全文下载排行

1
海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步。针对海上目标散射特性数据不足的问题,升级“雷达对海探测数据共享计划(SDRDSP)”,扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持。后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持。 海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步。针对海上目标散射特性数据不足的问题,升级“雷达对海探测数据共享计划(SDRDSP)”,扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持。后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持。
2
中国边境线地貌类型丰富,电磁信号密布,导致机载雷达在实际工作中面临的环境非常复杂。机载雷达在复杂地形环境和复杂电磁环境下探测性能严重下降,无法满足作战需求。认知空时自适应处理是一种有效的技术途径。该文提出了认知空时自适应处理架构,并在该架构基础上分别介绍了数据库、算法库、认知STAP技术和反馈控制等。仿真数据分析表明,相对于传统STAP技术,认知空时自适应处理技术可显著提升机载雷达在复杂环境下的运动目标检测性能。 中国边境线地貌类型丰富,电磁信号密布,导致机载雷达在实际工作中面临的环境非常复杂。机载雷达在复杂地形环境和复杂电磁环境下探测性能严重下降,无法满足作战需求。认知空时自适应处理是一种有效的技术途径。该文提出了认知空时自适应处理架构,并在该架构基础上分别介绍了数据库、算法库、认知STAP技术和反馈控制等。仿真数据分析表明,相对于传统STAP技术,认知空时自适应处理技术可显著提升机载雷达在复杂环境下的运动目标检测性能。
3
该文针对飞鸟和无人机等低慢小目标精细化特征提取和分类问题,提出了一种多波段多角度特征融合分类方法。首先分别基于K波段和L波段调频连续波雷达从多个角度采集了5种类型旋翼无人机和飞鸟模型数据,构建低慢小探测数据集。其次,为了获取L波段目标信号的周期性振动特征,利用经验模态分解提取L波段信号中高频特征,抑制噪声影响;对K波段回波信号进行短时傅里叶变换,获得多角度高分辨微动特征。然后,设计了一种多波段多角度特征融合网络模型(MMFFNet),包含改进的卷积长短期记忆网络时序特征提取模块、注意力融合模块和多尺度特征融合模块,通过多波段多角度特征的融合提高了目标分类的准确率。通过实测数据集验证表明,与使用单一雷达特征分类方法相比,在高信噪比为5 dB和低信噪比为–3 dB条件下所提方法对7种类型的低慢小目标的正确分类准确率分别提高了3.1%和12.3%。 该文针对飞鸟和无人机等低慢小目标精细化特征提取和分类问题,提出了一种多波段多角度特征融合分类方法。首先分别基于K波段和L波段调频连续波雷达从多个角度采集了5种类型旋翼无人机和飞鸟模型数据,构建低慢小探测数据集。其次,为了获取L波段目标信号的周期性振动特征,利用经验模态分解提取L波段信号中高频特征,抑制噪声影响;对K波段回波信号进行短时傅里叶变换,获得多角度高分辨微动特征。然后,设计了一种多波段多角度特征融合网络模型(MMFFNet),包含改进的卷积长短期记忆网络时序特征提取模块、注意力融合模块和多尺度特征融合模块,通过多波段多角度特征的融合提高了目标分类的准确率。通过实测数据集验证表明,与使用单一雷达特征分类方法相比,在高信噪比为5 dB和低信噪比为–3 dB条件下所提方法对7种类型的低慢小目标的正确分类准确率分别提高了3.1%和12.3%。
4
点云融合技术作为3D (Three-Dimensional)数据处理的重要手段,在多个领域展现出巨大的潜力和应用前景。该文系统地综述了点云融合的基础概念、常用技术方法及其应用,深入分析了不同方法的发展现状和未来发展趋势。此外,该文还探讨了点云融合在自动驾驶、建筑和机器人等领域的实际应用及面临的挑战,尤其是在应对噪声、数据稀疏性和密度不均等问题时,如何在保证融合精度的同时平衡其复杂性。通过全面梳理现有研究进展,为未来点云融合技术的发展提供了有力参考,并为进一步提升融合算法的精度、鲁棒性和效率指明了可能的研究方向。 点云融合技术作为3D (Three-Dimensional)数据处理的重要手段,在多个领域展现出巨大的潜力和应用前景。该文系统地综述了点云融合的基础概念、常用技术方法及其应用,深入分析了不同方法的发展现状和未来发展趋势。此外,该文还探讨了点云融合在自动驾驶、建筑和机器人等领域的实际应用及面临的挑战,尤其是在应对噪声、数据稀疏性和密度不均等问题时,如何在保证融合精度的同时平衡其复杂性。通过全面梳理现有研究进展,为未来点云融合技术的发展提供了有力参考,并为进一步提升融合算法的精度、鲁棒性和效率指明了可能的研究方向。
5
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。 针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。
6
分布式相参雷达实现全相参的关键在于对感兴趣目标进行发射相参合成。当相参参数估计阶段存在间歇采样转发干扰时,实现发射相参是极为困难的。为解决上述问题,该文提出了一种基于间歇采样转发干扰匹配滤波特征的干扰抑制方法。该方法能够弥补低干噪比条件下无法进行时频域滤波的缺陷,同时为高干噪比条件下进行干扰重构和对消提供了一种更精确的干扰参数估计途径。仿真结果表明,所提方法对间歇采样转发干扰的抑制效果显著。在低干噪比条件下相比于其他方法准确检测目标的概率提升了40%以上,在高干噪比条件下相比于其他方法等效信干比改善了2.5 dB以上。 分布式相参雷达实现全相参的关键在于对感兴趣目标进行发射相参合成。当相参参数估计阶段存在间歇采样转发干扰时,实现发射相参是极为困难的。为解决上述问题,该文提出了一种基于间歇采样转发干扰匹配滤波特征的干扰抑制方法。该方法能够弥补低干噪比条件下无法进行时频域滤波的缺陷,同时为高干噪比条件下进行干扰重构和对消提供了一种更精确的干扰参数估计途径。仿真结果表明,所提方法对间歇采样转发干扰的抑制效果显著。在低干噪比条件下相比于其他方法准确检测目标的概率提升了40%以上,在高干噪比条件下相比于其他方法等效信干比改善了2.5 dB以上。
7

作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。

作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。

8
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。 无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
9
被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。 被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。
10
星载干涉合成孔径雷达(InSAR)技术通过测量雷达视线方向的相位差实现地表高程测量与形变监测。然而,面向未来更高精度的干涉测量需求,InSAR系统设计参数与测量精度的解析模型仍存在关键参数不完备、物理约束刻画不充分等问题,对下一代合成孔径雷达干涉测量技术的发展形成制约。该文针对系统设计参数和测量精度间存在的复杂多因素耦合问题开展研究,详细分析了空间、时间基线星载干涉合成孔径雷达成像理论约束关系,构建了融合多源失相干的空-时误差模型,量化了基线参数与测量精度的非线性关系,建立了涵盖相干性、高程精度、基于相干时间基线的形变灵敏度等关键指标的完备评估框架,在此基础上提出了超长基线星载InSAR的概念与体制。同时,对超长基线星载InSAR的性能进行了详细分析,阐述了超长基线星载InSAR在轨道设计、系统设计、同步方法、误差校正以及相位解缠等方面的技术挑战,介绍了超长基线星载InSAR在高精度高程测量与形变测量以及分布式SAR系统等方面的应用潜力,可为未来新一代高精度、多维度InSAR系统设计提供理论支撑,在地球科学前沿探索与国家重大工程安全保障中发挥更大价值。 星载干涉合成孔径雷达(InSAR)技术通过测量雷达视线方向的相位差实现地表高程测量与形变监测。然而,面向未来更高精度的干涉测量需求,InSAR系统设计参数与测量精度的解析模型仍存在关键参数不完备、物理约束刻画不充分等问题,对下一代合成孔径雷达干涉测量技术的发展形成制约。该文针对系统设计参数和测量精度间存在的复杂多因素耦合问题开展研究,详细分析了空间、时间基线星载干涉合成孔径雷达成像理论约束关系,构建了融合多源失相干的空-时误差模型,量化了基线参数与测量精度的非线性关系,建立了涵盖相干性、高程精度、基于相干时间基线的形变灵敏度等关键指标的完备评估框架,在此基础上提出了超长基线星载InSAR的概念与体制。同时,对超长基线星载InSAR的性能进行了详细分析,阐述了超长基线星载InSAR在轨道设计、系统设计、同步方法、误差校正以及相位解缠等方面的技术挑战,介绍了超长基线星载InSAR在高精度高程测量与形变测量以及分布式SAR系统等方面的应用潜力,可为未来新一代高精度、多维度InSAR系统设计提供理论支撑,在地球科学前沿探索与国家重大工程安全保障中发挥更大价值。
11

飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。

飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。

12
近年来,通信感知一体化技术受到学术界和工业界的广泛关注,被视为6G网络的关键技术之一。考虑到通信基础设施的广泛部署,将感知功能集成到通信系统中以构建通信感知一体化网络成为研究的重点。为此,以通信为中心的通感一体化信号设计成为首要解决的关键技术问题。以通信为中心的信号设计有两种主要技术路线:(1)基于导频进行感知的信号设计;(2)基于数据进行感知的信号设计。该文对以上两种信号设计的技术路线进行了深入而系统的阐述,其中对基于导频进行感知的信号设计的现有文献进行了全面综述,并对基于数据进行感知的信号设计进行了梳理,最后对通感一体化信号设计的未来研究方向进行了展望。 近年来,通信感知一体化技术受到学术界和工业界的广泛关注,被视为6G网络的关键技术之一。考虑到通信基础设施的广泛部署,将感知功能集成到通信系统中以构建通信感知一体化网络成为研究的重点。为此,以通信为中心的通感一体化信号设计成为首要解决的关键技术问题。以通信为中心的信号设计有两种主要技术路线:(1)基于导频进行感知的信号设计;(2)基于数据进行感知的信号设计。该文对以上两种信号设计的技术路线进行了深入而系统的阐述,其中对基于导频进行感知的信号设计的现有文献进行了全面综述,并对基于数据进行感知的信号设计进行了梳理,最后对通感一体化信号设计的未来研究方向进行了展望。
13
双基合成孔径雷达(SAR)采用收发平台分置的方式,能够实现复杂环境下对地海面场景和目标的高分辨成像,具有配置灵活、隐蔽性好、抗干扰能力强、获取目标信息丰富等优势,在高精度遥感测绘、隐蔽成像、精确打击等多个领域具备重要应用价值。成像处理是获得双基SAR高分辨图像的关键步骤,而双基SAR的回波模型、回波特性与传统单基SAR有显著的不同,需要对处于不同模式、不同构型下的双基SAR研究相应的成像处理方法。该文分别针对机载双基SAR、高速高机动平台双基SAR、星源异构双基SAR、星载同构双基SAR等典型模式,以及双基SAR运动补偿方法和运动目标成像等方面,分别阐述和分析了其中的关键问题,并梳理了国内外相关的解决思路和研究进展,最后对双基SAR成像处理技术的未来发展趋势进行展望。 双基合成孔径雷达(SAR)采用收发平台分置的方式,能够实现复杂环境下对地海面场景和目标的高分辨成像,具有配置灵活、隐蔽性好、抗干扰能力强、获取目标信息丰富等优势,在高精度遥感测绘、隐蔽成像、精确打击等多个领域具备重要应用价值。成像处理是获得双基SAR高分辨图像的关键步骤,而双基SAR的回波模型、回波特性与传统单基SAR有显著的不同,需要对处于不同模式、不同构型下的双基SAR研究相应的成像处理方法。该文分别针对机载双基SAR、高速高机动平台双基SAR、星源异构双基SAR、星载同构双基SAR等典型模式,以及双基SAR运动补偿方法和运动目标成像等方面,分别阐述和分析了其中的关键问题,并梳理了国内外相关的解决思路和研究进展,最后对双基SAR成像处理技术的未来发展趋势进行展望。
14
近年来,人工智能技术和对地观测领域的结合已成为领域发展的前沿热点,多模态大语言模型(MLLM)的快速发展为智能解译带来新的机遇和挑战。多模态对地观测大模型通过构建大语言模型与视觉模型之间的桥接机制并采用联合训练方式,深度融合光学影像、合成孔径雷达影像与文本等多模态信息,有效推动对地观测智能解译由浅层语义匹配向高层的世界知识理解跃迁。该文系统性回顾了多模态对地观测大模型的相关研究成果,以期为新的研究方向提供依据。具体而言,该文首先明确了多模态对地观测大模型(EO-MLLM)的概念定义,并梳理了多模态对地观测大模型的发展脉络。随后,详细阐述了多模态对地观测大模型的模型架构、训练方法、适用任务及其对应的基准数据集,并介绍了对地观测智能体。最后,探讨了多模态对地观测大模型的研究现状和未来发展方向。 近年来,人工智能技术和对地观测领域的结合已成为领域发展的前沿热点,多模态大语言模型(MLLM)的快速发展为智能解译带来新的机遇和挑战。多模态对地观测大模型通过构建大语言模型与视觉模型之间的桥接机制并采用联合训练方式,深度融合光学影像、合成孔径雷达影像与文本等多模态信息,有效推动对地观测智能解译由浅层语义匹配向高层的世界知识理解跃迁。该文系统性回顾了多模态对地观测大模型的相关研究成果,以期为新的研究方向提供依据。具体而言,该文首先明确了多模态对地观测大模型(EO-MLLM)的概念定义,并梳理了多模态对地观测大模型的发展脉络。随后,详细阐述了多模态对地观测大模型的模型架构、训练方法、适用任务及其对应的基准数据集,并介绍了对地观测智能体。最后,探讨了多模态对地观测大模型的研究现状和未来发展方向。
15
在复杂目标和杂波环境下,传统机载雷达脉冲压缩和空时自适应处理均受限于预设线性模型而存在性能损失问题。针对该问题,该文提出一种基于深度学习的空时自适应-脉冲压缩联合处理技术,通过构建空时谱超分辨网络和脉冲压缩网络分别实现非线性杂波空时谱估计及非线性脉压,从而显著降低该信号处理流程中模型失配的影响,实现杂波抑制和目标检测性能的提升。同时,为避免非线性脉压在阵元和脉冲间引入相位误差的问题,该文从数学角度分析和讨论了脉压后置的可行性。在所提先滤波再脉压的非线性联合处理架构中,采用多模块卷积神经网络分别实现高分辨空时谱估计以及脉冲压缩处理,且所构建各网络模块功能均与相应数学解析式对应,因此具较高的可靠性。仿真实验结果表明,在密集弱目标和小样本环境下,所提非线性联合处理架构较相应传统处理流程可获得约20 dB的信杂噪比提升。 在复杂目标和杂波环境下,传统机载雷达脉冲压缩和空时自适应处理均受限于预设线性模型而存在性能损失问题。针对该问题,该文提出一种基于深度学习的空时自适应-脉冲压缩联合处理技术,通过构建空时谱超分辨网络和脉冲压缩网络分别实现非线性杂波空时谱估计及非线性脉压,从而显著降低该信号处理流程中模型失配的影响,实现杂波抑制和目标检测性能的提升。同时,为避免非线性脉压在阵元和脉冲间引入相位误差的问题,该文从数学角度分析和讨论了脉压后置的可行性。在所提先滤波再脉压的非线性联合处理架构中,采用多模块卷积神经网络分别实现高分辨空时谱估计以及脉冲压缩处理,且所构建各网络模块功能均与相应数学解析式对应,因此具较高的可靠性。仿真实验结果表明,在密集弱目标和小样本环境下,所提非线性联合处理架构较相应传统处理流程可获得约20 dB的信杂噪比提升。
16
相较于地基外辐射源雷达,基于卫星信号的外辐射源雷达(即卫星信号外辐射源雷达)具有全球、全时、全天候覆盖等优势,可弥补地基外辐射源雷达在海上覆盖范围不足的限制;相较于中高轨卫星信号,低轨通信卫星信号具有接收功率强、卫星数目多等优势,可为海上目标无源探测提供可观的探测距离与探测精度。面向未来发展需求,该文详细论述了卫星信号外辐射源雷达研究现状与应用前景,给出了以铱星、星链两类低轨通信卫星系统构建高低频宽窄带融合的低轨通信卫星信号外辐射源雷达系统的可行性分析,据此总结了研发低轨通信卫星信号外辐射源雷达系统面临的技术挑战与候选解决思路。上述研究可为广域范围内,外辐射源雷达探测提供重要参考。 相较于地基外辐射源雷达,基于卫星信号的外辐射源雷达(即卫星信号外辐射源雷达)具有全球、全时、全天候覆盖等优势,可弥补地基外辐射源雷达在海上覆盖范围不足的限制;相较于中高轨卫星信号,低轨通信卫星信号具有接收功率强、卫星数目多等优势,可为海上目标无源探测提供可观的探测距离与探测精度。面向未来发展需求,该文详细论述了卫星信号外辐射源雷达研究现状与应用前景,给出了以铱星、星链两类低轨通信卫星系统构建高低频宽窄带融合的低轨通信卫星信号外辐射源雷达系统的可行性分析,据此总结了研发低轨通信卫星信号外辐射源雷达系统面临的技术挑战与候选解决思路。上述研究可为广域范围内,外辐射源雷达探测提供重要参考。
17

近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。

近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。

18
后向投影(BP)算法是合成孔径雷达成像算法发展的重要方向之一。然而,由于BP算法具有较大的计算量,阻碍了其在工程应用上的发展。因此,近年来如何有效地提高BP算法的运算效率受到了广泛的重视。该文讨论了基于多种成像面坐标系的快速BP算法,包括距离-方位平面坐标系、地平面坐标系和非欧氏坐标系。该文首先简要介绍了原始BP算法的原理和不同坐标系对加速BP算法的影响,并对BP算法的发展历程进行梳理。然后讨论了基于不同成像面坐标系的快速BP算法的研究进展,并重点介绍了作者所在研究团队近年来在快速BP成像方面完成的研究工作。最后介绍了快速BP算法在工程上的应用,并展望了未来快速BP成像算法的研究发展趋势。 后向投影(BP)算法是合成孔径雷达成像算法发展的重要方向之一。然而,由于BP算法具有较大的计算量,阻碍了其在工程应用上的发展。因此,近年来如何有效地提高BP算法的运算效率受到了广泛的重视。该文讨论了基于多种成像面坐标系的快速BP算法,包括距离-方位平面坐标系、地平面坐标系和非欧氏坐标系。该文首先简要介绍了原始BP算法的原理和不同坐标系对加速BP算法的影响,并对BP算法的发展历程进行梳理。然后讨论了基于不同成像面坐标系的快速BP算法的研究进展,并重点介绍了作者所在研究团队近年来在快速BP成像方面完成的研究工作。最后介绍了快速BP算法在工程上的应用,并展望了未来快速BP成像算法的研究发展趋势。
19
针对现有和差波束弹载雷达运动目标检测方法所需训练距离单元数量较大、实际检测性能较低的问题,该文提出了一种基于智能多分类和网络参数迁移学习的运动目标检测新方法,其基本思路为利用少量训练距离单元数据构建数据集对深度卷积神经网络进行训练,将待测距离单元数据分类为杂波类(即无目标类)和对应不同多普勒频率的目标类。考虑到利用实测数据进行在线训练所需的计算资源较多、时间较长,该文首先构建了和差波束弹载雷达运动目标检测的回波信号模型,并基于实测数据进行验证,用于产生仿真数据进行网络离线训练。针对现有典型卷积神经网络参数较多、复杂度较高、训练效率较低等问题,该文基于特征融合模块(FFM)和空间注意力模块(SAM)对DenseNet网络进行改进,构建了FFM-SAM-DenseNet智能多分类器。由于基于智能多分类的检测方法在对不同待测距离单元数据进行处理时需重新训练网络,其整体收敛时间较长、速度较低。为解决该问题,该文引入迁移学习策略,将不同待测距离单元所对应多分类器的网络参数进行共享,以加快所提方法的整体收敛速度。仿真和实测数据处理结果表明,该文所提方法可以基于少量训练距离单元数据,获得相比现有方法更优的运动目标检测性能。 针对现有和差波束弹载雷达运动目标检测方法所需训练距离单元数量较大、实际检测性能较低的问题,该文提出了一种基于智能多分类和网络参数迁移学习的运动目标检测新方法,其基本思路为利用少量训练距离单元数据构建数据集对深度卷积神经网络进行训练,将待测距离单元数据分类为杂波类(即无目标类)和对应不同多普勒频率的目标类。考虑到利用实测数据进行在线训练所需的计算资源较多、时间较长,该文首先构建了和差波束弹载雷达运动目标检测的回波信号模型,并基于实测数据进行验证,用于产生仿真数据进行网络离线训练。针对现有典型卷积神经网络参数较多、复杂度较高、训练效率较低等问题,该文基于特征融合模块(FFM)和空间注意力模块(SAM)对DenseNet网络进行改进,构建了FFM-SAM-DenseNet智能多分类器。由于基于智能多分类的检测方法在对不同待测距离单元数据进行处理时需重新训练网络,其整体收敛时间较长、速度较低。为解决该问题,该文引入迁移学习策略,将不同待测距离单元所对应多分类器的网络参数进行共享,以加快所提方法的整体收敛速度。仿真和实测数据处理结果表明,该文所提方法可以基于少量训练距离单元数据,获得相比现有方法更优的运动目标检测性能。
20
人体姿态估计在人机交互、动作捕捉和虚拟现实等领域具有广泛的应用前景,一直是人体感知研究的重要方向。然而,基于光学图像的姿态估计方法往往受限于光照条件和隐私问题。因此,利用可在各种光照遮挡下工作,且具有隐私保护性的无线信号进行人体姿态估计获得了更多关注。根据无线信号的工作频率,现有技术可分为高频方法和低频方法,且不同的信号频率对应硬件系统、信号特性、噪声处理和深度学习算法设计等方面均有所不同。该文将以毫米波雷达、穿墙雷达和WiFi信号为代表,回顾其在人体姿态重建研究中的进展和代表性工作,分析各类信号模式的优势与局限,并对潜在研究难点以及未来发展趋势进行了展望。 人体姿态估计在人机交互、动作捕捉和虚拟现实等领域具有广泛的应用前景,一直是人体感知研究的重要方向。然而,基于光学图像的姿态估计方法往往受限于光照条件和隐私问题。因此,利用可在各种光照遮挡下工作,且具有隐私保护性的无线信号进行人体姿态估计获得了更多关注。根据无线信号的工作频率,现有技术可分为高频方法和低频方法,且不同的信号频率对应硬件系统、信号特性、噪声处理和深度学习算法设计等方面均有所不同。该文将以毫米波雷达、穿墙雷达和WiFi信号为代表,回顾其在人体姿态重建研究中的进展和代表性工作,分析各类信号模式的优势与局限,并对潜在研究难点以及未来发展趋势进行了展望。
  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 共:5页