Citation: | ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Review of applications of radar remote sensing in agriculture[J]. Journal of Radars, 2020, 9(3): 444–461. doi: 10.12000/JR20051 |
Active radar remote sensing technology, with its capability of acquiring all-weather data, has great potential for agricultural monitoring. This technology can penetrate vegetation cover more deeply than optical sensors and has sensitivity to the shapes, structures, and dielectric constants of vegetation scatterers. In this paper, we discuss the applications of radar remote sensing in crop identification, cropland soil moisture inversion, crop growth parameter inversion, crop phenology retrieval, agricultural disaster monitoring, and crop yield estimation. We review several specific papers focusing these fields, and then describe the results obtained using information extracted from radar scatterometers and Synthetic Aperture Radar (SAR). Extracted SAR data include characterizations of backscattering, polarimetry, interferometry, and tomography. Lastly, we summarize the problems faced by radar applications in agriculture and consider the future trend of these applications.
[1] |
FAWWAZ T U, R K M, ADRIAN K F and FENG J, et al. 侯世昌, 马锡冠等, 译. 微波遥感[M]. 科学出版社, 1988, 1–10.
FAWWAZ T U, R K M, ADRIAN K F, et al. HOU Shichang, MA Xiguan, et al. Translation. Microwave Remote Sensing[M]. Science Press, 1988, 1–10.
|
[2] |
王迪, 周清波, 陈仲新, 等. 基于合成孔径雷达的农作物识别研究进展[J]. 农业工程学报, 2014, 30(16): 203–212. doi: 10.3969/j.issn.1002-6819.2014.16.027
WANG Di, ZHOU Qingbo, CHEN Zhongxin, et al. Research advances on crop identification using synthetic aperture radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(16): 203–212. doi: 10.3969/j.issn.1002-6819.2014.16.027
|
[3] |
LIU Chang’an, CHEN Zhongxin, SHAO Yun, et al. Research advances of SAR remote sensing for agriculture applications: A review[J]. Journal of Integrative Agriculture, 2019, 18(3): 506–525. doi: 10.1016/S2095-3119(18)62016-7
|
[4] |
施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: 地球科学, 2012, 55(7): 1052–1078. doi: 10.1007/s11430-012-4444-x
SHI Jiancheng, DU Yang, DU Jinyang, et al. Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Sciences, 2012, 55(7): 1052–1078. doi: 10.1007/s11430-012-4444-x
|
[5] |
张亚红, 吴娇娇, 胥喆, 等. 合成孔径雷达在农作物长势监测中的应用[J]. 安徽农业科学, 2016, 44(27): 220–222, 244. doi: 10.13989/j.cnki.0517-6611.2016.27.074
ZHANG Yahong, WU Jiaojiao, XU Zhe, et al. Application of synthetic aperture radar in crop growth monitoring[J]. Journal of Anhui Agricultural Sciences, 2016, 44(27): 220–222, 244. doi: 10.13989/j.cnki.0517-6611.2016.27.074
|
[6] |
李正国, 杨鹏, 周清波, 等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报, 2008, 29(11): 6216–6226. doi: 10.3321/j.issn:1000-0933.2009.11.057
LI Zhengguo, YANG Peng, ZHOU Qingbo, et al. Research on spatiotemporal pattern of crop phenological characteristics and cropping system in North China based on NDVI time series data[J]. Acta Ecologica Sinica, 2008, 29(11): 6216–6226. doi: 10.3321/j.issn:1000-0933.2009.11.057
|
[7] |
李正国, 唐华俊, 杨鹏, 等. 植被物候特征的遥感提取与农业应用综述[J]. 中国农业资源与区划, 2012, 33(5): 20–28. doi: 10.7621/cjarrp.1005-9121.20120504
LI Zhengguo, TANG Huajun, YANG Peng, et al. Progress in remote sensing of vegetation phenology and its application in agriculture[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(5): 20–28. doi: 10.7621/cjarrp.1005-9121.20120504
|
[8] |
卢必慧, 于堃. 遥感信息与作物生长模型同化应用的研究进展[J]. 江苏农业科学, 2018, 46(10): 9–13. doi: 10.15889/j.issn.1002-1302.2018.10.003
LU Bihui and YU Kun. Research progress on assimilation of remote sensing information and crop growth model[J]. Jiangsu Agricultural Sciences, 2018, 46(10): 9–13. doi: 10.15889/j.issn.1002-1302.2018.10.003
|
[9] |
李平湘, 赵伶俐, 任烨仙. 合成孔径雷达在农业监测中的应用和展望[J]. 地理空间信息, 2017, 15(3): 1–4. doi: 10.3969/j.issn.1672-4623.2017.03.001
LI Pingxiang, ZHAO Lingli, and REN Yexian. Outlook and application of the synthetic aperture radar in agriculture monitoring[J]. Geospatial Information, 2017, 15(3): 1–4. doi: 10.3969/j.issn.1672-4623.2017.03.001
|
[10] |
刘健, 郭交, 韩文霆. 基于合成孔径雷达的土壤水分反演研究进展[J]. 三峡生态环境监测, 2020, in press. doi: http://kns.cnki.net/kcms/detail/50.1214.X.20200312.1142.002.html
LIU jian, GUO jiao, and HAN wenting. Advance in research on soil moisture retrieval using synthetic aperture radar[J]. Ecology and Environmental Monitoring of Three Gorges, 2020, in press. doi: http://kns.cnki.net/kcms/detail/50.1214.X.20200312.1142.002.html
|
[11] |
MCNAIRN H and SHANG Jiali. A review of multitemporal Synthetic Aperture Radar (SAR) for crop monitoring[J]. Multitemporal Remote Sensing, 2018, 20: 317–340. doi: 10.1007/978-3-319-47037-5_15.
|
[12] |
黄健熙, 黄海, 马鸿元, 等. 遥感与作物生长模型数据同化应用综述[J]. 农业工程学报, 2018, 34(21): 144–156. doi: 10.11975/j.issn.1002-6819.2018.21.018
HUANG Jianxi, HUANG Hai, MA Hongyuan, et al. Review on data assimilation of remote sensing and crop growth models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 144–156. doi: 10.11975/j.issn.1002-6819.2018.21.018
|
[13] |
HUANG Jianxi, GÓMEZ-DANS J L, HUANG Hai, et al. Assimilation of remote sensing into crop growth models: Current status and perspectives[J]. Agricultural and Forest Meteorology, 2019, 276/277: 107609. doi: 10.1016/j.agrformet.2019.06.008
|
[14] |
吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
|
[15] |
WOODHOUSE I H. Introduction to Microwave Remote Sensing[M], New York, CRC Press Taylor & Francis Group, 2006, 221–257 . doi: 10.1111/j.1477-9730.2009.00531_1.x
|
[16] |
ULABY F and MOORE R. Radar sensing of soil moisture[C]. 1973 Antennas and Propagation Society International Symposium, Boulder, USA, 1973: 362–365. doi: 10.1109/APS.1973.1147125.
|
[17] |
ULABY F. Radar measurement of soil moisture content[J]. IEEE Transactions on Antennas and Propagation, 1974, 22(2): 257–265. doi: 10.1109/TAP.1974.1140761
|
[18] |
ULABY F. Radar response to vegetation[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(1): 36–45. doi: 10.1109/TAP.1975.1140999
|
[19] |
ULABY F, BUSH T, and BATLIVALA P P. Radar response to vegetation II: 8–18 GHz band[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(5): 608–618. doi: 10.1109/tap.1975.1141133
|
[20] |
ULABY F T and BATLIVALA P P. Optimum radar parameters for mapping soil moisture[J]. IEEE Transactions on Geoscience Electronics, 1976, 14(2): 81–93. doi: 10.1109/TGE.1976.294414
|
[21] |
ULABY F T, BATLIVALA P P, and DOBSON M C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil[J]. IEEE Transactions on Geoscience Electronics, 1978, 16(4): 286–295. doi: 10.1109/TGE.1978.294586
|
[22] |
ULABY F T, BRADLEY G A, and DOBSON M C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation-covered soil[J]. IEEE Transactions on Geoscience Electronics, 1979, 17(2): 33–40. doi: 10.1109/TGE.1979.294626
|
[23] |
ULABY F T, ASLAM A, and DOBSON M C. Effects of vegetation cover on the radar sensitivity to soil moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20(4): 476–481. doi: 10.1109/TGRS.1982.350413
|
[24] |
DE LOOR G P, JURRIENS A A, and GRAVESTEIJN H. The radar backscatter from selected agricultural crops[J]. IEEE Transactions on Geoscience Electronics, 1974, 12(2): 70–77. doi: 10.1109/tge.1974.294337
|
[25] |
BOUMAN B A M and VAN KASTEREN H W J. Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. I. Sugar beet and potato; backscattering and crop growth[J]. Remote Sensing of Environment, 1990, 34(2): 93–105. doi: 10.1016/0034-4257(90)90101-q
|
[26] |
BOUMAN B A M and VAN KASTEREN H W J. Ground-based X-band (3-cm wave) radar backscattering of agricultural crops. II. Wheat, barley, and oats; the impact of canopy structure[J]. Remote Sensing of Environment, 1990, 34(2): 107–119. doi: 10.1016/0034-4257(90)90102-R
|
[27] |
BOUMAN B A M. Crop parameter estimation from ground-based X-band (3-cm wave) radar backscattering data[J]. Remote Sensing of Environment, 1991, 37(3): 193–205. doi: 10.1016/0034-4257(91)90081-g
|
[28] |
INOUE Y, KUROSU T, MAENO H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002, 81(2/3): 194–204. doi: 10.1016/s0034-4257(01)00343-1
|
[29] |
BRISCO B, BROWN R J, GAIRNS J G, et al. Temporal ground-based scatterometer observations of crops in Western Canada[J]. Canadian Journal of Remote Sensing, 1992, 18(1): 14–21. doi: 10.1080/07038992.1992.10855138
|
[30] |
BRISCO B, BROWN R J, KOEHLER J A, et al. The diurnal pattern of microwave backscattering by wheat[J]. Remote Sensing of Environment, 1990, 34(1): 37–47. doi: 10.1016/0034-4257(90)90082-w
|
[31] |
MCNAIRN H, DUGUAY C, BOISVERT J, et al. Defining the sensitivity of multi-frequency and multi-polarized radar backscatter to post-harvest crop residue[J]. Canadian Journal of Remote Sensing, 2001, 27(3): 247–263. doi: 10.1080/07038992.2001.10854941
|
[32] |
SMITH A M and MAJOR D J. Radar backscatter and crop residues[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 243–247. doi: 10.1080/07038992.1996.10855179
|
[33] |
BRISCO B, BROWN R J, SNIDER B, et al. Tillage effects on the radar backscattering coefficient of grain stubble fields[J]. International Journal of Remote Sensing, 1991, 12(11): 2283–2298. doi: 10.1080/01431169108955258
|
[34] |
SONG Dongsheng, ZHAO Kai, and GUAN Zhi. Advances in research on soil moisture by microwave remote sensing in China[J]. Chinese Geographical Science, 2007, 17(2): 186–191. doi: 10.1007/s11769-007-0186-7
|
[35] |
王丽巍, 吴季, 张玮, 等. FM-CW制式陆基微波散射计与IEM模型联合反演地表土壤湿度研究[J]. 电子学报, 2002, 30(3): 404–406. doi: 10.3321/j.issn:0372-2112.2002.03.025
WANG Liwei, WU Ji, ZHANG Wei, et al. Study on soil moisture with ground-based scatterometer and IEM model[J]. Acta Electronica Sinica, 2002, 30(3): 404–406. doi: 10.3321/j.issn:0372-2112.2002.03.025
|
[36] |
赵昌龄, 郝卫星, 李生平, 等. 微波遥感裸露土壤和植被覆盖土壤含水量的研究[J]. 土壤学报, 1992, 29(3): 310–317. doi: 10.3321/j.issn:0564-3929.1992.03.004
ZHAO Changling, HAO Weixing, LI Shengping, et al. Study on microwave remote sensing for bare and vegetation-covered soil moisture[J]. Acta Pedologica Sinica, 1992, 29(3): 310–317. doi: 10.3321/j.issn:0564-3929.1992.03.004
|
[37] |
O'NEILL P E, LANG R H, KURUM M, et al. Multi-sensor microwave soil moisture remote sensing: NASA’s Combined Radar/Radiometer (ComRAD) System[C]. 2006 IEEE MicroRad, Puerto Rico, USA, 2006: 50–54. doi: 10.1109/MICRAD.2006.1677061.
|
[38] |
JACKSON T J, COSH M, BINDLISH R, et al. Soil Moisture Active Passive (SMAP) Calibration and validation plan and current activities[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 25–30.
|
[39] |
SRIVASTAVA P K, O'NEILL P, COSH M, et al. Evaluation of radar vegetation indices for vegetation water content estimation using data from a ground-based SMAP simulator[C]. IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1296–1299. doi: 10.1109/IGARSS.2015.7326012.
|
[40] |
NAGARAJAN K, LIU P W, DEROO R, et al. Automated L-band radar system for sensing soil moisture at high temporal resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 504–508. doi: 10.1109/LGRS.2013.2270453
|
[41] |
LIU Pangwei, JUDGE J, DEROO R D, et al. Dominant backscattering mechanisms at L-band during dynamic soil moisture conditions for sandy soils[J]. Remote Sensing of Environment, 2016, 178: 104–112. doi: 10.1016/j.rse.2016.02.062
|
[42] |
KRUL L. Some results of microwave remote sensing research in the Netherlands with a view to land applications in the 1990s[J]. International Journal of Remote Sensing, 1988, 9(10/11): 1553–1563. doi: 10.1080/01431168808954960
|
[43] |
SNOEIJ P and SWART P J F. The DUT airborne scatterometer[J]. International Journal of Remote Sensing, 1987, 8(11): 1709–1716. doi: 10.1080/01431168708954810
|
[44] |
BERNARD R, VIDAL-MADJAR D, BAUDIN F, et al. Data processing and calibration for an airborne scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(5): 709–716. doi: 10.1109/TGRS.1986.289618
|
[45] |
BOUMAN B A M and HOEKMAN D H. Multi-temporal, multi-frequency radar measurements of agricultural crops during the Agriscatt-88 campaign in The Netherlands[J]. International Journal of Remote Sensing, 1993, 14(8): 1595–1614. doi: 10.1080/01431169308953988
|
[46] |
FERRAZZOLI P, PALOSCIA S, PAMPALONI P, et al. Sensitivity of microwave measurements to vegetation biomass and soil moisture content: A case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 750–756. doi: 10.1109/36.158869
|
[47] |
BENALLEGUE M, NORMAND M, GALLE S, et al. Soil moisture assessment at a basin scale using active microwave remote sensing: The Agriscatt '88 Airborne Campaign on the Orgeval watershed[J]. International Journal of Remote Sensing, 1994, 15(3): 645–656. doi: 10.1080/01431169408954102
|
[48] |
张毅, 蒋兴伟, 林明森, 等. 星载微波散射计的研究现状及发展趋势[J]. 遥感信息, 2009, (6): 87–94. doi: 10.3969/j.issn.1000-3177.2009.06.019
ZHANG Yi, JIANG Xingwei, LIN Mingsen, et al. The present research status and development trend of spacebonre microwave scatterometer[J]. Remote Sensing Information, 2009(6): 87–94. doi: 10.3969/j.issn.1000-3177.2009.06.019
|
[49] |
KEYDEL W. Microwave sensors for remote sensing of land and sea surfaces[J]. Geojournal, 1991, 24(1): 7–25. doi: 10.1007/BF00213053
|
[50] |
LONG D. Radar, Scatterometers[M]. NJOKU E G. Encyclopedia of Remote Sensing. New York, USA: Springer, 2014: 529. doi: 10.1007/978-0-387-36699-9_136.
|
[51] |
彭海龙, 穆博, 林明森, 等. 基于亚马逊热带雨林的HY-2卫星微波散射计在轨测量性能分析[J]. 中国工程科学, 2014, 16(6): 33–38. doi: 10.3969/j.issn.1009-1742.2014.06.005
PENG Hailong, MU Bo, LIN Mingsen, et al. Performance analysis of the HY-2 satellite microwave scatterometer measurements based on tropical rainforests[J]. Engineering Science, 2014, 16(6): 33–38. doi: 10.3969/j.issn.1009-1742.2014.06.005
|
[52] |
WOODHOUSE I H and HOEKMAN D H. Determining land-surface parameters from the ERS wind scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 126–140. doi: 10.1109/36.823907
|
[53] |
WOODHOUSE I H and HOEKMAN D H. A model-based determination of soil moisture trends in Spain with the ERS-scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1783–1793. doi: 10.1109/36.851762
|
[54] |
FRISON P L, MOUGIN E, JARLAN L, et al. Comparison of ERS wind-scatterometer and SSM/I data for Sahelian vegetation monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1794–1803. doi: 10.1109/36.851763
|
[55] |
FROLKING S, MILLIMAN T, MCDONALD K, et al. Evaluation of the SeaWinds scatterometer for regional monitoring of vegetation phenology[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D17): D17302. doi: 10.1029/2005jd006588
|
[56] |
LU Linlin, GUO Huadong, WANG Cuizhen, et al. Assessment of the SeaWinds scatterometer for vegetation phenology monitoring across China[J]. International Journal of Remote Sensing, 2013, 34(15): 5551–5568. doi: 10.1080/01431161.2013.794986
|
[57] |
WEN Jun and SU Zhongbo. The estimation of soil moisture from ERS wind scatterometer data over the Tibetan plateau[J]. Physics and Chemistry of the Earth,Parts A/B/C, 2003, 28(1/3): 53–61. doi: 10.1016/S1474-7065(03)00007-X
|
[58] |
WAGNER W, SCIPAL K, PATHE C, et al. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D19): 4611. doi: 10.1029/2003jd003663
|
[59] |
BARTALIS Z, WAGNER W, NAEIMI V, et al. Initial soil moisture retrievals from the METOP-A Advanced SCATterometer (ASCAT)[J]. Geophysical Research Letters, 2017, 34(20): L20401. doi: 10.1029/2007gl031088
|
[60] |
DORIGO W A, GRUBER A, DE JEU R A M, et al. Evaluation of the ESA CCI soil moisture product using ground-based observations[J]. Remote Sensing of Environment, 2015, 162: 380–395. doi: 10.1016/j.rse.2014.07.023
|
[61] |
KIM S B, TSANG L, JOHNSON J T, et al. Soil moisture retrieval using time-series radar observations over bare surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1853–1863. doi: 10.1109/TGRS.2011.2169454
|
[62] |
KIM S B, MOGHADDAM M, TSANG L, et al. Models of L-band radar backscattering coefficients over global terrain for soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1381–1396. doi: 10.1109/TGRS.2013.2250980
|
[63] |
NAEIMI V, SCIPAL K, BARTALIS Z, et al. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1999–2013. doi: 10.1109/tgrs.2008.2011617
|
[64] |
WAGNER W, LEMOINE G, and ROTT H. A method for estimating soil moisture from ERS scatterometer and soil data[J]. Remote Sensing of Environment, 1999, 70(2): 191–207. doi: 10.1016/S0034-4257(99)00036-X
|
[65] |
孙政, 周清波, 杨鹏, 等. 基于星载极化SAR数据的农作物分类识别进展评述[J]. 中国农业资源与区划, 2019, 40(11): 63–71.
SUN Zheng, ZHOU Qingbo, YANG Peng, et al. Review of crop classification and recognition based on spaceborne polarimetric SAR data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(11): 63–71.
|
[66] |
徐昆鹏. 基于极化散射特征与SVM的极化SAR影像分类方法研究[D]. [硕士论文], 内蒙古农业大学, 2018: 40–44.
XU Kunpeng. Study on polarimetric SAR image classification method based on polarization scattering characteristics and SVM[D]. [Master dissertation], Inner Mongolia Agricultural University, 2018: 40–44.
|
[67] |
李俐, 王荻, 王鹏新, 等. 合成孔径雷达土壤水分反演研究进展[J]. 资源科学, 2015, 37(10): 1929–1940.
LI Li, WANG Di, WANG Pengxin, et al. Progress on monitoring soil moisture using SAR data[J]. Resources Science, 2015, 37(10): 1929–1940.
|
[68] |
ATTEMA E P W and ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357–364. doi: 10.1029/RS013i002p00357
|
[69] |
ULABY F T, MCDONALD K, SARABANDI K, et al. Michigan microwave canopy scattering models (MIMICS)[C]. International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century’, Edinburgh, UK, 1988: 1009. doi: 10.1109/IGARSS.1988.570506.
|
[70] |
TOURE A, THOMSON K P B, EDWARDS G, et al. Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 47–61. doi: 10.1109/36.285188
|
[71] |
LIN Hui, CHEN Jinsong, PEI Zhiyuan, et al. Monitoring sugarcane growth using ENVISAT ASAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2572–2580. doi: 10.1109/TGRS.2009.2015769
|
[72] |
李成钢. 冬小麦微波散射特性及参数反演研究[D]. [硕士论文], 电子科技大学, 2013: 47–51.
LI Chenggang. Research on the inversion of parameters and microwave scattering characteristics of winter wheat[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013: 47–51.
|
[73] |
吴学睿, 李颖, 李传龙. 基于Bi-Mimics模型的GNSS-R农作物生物量监测理论研究[J]. 遥感技术与应用, 2012, 27(2): 220–230. doi: 10.11873/j.issn.1004-0323.2012.2.220
WU Xuerui, LI Ying, and LI Chuanlong. Research on crop biomass monitoring using GNSS-R technique based on bi-mimics model[J]. Remote Sensing Technology and Application, 2012, 27(2): 220–230. doi: 10.11873/j.issn.1004-0323.2012.2.220
|
[74] |
贾明权. 水稻微波散射特性研究及参数反演[D]. [博士论文], 电子科技大学, 2013: 95–114.
JIA Mingquan. Research on rice microwave scattering mechanism and parameter inversion[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2013: 95–114.
|
[75] |
陶亮亮, 李京, 蒋金豹, 等. 利用RADARSAT-2雷达数据与改进的水云模型反演冬小麦叶面积指数[J]. 麦类作物学报, 2016, 36(2): 236–242. doi: 10.7606/j.issn.1009-1041.2016.02.15
TAO Liangliang, LI Jing, JIANG Jinbao, et al. Leaf area index inversion of winter wheat using Radarsat-2 data and modified water-cloud model[J]. Journal of Triticeae Crops, 2016, 36(2): 236–242. doi: 10.7606/j.issn.1009-1041.2016.02.15
|
[76] |
陈磊, 范伟, 陈娟, 等. 基于星载SAR的冬小麦估产模型比较分析[J]. 中国农学通报, 2015, 31(10): 256–260. doi: 10.11924/j.issn.1000-6850.casb14110161
CHEN Lei, FAN Wei, CHEN Juan, et al. Comparative analysis of winter wheat yield estimation model based on SAR[J]. Chinese Agricultural Science Bulletin, 2015, 31(10): 256–260. doi: 10.11924/j.issn.1000-6850.casb14110161
|
[77] |
范伟, 陈磊, 荀尚培, 等. 基于双极化双时相RADARSAT-2的冬小麦估产模型研究[J]. 中国农学通报, 2014, 30(20): 284–289. doi: 10.11924/j.issn.1000-6850.2013-2242
FAN Wei, CHEN Lei, XUN Shangpei, et al. Model for estimating winter wheat yield based on RADARSAT-2 of double-polarization and double-time phase[J]. Chinese Agricultural Science Bulletin, 2014, 30(20): 284–289. doi: 10.11924/j.issn.1000-6850.2013-2242
|
[78] |
谭正. 基于SAR数据和作物生长模型同化的水稻长势监测与估产研究[D]. [硕士论文], 中国地质大学(北京), 2012: 19–25.
TAN Zheng. Study on rice growth monitoring and yield prediction based on assimilation of SAR data and crop growth model[D]. [Master dissertation], China University of Geosciences, 2012: 19–25.
|
[79] |
RINALDI M, SATALINO G, MATTIA F, et al. Assimilation of COSMO-SkyMed-derived LAI maps into the AQUATER crop growth simulation model. Capitanata (Southern Italy) case study[J]. European Journal of Remote Sensing, 2013, 46(1): 891–908. doi: 10.5721/EuJRS20134653
|
[80] |
YANG Hao, YANG Guijun, et al. In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery[J]. Precision Agriculture, 2019, 20: 630–648. doi: 10.1007/s11119-018-9587-0
|
[81] |
MCNAIRN H and BRISCO B, et al. The Application of C-band Polarimetric SAR for Agriculture: A Review[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 525–542. doi: 10.1109/JSTARS.2014.2322311
|
[82] |
ZHANG W, CHEN E, LI Z, et al. Using compact polarimetric parameters for rape (Brassica napus L.)LAI inversion[C]. The IEEE International Geoscience & Remote Sensing Symposium, Texas, USA, 2017: 5846–5849. doi: 10.1109/IGARSS.2017.8128338.
|
[83] |
ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Rape (Brassica napus L.) growth monitoring and mapping based on radarsat-2 time-series data[J]. Remote Sensing, 2018, 10(2): 206. doi: 10.3390/rs10020206
|
[84] |
LOPEZ-SANCHEZ J M, CLOUDE S R, and BALLESTER-BERMAN J D. Rice phenology monitoring by means of SAR polarimetry at X-Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2695–2709. doi: 10.1109/TGRS.2011.2176740
|
[85] |
LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, BALLESTER-BERMAN J D, et al. Polarimetric response of rice fields at C-Band: Analysis and phenology retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2977–2993. doi: 10.1109/TGRS.2013.2268319
|
[86] |
WANG Hongquan, MAGAGI R, GOÏTA K, et al. Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm[J]. Remote Sensing of Environment, 2019, 231: 111234. doi: 10.1016/j.rse.2019.111234
|
[87] |
CANISIUS F, SHANG Jiali, LIU Jiangui, et al. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data[J]. Remote Sensing of Environment, 2018, 210: 508–518. doi: 10.1016/j.rse.2017.07.031
|
[88] |
MCNAIRN H, JIAO Xianfeng, PACHECO A, et al. Estimating canola phenology using synthetic aperture radar[J]. Remote Sensing of Environment, 2018, 219: 196–205. doi: 10.1016/j.rse.2018.10.012
|
[89] |
YANG Hao, CHEN Erxue, LI Zengyuan, et al. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34: 157–166. doi: 10.1016/j.jag.2014.08.010
|
[90] |
杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. [博士论文], 中国林业科学研究院, 2015: 45–58.
YANG Hao. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. [Ph. D. dissertation], Chinese Academy of Forestry, 2015: 45–58.
|
[91] |
MCNAIRN H, VAN DER SANDEN J J, BROWN R J, et al. The potential of RADARSAT-2 for crop mapping and assessing crop condition[C]. The 2nd International Conference on Geospatial Information in Agriculture and Forestry, Florida, USA, 2000: 81–88. doi: 10.4095/219589.
|
[92] |
东朝霞, 王迪, 周清波, 等. 基于SAR遥感的北方旱地秋收作物识别研究[J]. 中国农业资源与区划, 2016, 37(8): 27–36. doi: 10.7621/cjarrp.1005-9121.20160804
DONG Zhaoxia, WANG Di, ZHOU Qingbo, et al. Dryland crop identification based on synthetic aperture radar in the North China Plain[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(8): 27–36. doi: 10.7621/cjarrp.1005-9121.20160804
|
[93] |
化国强, 王晶晶, 黄晓军, 等. 基于全极化SAR数据散射机理的农作物分类[J]. 江苏农业学报, 2011, 27(5): 978–982. doi: 10.3969/j.issn.1000-4440.2011.05.011
HUA Guoqiang, WANG Jingjing, HUANG Xiaojun, et al. Crop classification based on scattering model using full-polarization SAR data[J]. Jiangsu Journal of Agricultural Sciences, 2011, 27(5): 978–982. doi: 10.3969/j.issn.1000-4440.2011.05.011
|
[94] |
李坤, 邵芸, 张风丽. 基于RadarSat-2全极化数据的水稻识别[J]. 遥感技术与应用, 2012, 27(1): 86–93. doi: 10.11873/j.issn.1004-0323.2012.1.86
LI Kun, SHAO Yun, and ZHANG Fengli. Extraction of rice based on quad-polarization RadarSat-2 Data[J]. Remote Sensing Technology and Application, 2012, 27(1): 86–93. doi: 10.11873/j.issn.1004-0323.2012.1.86
|
[95] |
MCNAIRN H, SHANG Jiali, JIAO Xianfeng, et al. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 3981–3992. doi: 10.1109/TGRS.2009.2026052
|
[96] |
DUBOIS P C, VAN ZYL J, and ENGMAN T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915–926. doi: 10.1109/36.406677
|
[97] |
SHI Jiancheng, WANG J R, HSU A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254–1266. doi: 10.1109/36.628792
|
[98] |
SHI Jiancheng and CHEN K S. Estimation of bare surface soil moisture with L-band multi-polarization radar measurements[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005: 2194. doi: 10.1109/IGARSS.2005.1526454.
|
[99] |
HAJNSEK I, PAPPATHANASSIOU K P, REIGBER A, et al. Soil-moisture estimation using polarimetric SAR data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 2440–2442. doi: 10.1109/IGARSS.1999.771536.
|
[100] |
PIERDICCA N, CASTRACANE P, and PULVIRENTI L. Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data[J]. Sensors, 2008, 8(12): 8181–8200. doi: 10.3390/s8128181
|
[101] |
MATTIA F, LE TOAN T, SOUYRIS J C, et al. The effect of surface roughness on multifrequency polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 954–966. doi: 10.1109/36.602537
|
[102] |
CLOUDE S R. Eigenvalue parameters for surface roughness studies[C]. SPIE 3754, Polarization: Measurement, Analysis, and Remote Sensing II, Denver, USA, 1999. doi: 10.1117/12.366317.
|
[103] |
HAJNSEK I, POTTIER E, and CLOUDE S R. Inversion of surface parameters from polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 727–744. doi: 10.1109/TGRS.2003.810702
|
[104] |
MARZAHN P and LUDWIG R. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling[J]. Hydrology and Earth System Sciences, 2009, 13(3): 381–394. doi: 10.5194/hess-13-381-2009
|
[105] |
ZRIBI M, GORRAB A, and BAGHDADI N. A new soil roughness parameter for the modelling of radar backscattering over bare soil[J]. Remote Sensing of Environment, 2014, 152: 62–73. doi: 10.1016/j.rse.2014.05.009
|
[106] |
JIAO Xianfeng, MCNAIRN H, SHANG Jiali, et al. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index[J]. Canadian Journal of Remote Sensing, 2011, 37(1): 69–81. doi: 10.5589/m11-023
|
[107] |
MCNAIRN H, SHANG J, JIAO X, et al. Establishing crop productivity using RADARSAT-2[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B8: 283–287. doi: 10.5194/isprsarchives-XXXIX-B8-283-2012
|
[108] |
WISEMAN G, MCNAIRN H, HOMAYOUNI S, et al. RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4461–4471. doi: 10.1109/JSTARS.2014.2322311.
|
[109] |
YANG Zhi, LI Kun, LIU Long, et al. Rice growth monitoring using simulated compact polarimetric C band SAR[J]. Radio Science, 2014, 49(12): 1300–1315. doi: 10.1002/2014RS005498
|
[110] |
YANG Zhi, LI Kun, SAHO Yun, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote Sensing, 2016, 8(10): 878. doi: 10.3390/rs8100878
|
[111] |
ZHANG Wangfei, LI Zengyuan, CHEN Erxue, et al. Compact polarimetric response of rape (Brassica napus L.) at C-Band: Analysis and growth parameters inversion[J]. Remote Sensing, 2017, 9(6): 591. doi: 10.3390/rs9060591
|
[112] |
杨知. 基于极化SAR的水稻物候期监测与参数反演研究[D]. [博士论文]. 中国科学院遥感与数字地球研究所, 2017: 83–106.
YANG Zhi. Rice phenology estimation and parameter retrieval based on polarimetric Synthetic Aperture Radar (SAR)[D]. [Ph. D. dissertation], Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2017: 83–106.
|
[113] |
HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote Sensing of Environment, 2015, 170: 77–89. doi: 10.1016/j.rse.2015.09.002
|
[114] |
VICENTE-GUIJALBA F, MARTINEZ-MARIN T, and LOPEZ-SANCHEZ J M. Crop phenology estimation using a multitemporal model and a kalman filtering strategy[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1081–1085. doi: 10.1109/LGRS.2013.2286214
|
[115] |
DE BERNARDIS C G, VICENTE-GUIJALBA F, MARTINEZ-MARIN T, et al. Estimation of key dates and stages in rice crops using dual-polarization SAR time series and a particle filtering approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1008–1018. doi: 10.1109/JSTARS.2014.2372898
|
[116] |
张王菲, 姬永杰. 极化与干涉SAR植被参数反演[M]. 北京: 中国林业出版社, 2019: 4–6.
ZHANG Wangfei and JI Yongjie. Vegetation Paramter Inversion using Polarimetric and Interferometric SAR Technique[M]. Beijing: China Forestry Publishing House, 2019: 4–6.
|
[117] |
张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6): 983–997. doi: 10.11873/j.issn.1004-0323.2017.6.0983
ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sensing Technology and Application, 2017, 32(6): 983–997. doi: 10.11873/j.issn.1004-0323.2017.6.0983
|
[118] |
ENGDAHL M E, BORGEAUD M, and RAST M. The use of ERS-1/2 Tandem interferometric coherence in the estimation of agricultural crop heights[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8): 1799–1806. doi: 10.1109/36.942558
|
[119] |
TREUHAFT R N and SIQUEIRA P R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar[J]. Radio Science, 2000, 35(1): 141–177. doi: 10.1029/1999rs900108
|
[120] |
胡楚锋, 周洲, 李南京, 等. 基于有向体模型的植被参数反演及室内宽带实验研究[J]. 电子与信息学报, 2012, 34(2): 255–260. doi: 10.3724/SP.J.1146.2011.00553
HU Chufeng, ZHOU Zhou, LI Nanjing, et al. Investigation on vegetation parameters invesion algorithm based on oriented volume model and indoor wide-band measurements[J]. Journal of Electronics&Information Technology, 2012, 34(2): 255–260. doi: 10.3724/SP.J.1146.2011.00553
|
[121] |
LOPEZ-SANCHEZ J M, BALLESTER-BERMAN J D, and MARQUEZ-MORENO Y. Model limitations and parameter-estimation methods for agricultural applications of polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3481–3493. doi: 10.1109/TGRS.2007.900690
|
[122] |
ERTEN E, ROSSI C, and YUZUGULLU O. Polarization impact in TanDEM-X data over vertical-oriented vegetation: The paddy-rice case study[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1501–1505. doi: 10.1109/LGRS.2015.2410339
|
[123] |
ROSSI C and ERTEN E. Paddy-rice monitoring using TanDEM-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 900–910. doi: 10.1109/TGRS.2014.2330377
|
[124] |
LEE S K, YOON S Y, and WON J S. Vegetation height estimate in rice fields using single polarization TanDEM-X science phase data[J]. Remote Sensing, 2018, 10(11): 1702. doi: 10.3390/rs10111702
|
[125] |
国贤玉, 李坤, 邵芸, 等. 基于多时相TanDEM-X极化干涉SAR数据的水稻株高反演[J]. 光谱学与光谱分析, 2020, 40(3): 878–884.
GUO xianyu, LI Kun, SHAO Yun, et al. Inversion of rice height using multitemporal TanDEM-X polarimetric interferometry SAR data[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 878–884.
|
[126] |
REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873
|
[127] |
林珲, 马培峰, 陈旻, 等. SAR层析成像的基本原理、关键技术和应用领域[J]. 测绘地理信息, 2015, 40(3): 1–5. doi: 10.14188/j.2095-6045.2015.03.001
LIN Hui, MA Peifeng, CHEN Min, et al. Basic principles, key techniques and applications of tomographic SAR imaging[J]. Journal of Geomatics, 2015, 40(3): 1–5. doi: 10.14188/j.2095-6045.2015.03.001
|
[128] |
张红, 江凯, 王超, 等. SAR层析技术的研究与应用[J]. 遥感技术与应用, 2010, 25(2): 282–287. doi: 10.11873/j.issn.1004-0323.2010.2.282
ZHANG Hong, JIANG Kai, WANG Chao, et al. The current status of SAR tomography[J]. Remote Sensing Technology and Application, 2010, 25(2): 282–287. doi: 10.11873/j.issn.1004-0323.2010.2.282
|
[129] |
CLOUDE S R. Polarization coherence tomography[J]. Radio Science, 2006, 41(4): RS4017. doi: 10.1029/2005RS003436
|
[130] |
李新武, 郭华东, 彭星, 等. SAR对地观测技术及应用新进展[J]. 南京信息工程大学学报: 自然科学版, 2020, 12(2): 170–180. doi: 10.13878/j.cnki.jnuist.2020.02.004
LI Xinwu, GUO Huadong, PENG Xing, et al. New advances of SAR and its application in earth observation[J]. Journal of Nanjing University of Information Science&Technology:Natural Science Edition, 2020, 12(2): 170–180. doi: 10.13878/j.cnki.jnuist.2020.02.004
|
[131] |
李文梅. 极化干涉SAR层析估测森林垂直结构参数方法研究[D]. [博士论文], 中国林业科学研究院, 2013: 3–12.
LI Wenmei. Forest vertical structure parameters estimation using polarimetric interferometric tomography SAR[D]. [Ph. D. dissertation], Chinese Academy of Forestry, 2013: 3–12.
|
[132] |
JOERG H, PARDINI M, HAJNSEK I, et al. Sensitivity of SAR tomography to the phenological cycle of agricultural crops at X-, C-, and L-band[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3014–3029. doi: 10.1109/JSTARS.2018.2845127
|
[133] |
BROWN S C M, QUEGAN S, MORRISON K, et al. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1602–1610. doi: 10.1109/tgrs.2003.814132
|
[134] |
LOPEZ-SANCHEZ J M, FORTUNY-GUASCH J, CLOUDE S R, et al. Indoor polarimetric radar measurements on vegetation samples At L, S, C and X band[J]. Journal of Electromagnetic Waves and Applications, 2000, 14(2): 205–231. doi: 10.1163/156939300X00734
|
[135] |
LOPEZ-SANCHEZ J M, BALLESTER-BERMAN J D, and FORTUNY-GUASCH J. Indoor wide-band polarimetric measurements on maize plants: A study of the differential extinction coefficient[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 758–767. doi: 10.1109/tgrs.2005.862522
|
[136] |
JOERG H, PARDINI M, HAJNSEK I, et al. On the separation of ground and volume scattering using multibaseline SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1570–1574. doi: 10.1109/LGRS.2017.2723980
|
[137] |
JOERG H, PARDINI M, HAJNSEK I, et al. 3-D scattering characterization of agricultural crops at C-Band using SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3976–3989. doi: 10.1109/TGRS.2018.2818440
|
[138] |
JOERG H, PARDINI M, HAJNSEK I, et al. First multi-frequency investigation of SAR tomography for vertical structure of agricultural crops[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014.
|
[139] |
PICHIERRI M, HAJNSEK I, and PAPATHANASSIOU K P. A multibaseline Pol-InSAR inversion scheme for crop parameter estimation at different frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4952–4970. doi: 10.1109/TGRS.2016.2553739
|
[140] |
LOPEZ‐SANCHEZ J M, BALLESTER‐BERMAN J D. Potentials of polarimetric SAR interferometry for agriculture monitoring[J]. Radio Science, 2009, 44(2): RS2010. doi: 10.1029/2008RS004078
|
[1] | LIAO Xiaorong, SUN Guohao, ZHONG Suchuan, YU Xianxiang, LI Ming. Joint Optimization of Radar and Jammer Space-time Cooperative Beamforming for a Multitasking Dynamic Scene[J]. Journal of Radars, 2024, 13(3): 613-628. doi: 10.12000/JR23243 |
[2] | YANG Shixing, ZHANG Guoxin, LIANG Yunfei, YI Wei, KONG Lingjiang. Moving Targets Detection with Low-bit Quantization in Distributed Radar on Moving Platforms[J]. Journal of Radars, 2024, 13(3): 584-600. doi: 10.12000/JR23240 |
[3] | LIU Xin, ZHU Haibin, LIU Zongqiang, XUE Changhu, MU Yaxin, QU Xiaodong, YE Shengbo, XIA Zhenghuan, FANG Guangyou. The Design and Joint Positioning Method of an ultra-wideband Through-wall Radar System for Distributed Wireless Networking[J]. Journal of Radars, 2024, 13(4): 747-760. doi: 10.12000/JR23239 |
[4] | NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072 |
[5] | SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081 |
[6] | GUO Rui, ZHANG Yue, TIAN Biao, XIAO Yu, HU Jun, XU Shiyou, CHEN Zengping. Review of the Technology, Development and Applications of Holographic Staring Radar[J]. Journal of Radars, 2023, 12(2): 389-411. doi: 10.12000/JR22153 |
[7] | SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146 |
[8] | QI Cheng, XIE Junwei, ZHANG Haowei, DING Zihang, YANG Xiao. Element Configuration Optimization of Hybrid Distributed PA-MIMO Radar System Based on Target Detection[J]. Journal of Radars, 2023, 12(3): 576-589. doi: 10.12000/JR22159 |
[9] | YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036 |
[10] | ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206 |
[11] | LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064 |
[12] | SONG Xiaocheng, LI Zhi, REN Haiwei, YI Wei. Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars[J]. Journal of Radars, 2023, 12(3): 629-641. doi: 10.12000/JR22240 |
[13] | WANG Yuedong, GU Yijing, LIANG Yan, WANG Zengfu, ZHANG Huixia. Deep Game of Escorting Suppressive Jamming and Networked Radar Power Allocation[J]. Journal of Radars, 2023, 12(3): 642-656. doi: 10.12000/JR23023 |
[14] | XIAO Peng, YU Zhitong, CHEN Zhuoqi, CUI Xiangbin, ZHAO Bo, LANG Shinan, LI Meng, HU Luojia, HUANG Yan, LIU Min, WANG Cheng, CHEN Liang, LIU Lu, SUI Xiaohong, YUAN Chunzhu. Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(3): 479-498. doi: 10.12000/JR21196 |
[15] | SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005 |
[16] | ZHANG Guoxin, YI Wei, KONG Lingjiang. Direct Position Determination for Massive MIMO System with One-bit Quantization[J]. Journal of Radars, 2021, 10(6): 970-981. doi: 10.12000/JR21062 |
[17] | GAO Xiangying, ZHAO Yongjun, LIU Zhixin, LIU Chengcheng. Robust Source Localization Using TDOA and FDOA with Receiver Location Errors [J]. Journal of Radars, 2020, 9(5): 916-924. doi: 10.12000/JR20039 |
[18] | PEI Jiazheng, HUANG Yong, DONG Yunlong, HE You, CHEN Xiaolong. Track-Before-Detect Algorithm Based on Improved Auxiliary Particle PHD Filter under Clutter Background[J]. Journal of Radars, 2019, 8(3): 355-365. doi: 10.12000/JR18060 |
[19] | Yang Haifeng, Xie Wenchong, Wang Yongliang. Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform[J]. Journal of Radars, 2017, 6(3): 267-274. doi: 10.12000/JR16142 |
[20] | Shi Chen-guang, Wang Fei, Zhou Jian-jiang, Chen Jun. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization (in English)[J]. Journal of Radars, 2014, 3(4): 465-473. doi: 10.3724/SP.J.1300.2014.13140 |
1. | 胡继军,韩伟,张国玉,周希娃,贺杨婷,廖春兰. 基于多站数据融合的参数精估计方法. 遥测遥控. 2024(02): 109-123 . ![]() | |
2. | 赵宏宇,武忠国,李廷鹏,杨晓帆,陈冬冬. 射频信号合成与数字域信号合成的等效性分析. 电子信息对抗技术. 2024(03): 21-26 . ![]() | |
3. | 廖晓容,孙国皓,钟苏川,余显祥,李明. 面向多任务动态场景的雷达与干扰空时协同波束联合优化方法. 雷达学报. 2024(03): 613-628 . ![]() | |
4. | 邹玮琦,牛朝阳,刘伟,王艳云,湛嘉祺. 面向组网雷达干扰任务的多机伴随式编队航迹预规划方法. 系统工程与电子技术. 2024(08): 2807-2819 . ![]() | |
5. | 刘溥熙,赵欣怡,尤明,田栢苓,马龙. 面向组网雷达干扰任务的多无人机协同动态决策方法研究. 战术导弹技术. 2024(06): 14-25 . ![]() | |
6. | 袁野,杨剑,刘辛雨,易伟,孔令讲. 基于任务效用最大化的多雷达协同任务规划算法. 雷达学报. 2023(03): 550-562 . ![]() | |
7. | 王跃东,顾以静,梁彦,王增福,张会霞. 伴随压制干扰与组网雷达功率分配的深度博弈研究. 雷达学报. 2023(03): 642-656 . ![]() | |
8. | 时晨光,董璟,周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法. 雷达学报. 2023(03): 590-601 . ![]() | |
9. | 齐铖,谢军伟,张浩为,丁梓航,杨潇. 基于目标检测的混合分布式PA-MIMO雷达系统阵元优化部署. 雷达学报. 2023(03): 576-589 . ![]() | |
10. | 纪慧颖,潘明海,张元时,喻庆豪. 基于遗传-蚁群融合算法的干扰资源分配方法. 系统工程与电子技术. 2023(07): 2098-2107 . ![]() | |
11. | 陆德江,王星,陈游,胡星. 联合多种资源协同干扰组网雷达系统的自适应调度方法. 系统工程与电子技术. 2023(09): 2744-2754 . ![]() | |
12. | 梁猛,檀雷,陈飞,梁斌,杨帅. 协同干扰技术应用研究. 航天电子对抗. 2023(04): 44-48+64 . ![]() | |
13. | 李健涛,王轲昕,刘凯,张天贤. 基于深度强化学习的干扰资源分配方法. 现代雷达. 2023(10): 44-51 . ![]() |