辐射源雷达信号模糊函数的副峰分析与抑制[J]. 电子学报, 2008, 36(3): 505–509. doi: 10.3321/j.issn:0372-2112.2008.03.018.

    GAO Zhiwen, TAO Ran, and SHAN Tao. Side peaks analysis and suppression of DVB-T signal ambiguity function for passive radar[J]. Acta Electronica Sinica, 2008, 36(3): 505–509. doi: 10.3321/j.issn:0372-2112.2008.03.018.
    [33] 高志文, 陶然, 单涛. 外辐射源雷达互模糊函数的两种快速算法[J]. 电子学报, 2009, 37(3): 669–672. doi: 10.3321/j.issn:0372-2112.2009.03.044.

    GAO Zhiwen, TAO Ran, and SHAN Tao. Two fast algorithms of cross-ambiguity function for passive radar[J]. Acta Electronica Sinica, 2009, 37(3): 669–672. doi: 10.3321/j.issn:0372-2112.2009.03.044.
    [34] 关欣, 胡东辉, 仲利华, 等. 一种高效的外辐射源雷达高径向速度目标实时检测方法[J]. 电子与信息学报, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903.

    GUAN Xin, HU Donghui, ZHONG Lihua, et al. An effective real-time target detection algorithm for high radial speed targets in passive radar[J]. Journal of Electronics & Information Technology, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903.
    [35] 关欣, 仲利华, 胡东辉, 等. 一种基于RSPWVD-Hough变换的无源雷达多普勒展宽补偿方法[J]. 雷达学报, 2013, 2(4): 430–438. doi: 10.3724/SP.J.1300.2013.13073.

    GUAN Xin, ZHONG Lihua, HU Donghui, et al. A compensation algorithm based on RSPWVD-Hough transform for Doppler expansion in passive radar[J]. Journal of Radars, 2013, 2(4): 430–438. doi: 10.3724/SP.J.1300.2013.13073.
    [36] 唐慧, 万显荣, 陈伟, 等. 数字地面多媒体广播外辐射源雷达目标探测实验研究[J]. 电子与信息学报, 2013, 35(3): 575–580. doi: 10.3724/SP.J.1146.2012.00939.

    TANG Hui, WAN Xianrong, CHEN Wei, et al. Experimentation on target detection with passive radar based on Digital Terrestrial Multimedia Broadcasting[J]. Journal of Electronics & Information Technology, 2013, 35(3): 575–580. doi: 10.3724/SP.J.1146.2012.00939.
    [37] WAN Xianrong, YI Jianxin, ZHAO Zhixin, et al. Experimental research for CMMB-Based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. doi: 10.1109/TAES.2013.120737.
    [38] MA Yahui, SHAN Tao, ZHANG Y D, et al. A novel two-dimensional sparse-weight NLMS filtering scheme for passive bistatic radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 676–680. doi: 10.1109/LGRS.2016.2535173.
    [39] BACZYK M K and MALANOWSKI M. Reconstruction of the reference signal in DVB-T-based passive radar[J]. International Journal of Electronics and Telecommunications, 2011, 57(1): 43–48. doi: 10.2478/v10177-011-0006-y.
    [40] SEARLE S, HOWARD S, and PALMER J. Remodulation of DVB-T signals for use in passive bistatic radar[C]. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, USA, 2010: 1112–1116. doi: 10.1109/ACSSC.2010.5757576.
    [41] MAHFOUDIA O, HORLIN F, and NEYT X. Optimum reference signal reconstruction for DVB-T based passive radars[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1446–1449. doi: 10.1109/RADAR.2017.7944411.
    [42] MAHFOUDIA O, HORLIN F, and NEYT X. Performance analysis of the reference signal reconstruction for DVB-T passive radars[J]. Signal Processing, 2019, 158: 26–35.
    [43] BOK D. Reconstruction and reciprocal filter of OFDM waveforms for DVB-T2 based passive radar[C]. 2018 International Conference on Radar (RADAR), Brisbane, Australia, 2018: 1–6.
    [44] O’HAGAN D W, SETSUBI M, and PAINE S. Signal reconstruction of DVB-T2 signals in passive radar[C]. 2018 IEEE Radar Conference (RadarConf), Oklahoma, USA, 2018: 1111–1116. doi: 10.1109/RADAR.2018.8378717.
    [45] 万显荣, 岑博, 易建新, 等. 中国移动多媒体广播外辐射源雷达参考信号获取方法研究[J]. 电子与信息学报, 2012, 34(2): 338–343. doi: 10.3724/SP.J.1146.2011.00572.

    WAN Xianrong, CEN Bo, YI Jianxin, et al. Reference signal extraction methods for CMMB-based passive bistatic radar[J]. Journal of Electronics & Information Technology, 2012, 34(2): 338–343. doi: 10.3724/SP.J.1146.2011.00572.
    [46] WAN Xianrong, WANG Junfang, HONG Sheng, et al. Reconstruction of reference signal for DTMB-based passive radar systems[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 165–168. doi: 10.1109/CIE-Radar.2011.6159501.
    [47] ZHANG Xun, YI Jianxin, WAN Xianrong, et al. Reference signal reconstruction under oversampling for DTMB-based passive radar[J]. IEEE Access, 2020, 8: 74024–74038. doi: 10.1109/ACCESS.2020.2986589.
    [48] SCHWARK C and HECKENBACH J. Multi-sensor reference diversity for improved OFDM signal reconstruction[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1446–1449. doi: 10.1109/RADAR.2017.7944434.
    [49] BERTHILLOT C, SANTORI A, RABASTE O, et al. BEM reference signal estimation for an airborne passive radar antenna array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2833–2845. doi: 10.1109/TAES.2017.2716458.
    [50] GUO Shuai, WANG Jun, MA Hui, et al. Modified blind equalization algorithm based on cyclostationarity for contaminated reference signal in airborne PBR[J]. Sensors, 2020, 20(3): 788. doi: 10.3390/s20030788.
    [51] PALMARINI C, MARTELLI T, COLONE F, et al. Disturbance removal in passive radar via sliding extensive cancellation algorithm (ECA-S)[C]. 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 162–167. doi: 10.1109/RadarConf.2015.7411873.
    [52] YI Jianxin, WAN Xianrong, LI Deshi, et al. Robust clutter rejection in passive radar via generalized subband cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1931–1946. doi: 10.1109/TAES.2018.2805228.
    [53] 赵志欣, 万显荣, 邵启红, 等. DRM无源雷达多径杂波的分载波空域抑制[J]. 华中科技大学学报: 自然科学版, 2012, 40(3): 13–17.

    ZHAO Zhixin, WAN Xianrong, SHAO Qihong, et al. Multipath clutter suppression by spatial filtering on each carrier in DRM-based passive radar[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40(3): 13–17.
    [54] 易建新, 万显荣, 赵志欣, 等. 单频网CP-OFDM信号外辐射源雷达的分载波杂波抑制方法(英文)[J]. 雷达学报, 2013, 2(1): 1–13. doi: 10.3724/SP.J.1300.2013.13030.

    YI Jianxin, WAN Xianrong, ZHAO Zhixin, et al. Subcarrier-based processing for clutter rejection in CP-OFDM signal-based passive radar using SFN configuration[J]. Journal of Radars, 2013, 2(1): 1–13. doi: 10.3724/SP.J.1300.2013.13030.
    [55] LIU Yuqi, YI Jianxin, WAN Xianrong, et al. Evaluation of clutter suppression in CP-OFDM-based passive radar[J]. IEEE Sensors Journal, 2019, 19(14): 5572–5586. doi: 10.1109/JSEN.2019.2907660.
    [56] 万显荣, 刘玉琪, 程丰, 等. 基于信道分段平滑的外辐射源雷达非平稳杂波抑制方法[J]. 电子与信息学报, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754.

    WAN Xianrong, LIU Yuqi, CHENG Feng, et al. Nonstationary clutter suppression method for passive radar based on channel segmentation and smoothing[J]. Journal of Electronic & Information Technology, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754.
    [57] 刘玉琪, 万显荣, 易建新, 等. 基于信道多普勒特征的外辐射源雷达杂波抑制方法[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20201014.1325.020.html, 2020.

    LIU Yuqi, WAN Xianrong, YI Jianxin, et al. Clutter suppression method for passive radar based on channel Doppler characteristic[J/OL]. Journal of Electronic and Information Technology. http://kns.cnki.net/kcms/detail/11.2422.TN.20201014.1325.020.html, 2020.
    [58] CHABRIEL G, BARRÈRE J, GASSIER G, et al. Passive covert radars using CP-OFDM signals. A new efficient method to extract targets echoes[C]. 2014 Radar Conference, Lille, France, 2014: 1–6. doi: 10.1109/RADAR.2014.7060382.
    [59] FANG Liang, WAN Xianrong, FANG Gao, et al. Passive detection using orthogonal frequency division multiplex signals of opportunity without multipath clutter cancellation[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 516–524. doi: 10.1049/iet-rsn.2015.0238.
    [60] FABRIZIO G, COLONE F, LOMBARDO P, et al. Adaptive beamforming for high-frequency over-the-horizon passive radar[J]. IET Radar, Sonar & Navigation, 2009, 3(4): 384–405. doi: 10.1049/iet-rsn.2008.0159.
    [61] 吴海洲, 陶然, 单涛. 基于DTTB照射源的无源雷达直达波干扰抑制[J]. 电子与信息学报, 2009, 31(9): 2033–2038.

    WU Haizhou, TAO Ran, and SHAN Tao. Direct-path interference suppression for passive radar based on DTTB illuminator[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2033–2038.
    [62] TAO R, WU H Z, and SHAN T. Direct-path suppression by spatial filtering in digital television terrestrial broadcasting-based passive radar[J]. IET Radar, Sonar & Navigation, 2010, 4(6): 791–805. doi: 10.1049/iet-rsn.2009.0138.
    [63] BROWN J, WOODBRIDGE K, GRIFFITHS H, et al. Passive bistatic radar experiments from an airborne platform[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(11): 50–55. doi: 10.1109/MAES.2012.6380826.
    [64] 梁龙, 万显荣, 程丰, 等. 机载外辐射源雷达杂波模型及特性分析[J]. 电波科学学报, 2014, 29(4): 595–600. doi: 10.13443/j.cjors.2013080601.

    LIANG Long, WAN Xianrong, CHENG Feng, et al. Modeling and characteristics analysis of clutter for airborne passive radar[J]. Chinese Journal of Radio Science, 2014, 29(4): 595–600. doi: 10.13443/j.cjors.2013080601.
    [65] 万显荣, 梁龙, 但阳鹏, 等. 移动平台外辐射源雷达实验研究[J]. 电波科学学报, 2015, 30(2): 383–390. doi: 10.13443/j.cjors.2014042301.

    WAN Xianrong, LIANG Long, DAN Yangpeng, et al. Experimental research of passive radar on moving platform[J]. Chinese Journal of Radio Science, 2015, 30(2): 383–390. doi: 10.13443/j.cjors.2014042301.
    [66] PALMER J, UMMENHOFER M, SUMMERS A, et al. Receiver platform motion compensation in passive radar[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 922–931. doi: 10.1049/iet-rsn.2016.0516.
    [67] YANG Pengcheng, LYU X D, CHAI Zhihai, et al. Clutter cancellation along the clutter ridge for airborne passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 951–955. doi: 10.1109/LGRS.2017.2689076.
    [68] WOJACZEK P, COLONE F, CRISTALLINI D, et al. Reciprocal-filter-based STAP for passive radar on moving platforms[J].IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 967–988. doi: 10.1109/TAES.2018.2867688.
    [69] BLASONE G P, COLONE F, LOMBARDO P, et al. A two-stage approach for direct signal and clutter cancellation in passive radar on moving platforms[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835704.
    [70] BLASONE G P, COLONE F, LOMBARDO P, et al. Passive radar DPCA schemes with adaptive channel calibration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4014–4034. doi: 10.1109/TAES.2020.2987478.
    [71] VISWANATHAN R and VARSHNEY P K. Distributed detection with multiple sensors Part I. Fundamentals[J]. Proceedings of the IEEE, 1997, 85(1): 54–63. doi: 10.1109/5.554208.
    [72] TAO Ran, GAO Zhiwen, and WANG Yue. Side peaks interference suppression in DVB-T based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3610–3619. doi: 10.1109/TAES.2012.6324746.
    [73] HACK D E, PATTON L K, HIMED B, et al. Detection in passive MIMO radar networks[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2999–3012. doi: 10.1109/TSP.2014.2319776.
    [74] CUI Guolong, LIU Jun, LI Hongbin, et al. Signal detection with noisy reference for passive sensing[J]. Signal Processing, 2015, 108: 389–399. doi: 10.1016/j.sigpro.2014.09.034.
    [75] LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006.
    [76] ZHANG Xin, LI Hongbin, LIU Jun, et al. Joint delay and Doppler estimation for passive sensing with direct-path interference[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 630–640. doi: 10.1109/TSP.2015.2488584.
    [77] BIALKOWSKI K S, CLARKSON I V L, and HOWARD S D. Generalized canonical correlation for passive multistatic radar detection[C]. 2011 IEEE Statistical Signal Processing Workshop (SSP), Nice, France, 2011: 417–420. doi: 10.1109/SSP.2011.5967719.
    [78] ZAIMBASHI A, DERAKHTIAN M, and SHEIKHI A. GLRT-based CFAR detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 134–159. doi: 10.1109/TAES.2013.6404095.
    [79] LIU Jun, LI Hongbin, and HIMED B. Two target detection algorithms for passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2014, 62(22): 5930–5939. doi: 10.1109/TSP.2014.2359637.
    [80] HACK D E, PATTON L K, HIMED B, et al. Centralized passive MIMO radar detection without direct-path reference signals[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 3013–3023. doi: 10.1109/TSP.2014.2320462.
    [81] GAO Yongchan, LI Hongbin, and HIMED B. Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 617–627. doi: 10.1109/TSP.2016.2625266.
    [82] GOGINENI S, SETLUR P, and RANGASWAMY M, et al. Random matrix theory inspired passive bistatic radar detection of low-rank signals[C]. 2015 IEEE Radar Conference (RadarConf), Arlington, USA, 2015: 1656–1659. doi: 10.1109/RADAR.2015.7131264.
    [83] SETLUR P, GOGINENI S, and RANGASWAMY M. Spectral characterizations of structured big data covariance matrices[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1745–1750. doi: 10.1109/RADAR.2017.7944489.
    [84] GOGINENI S, SETLUR P, RANGASWAMY M, et al. Passive radar detection with noisy reference channel using principal subspace similarity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 18–36. doi: 10.1109/TAES.2017.2730998.
    [85] GROSSI E, LOPS M, and VENTURINO L. A novel dynamic programming algorithm for track-before-detect in radar systems[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619. doi: 10.1109/TSP.2013.2251338.
    [86] ZHANG Jiancheng, SU Tao, ZHENG Jibin, et al. Novel fast coherent detection algorithm for radar maneuvering target with jerk motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 1792–1803. doi: 10.1109/JSTARS.2017.2651156.
    [87] WANG Hui, YI Jianxin, WAN Xianrong, et al. Greedy algorithm- based track-before-detect in radar systems[J]. IEEE Sensors Journal, 2018, 18(17): 7158–7165. doi: 10.1109/JSEN.2018.2853188.
    [88] WANG Hui, YI Jianxin, and WAN Xianrong. A fast coherent integration algorithm for maneuvering target detection[J]. IEEE Sensors Journal, 2019, 19(12): 4560–4570. doi: 10.1109/JSEN.2019.2899455.
    [89] COLONE F and LOMBARDO P. Polarimetric passive coherent location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1079–1097. doi: 10.1109/TAES.2014.130775.
    [90] COLONE F and LOMBARDO P. Non-coherent adaptive detection in passive radar exploiting polarimetric and frequency diversity[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 15–23. doi: 10.1049/iet-rsn.2015.0104.
    [91] FILIPPINI F and COLONE F. A practical approach to polarimetric adaptive target detection in passive radar[C]. 2017 International Conference on Radar Systems, Belfast, UK, 2017: 1–6. doi: 10.1049/cp.2017.0420.
    [92] ZAIMBASHI A, DERAKHTIAN M, and SHEIKHI A. Invariant target detection in multiband FM-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 720–736. doi: 10.1109/TAES.2013.120248.
    [93] MARTELLI T, COLONE F, TILLI E, et al. Multi-frequency target detection techniques for DVB-T based passive radar sensors[J]. Sensors, 2016, 16(10): 1594. doi: 10.3390/s16101594.
    [94] MARTELLI T, COLONE F, TILLI E, et al. Maritime surveillance via multi-frequency DVB-T based passive radar[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 540–545. doi: 10.1109/RADAR.2017.7944262.
    [95] YI Jianxin, WAN Xianrong, LEUNG H, et al. MIMO passive radar tracking under a single frequency network[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1661–1671. doi: 10.1109/JSTSP.2015.2464188.
    [96] CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network: Initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2460–2469. doi: 10.1109/TAES.2015.130270.
    [97] CHOI S, CROUSE D F, WILLETT P, et al. Approaches to Cartesian data association passive radar tracking in a DAB/DVB network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 649–663. doi: 10.1109/TAES.2013.120431.
    [98] LI Xiaohua, BAUM M, WILLETT P, et al. Evaluation of the PMHT approach for passive radar tracking with unknown transmitter associations[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–7.
    [99] LI Xiaohua, ZHAO Chenxu, LU Xiaofeng, et al. DA-PMHT for multistatic passive radar multitarget tracking in dense clutter environment[J]. IEEE Access, 2019, 7: 49316–49326. doi: 10.1109/ACCESS.2019.2907789.
    [100] SHI Yifang and SONG T L. Sequential processing JIPDA for multitarget tracking in clutter using multistatic passive radar[C]. The 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 1–8.
    [101] STINCO P, GRECO M S, GINI F, et al. ComRadE: Cognitive passive tracking in symbiotic IEEE 802.22 systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 1023–1034. doi: 10.1109/TAES.2017.2667498.
    [102] STINCO P, GRECO M S, and GINI F. Spectrum sensing and sharing for cognitive radars[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 595–602. doi: 10.1049/iet-rsn.2015.0372.
    [103] KUSCHEL H, UMMENHOFER M, LOMBARDO P, et al. Passive radar components of ARGUS 3D[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(3): 15–25. doi: 10.1109/MAES.2014.6805362.
    [104] FRÄNKEN D and ZEEB O. Advances in real-time tracking and data fusion using multiple passive radar sensors[C]. The 20th International Radar Symposium, Ulm, Germany, 2019: 1–10.
    [105] STEJSKAL V, KUSCHEL H, BRENNER T, et al. DETOUR trials: The mission and its results[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–14. doi: 10.23919/IRS.2017.8008191.
    [106] FRÄNKEN D and ZEEB O. Real-time creation of a target situation picture with the Hensoldt passive radar system[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 500–506. doi: 10.23919/ICIF.2018.8455609.
    [107] OLIVADESE D, GIUSTI E, PETRI D, et al. Passive ISAR with DVB-T signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4508–4517. doi: 10.1109/TGRS.2012.2236339.
    [108] MARTORELLA M and GIUSTI E. Theoretical foundation of passive bistatic ISAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1647–1659. doi: 10.1109/TAES.2014.130181.
    [109] PISCIOTTANO I, CRISTALLINI D, and PASTINA D. Maritime target imaging via simultaneous DVB-T and DVB-S passive ISAR[J]. IET Radar, Sonar & Navigation, 2019, 13(9): 1479–1487. doi: 10.1049/iet-rsn.2018.5622.
    [110] PISCIOTTANO I, SANTI F, PASTINA D, et al. DVB-S based passive polarimetric ISAR-methods and experimental validation[J]. IEEE Sensors Journal, doi: 10.1109/JSEN.2020.3037091.
    [111] GROMEK D, KULPA K, and SAMCZYŃSKI P. Experimental results of passive SAR imaging using DVB-T illuminators of opportunity[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1124–1128. doi: 10.1109/LGRS.2016.2571901.
    [112] FANG Yue, ATKINSON G, SAYIN A, et al. Improved passive SAR imaging with DVB-T transmissions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5066–5076. doi: 10.1109/TGRS.2020.2972156.
    [113] GROMEK D, RADECKI K, DROZDOWICZ J, et al. Passive SAR imaging using DVB-T illumination for airborne applications[J]. IET Radar, Sonar & Navigation, 2019, 13(2): 213–221. doi: 10.1049/iet-rsn.2018.5123.
    [114] NITHIROCHANANONT U, ANTONIOU M, and CHERNIAKOV M. Passive multi-static SAR-experimental results[J]. IET Radar, Sonar & Navigation, 2019, 13(2): 222–228. doi: 10.1049/iet-rsn.2018.5226.
    [115] SANTI F, BUCCIARELLI M, PASTINA D, et al. Passive multistatic SAR with GNSS transmitters and using joint bi/multi-static CLEAN technique[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485109.
    [116] QIU Wei, GIUSTI E, BACCI A, et al. Compressive sensing-based algorithm for passive bistatic ISAR with DVB-T signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2166–2180. doi: 10.1109/TAES.2015.130761.
    [117] QU Lele, LIU Yu, AN Shimiao, et al. Multi-static airborne passive SAR imaging using cross-validation-based SOMP algorithm[J]. The Journal of Engineering, 2019, 2019(20): 7092–7095. doi: 10.1049/joe.2019.0587.
    [118] BOURNAKA G, BARUZZI A, HECKENBACH J, et al. Experimental validation of beamforming techniques for localization of moving target in passive radar[C]. 2015 IEEE Radar Conference (RadarConf), Arlington, USA, 2015: 1710–1713. doi: 10.1109/RADAR.2015.7131274.
    [119] EDRICH M, SCHROEDER A, and MEYER F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system[J].IET Radar, Sonar & Navigation, 2014, 8(2): 114–122. doi: 10.1049/iet-rsn.2013.0162.
    [120] EDRICH M, LUTZ S, and HOFFMANN F. Passive radar at Hensoldt: A review to the last decade[C]. The 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–10. doi: 10.23919/IRS.2019.8768186.
    [121] DI LALLO A, FARINA A, FULCOLI R, et al. AULOS: Finmeccanica family of passive sensors[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 24–29. doi: 10.1109/MAES.2017.160037.(请联系作者确认doi信息)
    [122] MARTELLI T, COLONE F, and CARDINALI R. Eco-friendly dual-band AULOS® passive radar for air and maritime surveillance applications[C]. 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 2018: 1–6. doi: 10.1109/EE1.2018.8385267.
    [123] Patria. MUSCL, transportable and rugged passive radar[EB/OL]. https://www.patriagroup.com/products/passive-rf-sensors-product-family, 2020.
    [124] RZEWUSKI S, WIELGO M, KULPA K, et al. Multistatic passive radar based on WIFI-results of the experiment[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 230–234. doi: 10.1109/RADAR.2013.6651990.
    [125] RIBÓ S, ARCO J C, OLIVERAS S, et al. Experimental results of an X-Band PARIS receiver using Digital Satellite TV opportunity signals scattered on the sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5704–5711. doi: 10.1109/TGRS.2013.2292007.
    [126] RAJA ABDULLAH R S A, SALAH A A, ISMAIL A, et al. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 577–585. doi: 10.1049/iet-rsn.2015.0346.
    [127] COLONE F, MARTELLI T, BONGIOANNI C, et al. WiFi-based PCL for monitoring private airfields[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 22–29. doi: 10.1109/MAES.2017.160022.
    [128] PASTINA D, SANTI F, PIERALICE F, et al. Maritime moving target long time integration for GNSS-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3060–3083. doi: 10.1109/TAES.2018.2840298.
    [129] SANTI F, PASTINA D, ANTONIOU M, et al. GNSS-based multistatic passive radar imaging of ship targets[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 601–606. doi: 10.1109/RADAR42522.2020.9114638.
    [130] 万显荣, 赵志欣, 柯亨玉, 等. 基于DRM数字调幅广播的高频外辐射源雷达实验研究[J]. 雷达学报, 2012, 1(1): 11–18. doi: 10.3724/SP.J.1300.2013.20001.

    WAN Xianrong, ZHAO Zhixin, KE Hengyu, et al. Experimental research of HF passive radar based on DRM digital AM broadcasting[J]. Journal of Radars, 2012, 1(1): 11–18. doi: 10.3724/SP.J.1300.2013.20001.
    [131] ZHAO Zhixin, WAN Xianrong, ZHANG Delei, et al. An experimental study of HF passive bistatic radar via hybrid sky-surface wave mode[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(1): 415–424. doi: 10.1109/TAP.2012.2213062.
    [132] YI Jianxin, WAN Xianrong, CHENG Feng, et al. Computationally efficient RF interference suppression method with closed-form maximum likelihood estimator for HF surface wave over-the-horizon radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2361–2372. doi: 10.1109/TGRS.2012.2210903.
    [133] 谢锐, 万显荣, 洪丽娜, 等. 电离层行进式扰动对外辐射源天地波雷达系统的影响[J]. 电波科学学报, 2014, 29(6): 1098–1104, 1152. doi: 10.13443/j.cjors.2013103102.

    XIE Rui, WAN Xianrong, HONG Li’na, et al. Effects of the travelling ionospheric disturbance on sky-surface wave passive radar system[J]. Chinese Journal of Radio Science, 2014, 29(6): 1098–1104, 1152. doi: 10.13443/j.cjors.2013103102.
    [134] ZHAO Zhixin, WAN Xianrong, YI Jianxin, et al. Radio frequency interference mitigation in OFDM based passive bistatic radar[J]. AEU – International Journal of Electronics and Communications, 2016, 70(1): 70–76. doi: 10.1016/j.aeue.2015.10.004.
    [135] 谢锐, 万显荣, 赵志欣, 等. 外辐射源天地波雷达定位方法及精度分析[J]. 电波科学学报, 2014, 29(3): 442–449. doi: 10.13443/j.cjors.2013060902.

    XIE Rui, WAN Xianrong, ZHAO Zhixin, et al. Localization method and accuracy analysis in hybrid sky-surface wave passive radar[J]. Chinese Journal of Radio Science, 2014, 29(3): 442–449. doi: 10.13443/j.cjors.2013060902.
    [136] 张强, 万显荣, 傅䶮, 等. 基于CDR数字音频广播的外辐射源雷达信号模糊函数分析与处理[J]. 雷达学报, 2014, 3(6): 702–710. doi: 10.12000/JR14050.

    ZHANG Qiang, WAN Xianrong, FU Yan, et al. Ambiguity function analysis and processing for passive radar based on CDR digital audio broadcasting[J]. Journal of Radars, 2014, 3(6): 702–710. doi: 10.12000/JR14050.
    [137] FU Yan, WAN Xianrong, ZHANG Xun, et al. Side peak interference mitigation in FM-based passive radar via detection identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 778–788. doi: 10.1109/TAES.2017.2665079.
    [138] YI Jianxin, WAN Xianrong, LEUNG H, et al. Joint placement of transmitters and receivers for distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 122–134. doi: 10.1109/TAES.2017.2649338.
    [139] LÜ Min, YI Jianxin, WAN Xianrong, et al. Cochannel interference in DTMB-Based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2138–2149. doi: 10.1109/TAES.2018.2882959.
    [140] WEN Jinfang, YI Jianxin, and WAN Xianrong. Sparse representation for target parameter estimation in CDR-based passive radar[J]. IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2020.2991743.
    [141] LIU Yuqi, WAN Xianrong, TANG Hui, et al. Digital television based passive bistatic radar system for drone detection[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1493–1497. doi: 10.1109/RADAR.2017.7944443.
    [142] SHU Kan, YI Jianxin, WAN Xianrong, et al. A hybrid tracking algorithm for multistatic passive radar[J]. IEEE Systems Journal, in  press. doi: 10.1109/JSYST.2020.2994009
    [143] LÜ Min, YI Jianxin, WAN Xianrong, et al. Target tracking in time-division-multifrequency-based passive radar[J]. IEEE Sensors Journal, 2020, 20(8): 4382–4394. doi: 10.1109/JSEN.2020.2964291.
    [144] FANG Gao, YI Jianxin, WAN Xianrong, et al. Experimental research of multistatic passive radar with a single antenna for drone detection[J]. IEEE Access, 2018, 6: 33542–33551. doi: 10.1109/ACCESS.2018.2844556.
    [145] SALAH A A, RAJA ABDULLAH R S A, ISMAIL A, et al. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications[J]. Electronics Letters, 2014, 50(7): 545–547. doi: 10.1049/el.2014.0237.
    [146] KLÖCK C, WINKLER V, and EDRICH M. LTE-signal processing for passive radar air traffic surveillance[C]. The 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008105.
    [147] 王本静, 易建新, 万显荣, 等. LTE外辐射源雷达帧间模糊带分析与抑制[J]. 雷达学报, 2018, 7(4): 514–522. doi: 10.12000/JR18025.

    WANG Benjing, YI Jianxin, WAN Xianrong, et al. Inter-frame ambiguity analysis and suppression of LTE signal for passive radar[J]. Journal of Radars, 2018, 7(4): 514–522. doi: 10.12000/JR18025.
    [148] DAN Yangpeng, YI Jianxin, WAN Xianrong, et al. LTE-based passive radar for drone detection and its experimental results[J]. The Journal of Engineering, 2019, 2019(20): 6910–6913. doi: 10.1049/joe.2019.0583.
    [149] 万显荣, 刘同同, 易建新, 等. LTE外辐射源雷达系统设计及目标探测实验研究[J]. 雷达学报. 2020, 9(6): 967–973.

    WAN Xianrong, LIU Tongtong, YI Jianxin, et al. System design and target detection experiments for LTE-based passive radar[J]. Journal of Radar. 2020, 9(6): 967–973.
    [150] FRÄNKEN D and ZEEB O. Tracking and data fusion with the Hensoldt passive radar system[C]. The 22nd International Microwave and Radar Conference, Poznan, Poland, 2018: 404–407. doi: 10.23919/MIKON.2018.8405238.
    [151] CONTE E, D’ADDIO E, FARINA A, et al. Multistatic radar detection: Synthesis and comparison of optimum and suboptimum receivers[J]. IEE Proceedings F - Communications, Radar and Signal Processing, 1983, 130(6): 484–494. doi: 10.1049/ip-f-1:19830078.
    [152] ZHANG Xin, LI Hongbin, and HIMED B. Multistatic detection for passive radar with direct-path interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 915–92. doi: 10.1109/TAES.2017.2667223.
    [153] MALANOWSKI M and KULPA K. Two methods for target localization in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 572–580. doi: 10.1109/TAES.2012.6129656.
    [154] NOROOZI A and SEBT M A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671. doi: 10.1109/TAES.2017.2669558.
    [155] NOROOZI A and SEBT M A. Algebraic solution for three-dimensional TDOA/AOA localisation in multiple-input- multiple-output passive radar[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 21–29. doi: 10.1049/iet-rsn.2017.0117.
    [156] KLEIN M and MILLET N. Multireceiver passive radar tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(10): 26–36. doi: 10.1109/MAES.2012.6373909.
    [157] BATTISTELLI G, CHISCI L, MORROCCHI S, et al. Robust multisensor multitarget tracker with application to passive multistatic radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3450–3472. doi: 10.1109/TAES.2012.6324726.
    [158] KUSCHEL H, HECKENBACH J, and SCHELL J. Deployable multiband passive/active radar for air defense (DMPAR)[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(9): 37–45. doi: 10.1109/MAES.2013.6617097.
    [159] RADMARD M, KARBASI S M, and NAYEBI M N. Data fusion in MIMO DVB-T-Based passive coherent location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1725–1737. doi: 10.1109/TAES.2013.6558015.
    [160] STINCO P, GRECO M S, GINI F, et al. Posterior Cramér–Rao lower bounds for passive bistatic radar tracking with uncertain target measurements[J]. Signal Processing, 2013, 93(12): 3528–3540. doi: 10.1016/j.sigpro.2013.02.021.
    [161] XIE Rui, WAN Xianrong, HONG Sheng, et al. Joint optimization of receiver placement and illuminator selection for a multiband passive radar network[J]. Sensors, 2017, 17(6): 1378. doi: 10.3390/s17061378.
    [162] DEL-REY-MAESTRE N, JARABO-AMORES M P, MATA-MOYA D, et al. Machine learning techniques for coherent CFAR detection based on statistical modeling of UHF passive ground clutter[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 104–118. doi: 10.1109/JSTSP.2017.2780798.
    [163] CLEMENTE C, PARRY T, GALSTON G, et al. GNSS based passive bistatic radar for micro-Doppler based classification of helicopters: Experimental validation[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1104–1108. doi: 10.1109/RADAR.2015.7131159.
    [164] YONEL B, MASON E, and YAZICI B. Deep learning for passive synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 90–103. doi: 10.1109/JSTSP.2017.2784181.
    [165] MANNO-KOVACS A, GIUST E, BERIZZI F, et al. Image based robust target classification for passive ISAR[J]. IEEE Sensors Journal, 2019, 19(1): 268–276. doi: 10.1109/JSEN.2018.2876911.
    [166] 姚诗颖, 易建新, 万显荣, 等. 基于多层感知器的外辐射源雷达多帧联合检测[J/OL]. 电波科学学报. https://doi.org/10.13443/j.cjors.2020022301, 2020.

    YAO Shiying, YI Jianxin, WAN Xianrong, et al. Multi-frame joint detection for passive radar based on multi-layer perceptron[J/OL]. Chinese Journal of Radio Science. https://doi.org/10.13443/j.cjors.2020022301, 2020.
  • 加载中
图(16)
计量
  • 文章访问数:  5021
  • HTML全文浏览量:  2394
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-28
  • 修回日期:  2020-12-18
  • 网络出版日期:  2020-12-22

目录

    /

    返回文章
    返回