-
摘要: 雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。Abstract: Weak target signal processing is the cornerstone and prerequisite for radar to achieve excellent detection performance. In complex practical applications, due to strong clutter interference, weak target signals, unclear image features, and difficult effective feature extraction, weak target detection and recognition have always been challenging in the field of radar processing. Conventional model-based processing methods do not accurately match the actual working background and target characteristics, leading to weak universality. Recently, deep learning has made significant progress in the field of radar intelligent information processing. By building deep neural networks, deep learning algorithms can automatically learn feature representations from a large amount of radar data, improving the performance of target detection and recognition. This article systematically reviews and summarizes recent research progress in the intelligent processing of weak radar targets in terms of signal processing, image processing, feature extraction, target classification, and target recognition. This article discusses noise and clutter suppression, target signal enhancement, low- and high-resolution radar image and feature processing, feature extraction, and fusion. In response to the limited generalization ability, single feature expression, and insufficient interpretability of existing intelligent processing applications for weak targets, this article underscores future developments from the aspects of small sample object detection (based on transfer learning and reinforcement learning), multidimensional and multifeature fusion, network model interpretability, and joint knowledge- and data-driven processing.
-
1. 引言
目标的振动、转动等微动产生的微多普勒效应包含了目标的结构和运动信息,常用于目标的分类和识别[1–3]。目前,基于外辐射源雷达微多普勒效应目标分类和识别的研究还处于起步状态。外辐射源雷达是一种利用非合作照射源进行目标探测和分类识别的新体制雷达系统,其自身不辐射电磁能量,具有节约频谱资源,隐蔽性好,设备规模小,易于部署和组网等特点[4–6]。在微多普勒效应目标分类和识别方面,外辐射源雷达表现出得天独厚的优势:(1)收发分置可实现空间分集,有效避免探测盲区。(2)第三方辐射源多为连续波,长时间相干积累可记录多个连续的回波闪烁,同时有利于提高对低雷达散射截面积(Radar Cross-Section, RCS)微动目标的探测与分类识别能力。(3)对微多普勒特征的提取不要求高距离分辨率,参数估计不受第三方辐射源带宽的限制[7,8]。
针对微多普勒效应参数估计问题。文献[9,10]中依据微动目标正弦特征曲线,利用 Hough变换,在参数域中进行多维搜索提取出微动曲线进行参数估计。文献[11,12]通过正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法进行稀疏逼近实现了微动目标参量的估计。上述方法均具有较好的鲁棒性,但由于估计参量维数较高导致计算量巨大。文献[13]利用微动目标在时频域的周期性,采用循环相关系数方法,实现了目标微动周期的估计,但信号周期较长时计算量急剧增加。文献[14]计算了信号的高阶矩函数,通过检测在不同时延下,高阶虚函数部分傅里叶变换累计结果的峰值位置,快速获得目标的旋转速率,相比于图像处理方法和OMP分解方法,计算复杂度较小,但抗噪性能差。而外辐射源雷达所利用的第三方辐射源多为连续波信号,其发射波形不可控,信号能量主要覆盖地面,杂波环境复杂且对空中目标增益低,利用长时间相干积累来提高处理增益会带来数据量巨大的挑战。上述因素决定了外辐射源雷达参数估计方法需要有良好的抗噪性能且计算量要小。
直升机旋翼旋转时对雷达信号产生周期性调制,当叶片发生镜面反射时,旋翼回波出现峰值,即回波闪烁。闪烁信号在时频图像中表现为一定宽度的频率带,且闪烁时间、闪烁间隔与直升机旋翼微动参数密切相关。针对外辐射源雷达参数估计问题,本文结合上述时频域中闪烁信号的特点,通过时频分析和正交匹配追踪算法实现了直升机旋翼微动参数的估计。本文首先给出了外辐射源雷达直升机旋翼微动信号模型,其次介绍了如何在时频图中提取出闪烁信号参数及正交匹配追踪算法对直升机旋翼微动参数的估计,最后仿真和实测证明了本文方法的有效性。
2. 外辐射源雷达直升机旋翼回波模型的建立
直升机旋转叶片与外辐射源雷达的位置关系如图1所示。以直升机旋转叶片的中心点为原点
o ,旋转叶片平面为xy 面,x 轴平行于发射站与接收站所在直线,建立空间坐标系(x,y,z) 。直升机相对于发射站和接收站距离为rT, rR ,方位角为γ, α ,仰角为βT, βR (cosβT≈cosβR=cosβ) 。叶片上某一散射点p 到原点o 距离为lP ,方位角为φt 。假设直升机平动得到补偿。在
t 时刻,从发射站经散射点p 到接收站的距离为:rP(t)=||RT −RP(t)||+||RR−RP(t)|| (1) 其中
RT, RR, RP(t) 分别为发射站、接收站、散射点p 在坐标系xyz 中的位置矢量。参考文献[1]中单基地直升机建模,将叶片看作线模型,外辐射源雷达直升机旋翼回波可表示为:
s(t)=Lexp{−j2πλ(rR+rT)}N∑k=1sinc{−ϕk(t)}⋅exp{jϕk(t)} (2) 其中,
ϕk(t)=−4πλL2cosβcos(α−γ2)cos(φk(t)) (3) φk(t)=2πfrt+φ0+(k−1)2π/N−α+γ2 (4) fr 为叶片转速,L 为叶片长度,N 为叶片数量,整数k (0<k≤N) 表示第k 个叶片,φ0 为叶片初相,λ 为照射源信号波长。由式(3)得第
k 个叶片引起的瞬时多普勒频移为:fk(t)=2πfrLλcosβcos(α−γ2)sin(φk(t)) (5) 由式(2)可知时域信号幅值受
sinc 函数调制,结合式(3)知当φk(t) 满足式(6)时,ϕk(t)=0 ,时域信号幅值最大,此刻即时域闪烁。φk(t)=±π2+2πn (6) 由式(2)知连续两个闪烁之间的时间间隔为:
Δt={12N⋅fr,N为奇数1N⋅fr, N为偶数 (7) 3. 直升机旋翼参数估计
3.1 时频分析提取闪烁信号参数
直升机旋翼回波的微多普勒呈非线性变化,通过对目标回波信号进行时频分析能够揭示信号频率的时变特性。短时傅里叶变化(Short-Time Fourier Transform, STFT)计算简单,且不产生交叉项。对直升机旋翼回波信号
s(t) 进行STFT到时频域TF(t,f)=∫s(τ)w(τ−t)e−j2πfτdτ (8) 其中,
w(t) 为窗函数。旋翼微多普勒效应特征曲线为正弦曲线,对应时域闪烁出现的时刻出现垂直于时间横轴的频率带,即时频域“闪烁”[15]。图2为直升机旋翼回波的时频图。当直升机旋翼的叶片数为奇数时(图2(a)),时频域中正负多普勒“闪烁”交替出现;若旋翼叶片数为偶数(图2(b)),则是同时出现。
设时频域中正频率“闪烁”发生的时间为
t0 ,由式(5)和式(6)知t0 满足:φk(t0)=π2+2πn(n为整数) (9) 由式(4)和式(9)得第
k 个叶片初相与叶片数量的关系:φ0={−πt0Δt1N−2π(k−1)1N+φ1, N为奇数−2πt0Δt1N−2π(k−1)1N+φ1,N为偶数 (10) 其中
φ1=α+γ2+2πn+π2(0≤φ0<2π) (11) 由于时频图像中闪烁信号频率带垂直于时间横轴,对正频率轴数据幅值进行累加计算,并判断累加后数据局部峰值点,可得到时频域中正频率“闪烁”发生的时间。同样,对负频率轴数据幅值进行累加计算得到时频域中负频率“闪烁”发生的时间。相应的也可得到闪烁间隔。
由式(7)知,闪烁间隔与旋翼转速、叶片数量密切相关。由式(10)知,闪烁发生的时间与叶片初相、叶片数量、整数
k 密切相关。因此,可根据得到的闪烁间隔,用叶片数量表示出旋翼转速。根据得到的闪烁时间,用叶片数量、整数k 表示出第k 个叶片初相。3.2 OMP估计直升机旋翼参数
由式(2)知时域回波信号可分解为:
s(t)=M∑m=1cmgm(t;Λ)=Dα (12) 其中,
gm 为第m 个原子,D 为以原子为列张成的字典矩阵D=[g1 g2 g3···gM] ∈CNt×M, M 为原子个数,Nt 为时间t 离散后的取值个数,Λ 为要估计的参量,cm 为原子系数,α∈CM 为系数矢量,是稀疏的。可转化最优l0 范数问题进行稀疏向量求解。OMP常用于求解此类问题,通过构建字典矩阵,不断选定与信号最匹配的原子进行稀疏逼近[16]。OMP将字典矩阵中原子正交化保证了迭代的最优性。由式(2)知直升机旋翼回波信号由参数
(fr,L,φ0,N,k) 确定。利用叶片数量N 、整数k (0<k≤N) 与旋翼转速和叶片初相的关系式(7)和式(10),时域回波可转化为参数(L,N,k) 来表示。设时间采样点数Nt ,目标回波为Nt×1 的矩阵。确定待估参数的取值范围并离散化,叶片长度取值:L∈(L1,···,Lr,···,LNL) ,叶片数量N 的可能取值为:N∈(N1,···,Np,···,NNN) ,整数k 的取值为k∈(1,···,kq,···,kNq) (kNq≤NNN) 。由OMP算法原理可知,字典中的原子可按照待分解信号的内在特性来构造[16]。根据微动目标的时域回波表达式(2),第
m 个原子可表示为:a(m)=sinc(ϕ(Lr,Np,kq))⋅exp{−jϕ(Lr,Np,kq)} (13) 其中
m=rpq (14) 并对原子集里的每个原子进行能量归一化:
a(m)←a(m)/‖a(m)‖F (15) 其中,
‖⋅‖F 表示矩阵的F范数。将5参量
(fr,L,φ0,N,k) 的估计转换为3参量(L,N,k) 估计,NL, NN, Nk 分别为L, N, k 的取值个数,由于常见直升机主旋翼叶片数量为:3片、5片、7片(奇数),2片、4片、8片(偶数),NN, Nk 较小,降低字典维数为:NL×Nk×NN ,可达到降低计算量的目的。3.3 直升机旋翼参数估计流程
直升机旋翼参数估计具体步骤如下:
步骤1 对直升机旋翼信号进行短时傅里叶变换,得到时频图像
TF(t,f) 。步骤2 对时频图中正频率轴数据幅值进行累加计算,并判断累加后数据局部峰值点,对应时频域正频率“闪烁”发生的时间。同样,对负频率轴数据幅值进行累加计算得到时频域中负频率“闪烁”发生的时间。
步骤3 根据步骤2中正负频率“闪烁”发生的时间,判别时频域中正负多普勒“闪烁”是否交替出现。若是,则旋翼叶片数为奇数,否则,旋翼叶片数为偶数。
步骤4 读取某一正频率闪烁发生的时间
t0 及闪烁间隔Δt 。依据式(7)用叶片数量N 表示出旋翼转速,依据式(10)和式(11)用叶片数量N 及整数k 表示出第k 个叶片初相。步骤5 确定
(L,N,k) 的取值范围并离散化:L∈(L1,···,Lr,···,LNL) ,N∈(N1,···,Np,···,NNN) ,k∈(1,···,kq,···,kNq) (kNq≤NNN) 。利用步骤4中表示出的旋翼转速及初相,依据式(13)和式(15)构建字典矩阵。步骤6 利用OMP算法寻找叶片数量,叶片长度的最优值,代入式(7)计算出旋翼转速,代入式(10)和式(11)计算出叶片初相。
4. 仿真验证
4.1 仿真结果分析
结合上述模型对直升机旋翼回波信号进行仿真,仿真参数设置如表1所示。
表 1 外辐射源雷达直升机旋翼回波模型仿真参数Table 1. Simulation parameters of helicopter rotor echo model for passive radar信号载频 叶片数 叶片长度 旋转速率 发射站方位角 接收站方位角 发射站仰角 接收站仰角 SNR 658 MHz 3 5 m 200 rpm 33° 76° 23° 23° –5 dB 图3(a)显示了信号的联合时频域特征,可看出闪烁信号及噪声严重影响直升机旋翼微多普勒特征曲线的检测,使微多普勒特征曲线提取困难。
分别对时频图像中正负频率轴数据幅值进行累加计算,得到时频域中正负多普勒“闪烁”时间,如图3(b)所示,图中正负多普勒“闪烁”等间隔交替出现,则旋翼叶片数为奇数。读取闪烁信号时间间隔为0.05 s,根据式(7)表示出旋翼转速为:
fr=10/N (16) 读取某一正频率闪烁信号对应时刻为0.066 s(此处选择了图3(b)中的第1个正频率闪烁信号),根据式(10)和式(11)表示出第
k 个叶片初相为:φ0=−4.14/N−6.28×(k−1)/N+2.52 (17) 图3(c)为利用OMP方法对
(L,N,k) 的估计结果,得到叶片数为3片,图中给出了其对应的切面图,3叶片长度分别4.99 m, 5.00 m, 4.98 m,均值4.99 m,与理论基本一致,代入式(17)得3叶片初相分别为1.14 rad, 3.24 rad, 5.34 rad,代入式(16)得旋翼转速为200 rpm,与理论值一致,本文方法准确实现了直升机旋翼参数估计。图4为利用常规Hough变换,通过微多普勒曲线
f=fmax 检测对参数({f\!_r},{\varphi _0},L) 的估计结果。其中{f_{\max }} 为最大频移。{f_{\max }} = \frac{{4{{π}} {f\!_r}L}}{\lambda }\cos\beta \cos\left( \frac{{\alpha - \gamma }}{2}\right) (18) 图4中给出了参数空间中局部峰值点中心位置。可得到直升机旋翼转速为200 rpm。3叶片最大频移分别为385.6 Hz, 393.9 Hz, 389.8 Hz,平均值为390.0 Hz,由式(18)计算得叶片长度为4.96 m,与理论值基本一致。3叶片初相分别为0.91 rad, 3.16 rad, 5.24 rad,利用式(4)对初相进行修正,得到3叶片初相位为1.86 rad, 4.11 rad, 6.19 rad,存在较大的误差,是由于STFT受不确定原理的限制,时频图像中时频分辨率受限使参数空间中的局部峰值点扩展范围较大,只能大致估计局部峰值点的位置,估计结果精度较低。
4.2 计算复杂度分析
设待处理的时频图像大小为
{N_t} \times {N_f} 像素,{N_f} \approx {N_t} ,利用常规的Hough变换对微多普勒曲线f = {f_{\max }}\sin(2{{π}} {f\!_r}t{\rm{ + }}{\varphi _0}) 进行检测,参数({f\!_r},{\varphi _0},L) 分别量化为{N_{f_{r}}} ,{N_{{\varphi _0}}} ,{N_L} 份。乘法次数可近似表示为:2{N_{f_{r}}}{N_{{\varphi _0}}}{N_L}{N_t}^{\!2} 。直接使用OMP进行参数
({f\!_r},{\varphi _0},L) 估计时,设迭代次数为K,乘法次数近似表示为:K{N_{f\!_{r}}}{N_{{\varphi _0}}} {N_L}{N_t}^{\!2} 。本文方法计算量集中在OMP阶段,根据提取的时频域中的闪烁时间,依据式(7)和式(10),最终转化为对参数
(L,N,k) 的估计,常见直升机的叶片数只有若干个取值,且由3.1节方法可判断出叶片数量的奇偶性,{N_N}{N_k} 远小于{N_{f_{r}}}{N_{{\varphi _0}}} 。本文方法乘法次数近似表示为:K{N_N}{N_k}{N_L}{N_t}^{\!2} 。在对直升机旋翼微动参数估计时,一般
{N_N}{N_k} 取值量级为101~102,迭代次数K的取值量级为{10^0} {\text ~} {10^1} ,当初相{\varphi _0} 的估计精度为7°时,2{N_{{\varphi _0}}} 取值量级为102,当转速{f_r} 的估计精度为10 rpm时,{N_{f_{r}}} 的取值量级为{10^1} ,在乘法次数上,常规 Hough变换参数估计方法为本文方法{10^0}{\text ~} {10^2} 倍,当进一步提高{f_r}, {\varphi _0} 的估计精度时,算法之间的计算量差距将进一步变大。本文在相同的配置环境下,利用Matlab仿真平台,常规Hough变换方法运行时长13006 s,而本文方法运行总时长只有145 s。5. 实验结果
5.1 实验场景
武汉大学电波传播实验室对EC_120B直升机进行了微多普勒效应探究外场实验,EC_120B直升机主旋翼3叶片,叶片长度5 m,额定转速406 rpm,实验中以武汉龟山电视塔数字电视信号为照射源,信号中心频率为658 MHz,带宽8 MHz,接收站位于武汉大学电波传播实验室楼顶,距离发射站7.56 km,实验场景如图5所示。本组实测数据相干积累时间0.8 s,可近似认为目标在这段时间位置不变,直升机旋翼转速为常量。
5.2 实验结果分析
图6(a)为去除目标主体影响后,对直升机旋翼回波信号进行短时傅里叶变换后的时频图像。可以观察到闪烁信号,但微多普勒特征曲线已观察不到。分别对时频图像中正负频率轴数据幅值进行累加计算,得到时频域中正负多普勒“闪烁”时间,如图6(b)所示,图中正负多普勒“闪烁”等间隔交替出现,则旋翼叶片数为奇数。
读取闪烁信号时间间隔为26.2 ms,根据式(7)用
N 表示出旋翼转速。读取某一正频率闪烁时间对应时间为0.25 s,利用式(10)和式(11)表示出第k 个叶片初相,图6(c)为利用OMP方法对(L,N,k) 的估计结果,得到叶片数量为3片,3叶片长度分别为4.93 m, 5.00 m, 4.66 m,均值4.86 m,存在较小的误差,与仰角,方位角估计不精确有关,由式(7)知旋翼转速均为382 rpm,符合实际情况。6. 结束语
本文根据外辐射源雷达直升机旋翼微动信号模型,充分利用时频域中闪烁信号特征和微动信号内在特性进行了参数估计。通过时频分析和正交匹配追踪算法,估计出了旋翼转速、叶片长度、叶片数量和初相。同时开展了外场实验。仿真数据和实测数据处理都表明本文方法对外辐射源雷达直升机旋翼参数估计的可行性。
-
表 1 舰船、干扰检测识别准确率(%)[50]
Table 1. Ship and interference detection and identification accuracy (%)[50]
模型名称 舰船 干扰 平均 恒虚警率检测方法CA-CFAR 84.2 80.4 82.3 自适应阈值分割OTSU 88.3 83.9 86.1 卷积网络CNN 97.1 87.7 92.4 非对称检测卷积神经网络AD-CNN 99.5 94.1 96.8 非对称检测卷积神经网络AD-CNN (Efficient) 99.6 94.4 97.0 表 2 不同网络性能对比分析
Table 2. Comparative analysis of different network performance
网络模型 雷达特征 数据集 模型组成结构 适用条件 LeNet, AlexNet, GoogLeNet[63] 海上微动特征 仿真目标和实测海杂波(Intelligent pixel-processing, IPIX雷达) 基于LeNet, AlexNet, GoogLeNe模型的
检测与分类网络杂波背景下的雷达微动目标 AlexNet[64] 飞机尾涡特征 某机场40天内航班起飞的情况 基于AlexNet模型的识别网络 大气风场中尾涡 Transformer
融合网络[61]多站协同雷达HRRP特征 单部雷达采集的某一航线的5型目标回波 以Transformer作为特征提取主体结构,并在此基础上设计了3个新的辅助模块:角度引导模块、前级特征交互模块以及深层注意力特征融合模块 多站协同雷达目标 -
[1] 金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083. [2] 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040.WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040. [3] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010. [4] 王珽, 赵晨, 陈泽宗, 等. 基于DnCNN网络的高频地波雷达海洋回波谱去噪方法研究[C]. 第十八届全国电波传播年会论文集, 青岛, 2023: 4–8. doi: 10.26914/c.cnkihy.2023.050865.WANG Ting, ZHAO Chen, CHEN Zezong, et al. Research on denoising method of high frequency ground wave radar ocean echo spectrum based on DnCNN network[C]. The 18th National Conference on Radio Wave Propagation, Qingdao, China, 2023: 4–8. doi: 10.26914/c.cnkihy.2023.050865. [5] YE Xin, QIAN Jiang, WANG Lu, et al. Noise suppression of ISAR micro cluster targets based on Generated Adversarial Network[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 704–707. doi: 10.1109/Radar53847.2021.10028484. [6] HU Minghuan, MAO Jiandong, LI Juan, et al. A novel lidar signal denoising method based on convolutional autoencoding deep learning neural network[J]. Atmosphere, 2021, 12(11): 1403. doi: 10.3390/atmos12111403. [7] 施端阳, 林强, 胡冰, 等. 遗传算法优化神经网络的雷达杂波抑制方法[J]. 现代防御技术, 2021, 49(6): 74–83. doi: 10.3969/j.issn.1009-086x.2021.06.011.SHI Duanyang, LIN Qiang, HU Bing, et al. Radar clutter suppression method based on neural network optimized by genetic algorithm[J]. Modern Defence Technology, 2021, 49(6): 74–83. doi: 10.3969/j.issn.1009-086x.2021.06.011. [8] 施端阳, 林强, 胡冰, 等. 基于LVQ神经网络的雷达杂波抑制方法[J]. 火力与指挥控制, 2023, 48(4): 37–44. doi: 10.3969/j.issn.1002-0640.2023.04.006.SHI Duanyang, LIN Qiang, HU Bing, et al. Radar clutter suppression method based on LVQ neural network[J]. Fire Control Command & Control, 2023, 48(4): 37–44. doi: 10.3969/j.issn.1002-0640.2023.04.006. [9] TANG Xianhui, LI Dong, CHENG Wanru, et al. A novel sea clutter suppression method based on deep learning with exploiting time-frequency features[C]. The IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021: 2548–2552. doi: 10.1109/IAEAC50856.2021.9390660. [10] WANG Yumiao, ZHAO Wenjing, WANG Xiang, et al. Nonhomogeneous sea clutter suppression using complex-valued U-Net model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4027705. doi: 10.1109/LGRS.2022.3214633. [11] MOU Xiaoqian, CHEN Xiaolong, GUAN Jian, et al. Sea clutter suppression for Radar PPI images based on SCS-GAN[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(11): 1886–1890. doi: 10.1109/LGRS.2020.3012523. [12] SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Maritime target detection based on radar graph data and graph convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4019705. doi: 10.1109/LGRS.2021.3133473. [13] 耿常青, 杨承志, 吴宏超, 等. 基于卷积神经网络的微弱雷达信号增强技术研究[J]. 战术导弹技术, 2018(6): 101–105. doi: 10.16358/j.issn.1009-1300.2018.8.108.GENG Changqing, YANG Chengzhi, WU Hongchao, et al. Research on weak radar signal enhancement technology based on convolutional neural network[J]. Tactical Missile Technology, 2018(6): 101–105. doi: 10.16358/j.issn.1009-1300.2018.8.108. [14] 苏琮智, 吴宏超, 杨承志, 等. 基于RSETransformer的低截获概率雷达信号增强[J]. 战术导弹技术, 2022(5): 44–54. doi: 10.16358/j.issn.1009-1300.20220096.SU Congzhi, WU Hongchao, YANG Chengzhi, et al. LPI radar signal enhancement based on RSETransformer[J]. Tactical Missile Technology, 2022(5): 44–54. doi: 10.16358/j.issn.1009-1300.20220096. [15] 曹鹏宇, 杨承志, 石礼盟, 等. 基于DAE-GAN网络的LPI雷达信号增强[J]. 系统工程与电子技术, 2021, 43(9): 2493–2500. doi: 10.12305/j.issn.1001-506X.2021.09.16.CAO Pengyu, YANG Chengzhi, SHI Limeng, et al. LPI radar signal enhancement based on DAE-GAN network[J]. Systems Engineering and Electronics, 2021, 43(9): 2493–2500. doi: 10.12305/j.issn.1001-506X.2021.09.16. [16] KONG Yameng, FENG Dejun, and ZHANG Jiang. Radar HRRP target recognition based on composite deep networks[C]. 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022: 1–5. doi: 10.1109/ACES-China56081.2022.10064953. [17] TANG Tao, WANG Cai, and GAO Meiguo. Radar target recognition based on micro-doppler signatures using recurrent neural network[C]. The IEEE 4th International Conference on Electronics Technology (ICET), Chengdu, China, 2021: 189–194. doi: 10.1109/ICET51757.2021.9450934. [18] 苏宁远, 陈小龙, 关键, 等. 基于深度学习的海上目标一维序列信号目标检测方法[J]. 信号处理, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. One-dimensional sequence signal detection method for marine target based on deep learning[J]. Journal of Signal Processing, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004. [19] 苏宁远, 陈小龙, 陈宝欣, 等. 雷达海上目标双通道卷积神经网络特征融合智能检测方法[J]. 现代雷达, 2019, 41(10): 47–52, 57. doi: 10.16592/j.cnki.1004-7859.2019.10.009.SU Ningyuan, CHEN Xiaolong, CHEN Baoxin, et al. Dual-channel convolutional neural networks feature fusion method for radar maritime target intelligent detection[J]. Modern Radar, 2019, 41(10): 47–52, 57. doi: 10.16592/j.cnki.1004-7859.2019.10.009. [20] CHEN Xiaolong, SU Ningyuan, HUANG Yong, et al. False-alarm-controllable radar detection for marine target based on multi features fusion via CNNs[J]. IEEE Sensors Journal, 2021, 21(7): 9099–9111. doi: 10.1109/JSEN.2021.3054744. [21] 王治飞, 于俊朋, 杨予昊, 等. 基于帧间多维特征的深度学习雷达目标检测技术[J]. 现代雷达, 2022, 44(12): 48–54. doi: 10.16592/j.cnki.1004-7859.2022.12.007.WANG Zhifei, YU Junpeng, YANG Yuhao, et al. Radar target detection with multi-frame multi-dimensional features based on deep learning[J]. Modern Radar, 2022, 44(12): 48–54. doi: 10.16592/j.cnki.1004-7859.2022.12.007. [22] SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Graph data and GCN based maritime target detection of multi-frame scanning radar[C]. 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 2023: 1–5. doi: 10.1109/RADAR54928.2023.10371140. [23] 许述文, 焦银萍, 白晓惠, 等. 基于频域多通道图特征感知的海面小目标检测[J]. 电子与信息学报, 2023, 45(5): 1567–1574. doi: 10.11999/JEIT220188.XU Shuwen, JIAO Yinping, BAI Xiaohui, et al. Small target detection based on frequency domain multichannel graph feature perception on sea surface[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1567–1574. doi: 10.11999/JEIT220188. [24] HUANG Hao, PENG Yang, YANG Jie, et al. Fast beamforming design via deep learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1065–1069. doi: 10.1109/TVT.2019.2949122. [25] 任燕飞, 杜盈, 张劲东. 基于深度神经网络的自适应波束形成算法[J]. 电讯技术, 2022, 62(7): 852–858. doi: 10.3969/j.issn.1001-893x.2022.07.002.REN Yanfei, DU Ying, and ZHANG Jindong. An adaptive beamforming algorithm based on deep neural network[J]. Telecommunication Engineering, 2022, 62(7): 852–858. doi: 10.3969/j.issn.1001-893x.2022.07.002. [26] 丁梓航, 谢军伟, 王博. 基于深度学习的FDA-MIMO雷达协方差矩阵缺失数据恢复方法[J]. 雷达学报, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002.DING Zihang, XIE Junwei, and WANG Bo. Missing covariance matrix recovery with the FDA-MIMO radar using deep learning method[J]. Journal of Radars, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002. [27] THORNTON C E, KOZY M A, BUEHRER R M, et al. Deep reinforcement learning control for radar detection and tracking in congested spectral environments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1335–1349. doi: 10.1109/TCCN.2020.3019605. [28] HU Jinfeng, WEI Zhiyong, LI Yuzhi, et al. Designing unimodular waveform(s) for MIMO radar by deep learning method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1184–1196. doi: 10.1109/TAES.2020.3037406. [29] ELBIR A M, MISHRA K V, and ELDAR Y C. Cognitive radar antenna selection via deep learning[J]. IET Radar, Sonar & Navigation, 2019, 13(6): 871–880. doi: 10.1049/iet-rsn.2018.5438. [30] 王超, 孙丽婷, 王翔, 等. 基于脉内线性调频的雷达脉冲分裂信号分选与参数估计[J]. 信号处理, 2023, 39(7): 1222–1232. doi: 10.16798/j.issn.1003-0530.2023.07.009.WANG Chao, SUN Liting, WANG Xiang, et al. Deinterleaving and parameter estimation methods of radar signal with pulse splitting based on intra-pulse linear frequency modulation[J]. Journal of Signal Processing, 2023, 39(7): 1222–1232. doi: 10.16798/j.issn.1003-0530.2023.07.009. [31] 韩文草. 基于深度学习的雷达信号检测与参数估计[D]. [硕士论文], 杭州电子科技大学, 2023. doi: 10.27075/d.cnki.ghzdc.2022.000329.HAN Wencao. Radar signal detection and parameter estimation based on deep learning[D]. [Master dissertation], Hangzhou Dianzi University, 2023. doi: 10.27075/d.cnki.ghzdc.2022.000329. [32] 牟效乾, 陈小龙, 关键, 等. 基于INet的雷达图像杂波抑制和目标检测方法[J]. 雷达学报, 2020, 9(4): 640–653. doi: 10.12000/JR20090.MOU Xiaoqian, CHEN Xiaolong, GUAN Jian, et al. Clutter suppression and marine target detection for radar images based on INet[J]. Journal of Radars, 2020, 9(4): 640–653. doi: 10.12000/JR20090. [33] 陈小龙, 牟效亁, 关键. 对海雷达多维图像特征融合智能检测方法[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 1006–1016. doi: 10.11805/TKYDA2022119.CHEN Xiaolong, MU Xiaoqian, and GUAN Jian. Detection method of multi-dimensional images feature intelligent fusion for marine radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(10): 1006–1016. doi: 10.11805/TKYDA2022119. [34] CHEN Xiaolong, GUAN Jian, MU Xiaoqian, et al. Multi-dimensional automatic detection of scanning radar images of marine targets based on radar PPInet[J]. Remote Sensing, 2021, 13(19): 3856. doi: 10.3390/rs13193856. [35] CHEN Xiaolong, MU Xiaoqian, GUAN Jian, et al. Marine target detection based on Marine-Faster R-CNN for navigation radar PPI images[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(4): 630–643. doi: 10.1631/FITEE.2000611. [36] TAN Yihua, LI Qingyun, LI Yansheng, et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map[J]. Sensors, 2015, 15(9): 23071–23094. doi: 10.3390/s150923071. [37] 杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032.DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032. [38] 李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09.LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09. [39] CUI Zongyong, WANG Xiaoya, LIU Nengyua, et al. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 379–391. doi: 10.1109/TGRS.2020.2997200. [40] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.LI Guangshuai, SU Juan, and LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004. [41] 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084.XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084. [42] 牟效乾, 陈小龙, 苏宁远, 等. 基于时频图深度学习的雷达动目标检测与分类[J]. 太赫兹科学与电子信息学报, 2019, 17(1): 105–111. doi: 10.11805/TKYDA201901.0105.MOU Xiaoqian, CHEN Xiaolong, SU Ningyuan, et al. Radar detection and classification of moving target using deep convolutional neural networks on time-frequency graphs[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(1): 105–111. doi: 10.11805/TKYDA201901.0105. [43] CHEN Xiaolong, ZHANG Hai, SONG Jie, et al. Micro-motion classification of flying bird rotor drones via data augmentation modified multi-scale CNN[J]. Remote Sensing, 2022, 14(5): 1107. doi: 10.3390/rs14051107. [44] 施赛楠, 董泽远, 杨静, 等. 基于时频图自主学习的海面小目标检测[J]. 系统工程与电子技术, 2021, 43(1): 33–41. doi: 10.3969/j.issn.1001-506X.2021.01.05.SHI Sainan, DONG Zeyuan, YANG Jing, et al. Sea-surface small target detection based on autonomic learning of time-frequency graph[J]. Systems Engineering and Electronics, 2021, 43(1): 33–41. doi: 10.3969/j.issn.1001-506X.2021.01.05. [45] 裴家正, 黄勇, 陈宝欣, 等. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10(6): 956–969. doi: 10.12000/JR21068.PEI Jiazheng, HUANG Yong, CHEN Baoxin, et al. Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10(6): 956–969. doi: 10.12000/JR21068. [46] PÉREZ R, SCHUBERT F, RASSHOFER R, et al. Deep learning radar object detection and classification for urban automotive scenarios[C]. 2019 Kleinheubach Conference, Miltenberg, Germany, 2019: 1–4. [47] WANG Chenxing, TIAN Jiangmin, and CAO Jiuwen. Deep learning-based UAV detection in pulse-Doppler radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5105612. doi: 10.1109/TGRS.2021.3104907. [48] 张暄, 高跃清. 基于卷积神经网络的雷达目标检测方法[J]. 计算机测量与控制, 2021, 29(2): 49–52, 57. doi: 10.16526/j.cnki.11-4762/tp.2021.02.011.ZHANG Xuan and GAO Yueqing. Radar target detection based on convolutional neural network[J]. Computer Measurement & Control, 2021, 29(2): 49–52, 57. doi: 10.16526/j.cnki.11-4762/tp.2021.02.011. [49] BRODESKI D, BILIK I, and GIRYES R. Deep radar detector[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835792. [50] 宋海凌, 孙宇航, 何良, 等. 雷达回波信号的深度学习目标检测识别方法研究[J]. 战术导弹技术, 2021(2): 117–126. doi: 10.16358/j.issn.1009-1300.2021.9.114.SONG Hailing, SUN Yuhang, HE Liang, et al. Research on deep learning target detection and recognition method based on radar echo signal[J]. Tactical Missile Technology, 2021(2): 117–126. doi: 10.16358/j.issn.1009-1300.2021.9.114. [51] KIM Y, ALNUJAIM I, YOU S, et al. Human detection with range-Doppler signatures using 3D convolutional neural networks[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 2440–2442. doi: 10.1109/IGARSS39084.2020.9324052. [52] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049.ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049. [53] LIAO Leiyao, DU Lan, and CHEN Jian. Interpretable deep probabilistic model for hrr radar signal and its application to target recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(4): 775–790. doi: 10.1109/JSTSP.2022.3160241. [54] 田野, 丁赤飚, 张福博, 等. 一种基于深度学习的SAR城市建筑区域叠掩精确检测方法[J]. 雷达学报, 2023, 12(2): 441–455. doi: 10.12000/JR23033.TIAN Ye, DING Chibiao, ZHANG Fubo, et al. SAR building area layover detection based on deep learning[J]. Journal of Radars, 2023, 12(2): 441–455. doi: 10.12000/JR23033. [55] 李毅, 杜兰, 杜宇昂. 基于特征分解卷积神经网络的SAR图像目标检测方法[J]. 雷达学报, 2023, 12(5): 1069–1080. doi: 10.12000/JR23004.LI Yi, DU Lan, and DU Yuang. Convolutional neural network based on feature decomposition for target detection in SAR images[J]. Journal of Radars, 2023, 12(5): 1069–1080. doi: 10.12000/JR23004. [56] 吴礼洋, 呙鹏程, 刘超, 等. 基于注意力机制增强残差网络的雷达信号调制类型识别[J]. 兵工学报, 2023, 44(8): 2310–2318. doi: 10.12382/bgxb.2022.0302.WU Liyang, GUO Pengcheng, LIU Chao, et al. Radar signal modulation type recognition based on attention mechanism enhanced residual networks[J]. Acta Armamentarii, 2023, 44(8): 2310–2318. doi: 10.12382/bgxb.2022.0302. [57] BALTRUŠAITIS T, AHUJA C, and MORENCY L P. Multimodal machine learning: a survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423–443. doi: 10.1109/TPAMI.2018.2798607. [58] ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi: 10.1109/TGRS.2020.3003264. [59] 周雪珂, 刘畅, 周滨. 多尺度特征融合与特征通道关系校准的SAR图像船舶检测[J]. 雷达学报, 2021, 10(4): 531–543. doi: 10.12000/JR21021.ZHOU Xueke, LIU Chang, and ZHOU Bin. Ship detection in SAR images based on multi-scale features fusion and channel relation calibration of features[J]. Journal of Radars, 2021, 10(4): 531–543. doi: 10.12000/JR21021. [60] LIAN Xiaoqin, HUANG Xue, GAO Chao, et al. A multiscale local-global feature fusion method for SAR image classification with Bayesian hyperparameter optimization algorithm[J]. Applied Sciences, 2023, 13(11): 6806. doi: 10.3390/app13116806. [61] 郭帅, 陈婷, 王鹏辉, 等. 基于角度引导Transformer融合网络的多站协同目标识别方法[J]. 雷达学报, 2023, 12(3): 516–528. doi: 10.12000/JR23014.GUO Shuai, CHEN Ting, WANG Penghui, et al. Multistation cooperative radar target recognition based on an angle-guided Transformer fusion network[J]. Journal of Radars, 2023, 12(3): 516–528. doi: 10.12000/JR23014. [62] YU Xiaopeng and YU Xiaogao. The research on an adaptive k-nearest neighbors classifier[C]. The 5th IEEE International Conference on Cognitive Informatics, Beijing, China, 2006: 535–540. doi: 10.1109/COGINF.2006.365542. [63] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077.SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077. [64] 潘卫军, 段英捷, 张强, 等. 基于AlexNet卷积神经网络的激光雷达飞机尾涡识别研究[J]. 光电工程, 2019, 46(7): 190082. doi: 10.12086/oee.2019.190082.PAN Weijun, DUAN Yingjie, ZHANG Qiang, et al. Research on aircraft wake vortex recognition using AlexNet[J]. Opto-Electronic Engineering, 2019, 46(7): 190082. doi: 10.12086/oee.2019.190082. [65] 员娇娇, 胡永利, 孙艳丰, 等. 基于深度学习的小目标检测方法综述[J]. 北京工业大学学报, 2021, 47(3): 293–302. doi: 10.11936/bjutxb2020090019.YUAN Jiaojiao, HU Yongli, SUN Yanfeng, et al. Survey of small object detection methods based on deep learning[J]. Journal of Beijing University of Technology, 2021, 47(3): 293–302. doi: 10.11936/bjutxb2020090019. [66] YANG Yonghu, CHU Na, and LIU Zhenyu. Target detection in sea clutter based on transfer learning[C]. The IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Dalian, China, 2019: 795–799. doi: 10.1109/ISKE47853.2019.9170451. [67] LI Xuefei, WU Di, and ZHU Daiyin. Multi-channel SAR moving target detection based on simulation samples and transfer learning[C]. 2021 CIE International Conference on Radar (Radar), Haikou, China, 2021: 2054–2057. doi: 10.1109/Radar53847.2021.10028221. [68] 王金强, 孙闽红, 唐向宏, 等. 小样本下雷达复合干扰半监督迁移学习识别方法[J]. 电信科学, 2023, 39(10): 15–28. doi: 10.11959/j.issn.1000-0801.2023182.WANG Jinqiang, SUN Minhong, TANG Xianghong, et al. A semi-supervised transfer learning recognition method for radar compound jamming under small samples[J]. Telecommunications Science, 2023, 39(10): 15–28. doi: 10.11959/j.issn.1000-0801.2023182. [69] 杨立儒, 刘永祥, 杨威. 基于迁移学习的雷达杂波幅度统计模型选择[J]. 系统工程与电子技术, 2022, 44(8): 2457–2467. doi: 10.12305/j.issn.1001-506X.2022.08.09.YANG Liru, LIU Yongxiang, and YANG Wei. Radar clutter amplitude statistical model selection based on transfer learning[J]. Systems Engineering and Electronics, 2022, 44(8): 2457–2467. doi: 10.12305/j.issn.1001-506X.2022.08.09. [70] 杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884–896. doi: 10.12000/JR22121.DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121. [71] ZHAI Weitong, WANG Xiangrong, GRECO M S, et al. Weak target detection in massive MIMO radar via an improved reinforcement learning approach[C]. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022: 4993–4997. doi: 10.1109/ICASSP43922.2022.9746472. [72] WANG Yuedong, LIANG Yan, ZHANG Huixia, et al. Domain knowledge-assisted deep reinforcement learning power allocation for MIMO radar detection[J]. IEEE Sensors Journal, 2022, 22(23): 23117–23128. doi: 10.1109/JSEN.2022.3211606. [73] 赵会盼, 刘环宇. 基于多模态数据融合学习网络的微弱目标群检测方法[J]. 空天防御, 2021, 4(3): 41–47. doi: 10.3969/j.issn.2096-4641.2021.03.006.ZHAO Huipan and LIU Huanyu. Low signature target group detection based on multimodal data learning fusion network[J]. Air & Space Defense, 2021, 4(3): 41–47. doi: 10.3969/j.issn.2096-4641.2021.03.006. [74] 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001.CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Review of long-time integration techniques for weak targets using MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 10.16798/j.issn.1003-0530.2020.12.001. [75] 郭瑞, 张月, 田彪, 等. 全息凝视雷达系统技术与发展应用综述[J]. 雷达学报, 2023, 12(2): 389–411. doi: 10.12000/JR22153.GUO Rui, ZHANG Yue, TIAN Biao, et al. Review of the technology, development and applications of holographic staring radar[J]. Journal of Radars, 2023, 12(2): 389–411. doi: 10.12000/JR22153. [76] 陈小龙, 陈宝欣, 黄勇, 等. 频控阵雷达空距频聚焦信号处理方法[J]. 雷达学报, 2018, 7(2): 183–193. doi: 10.12000/JR18018.CHEN Xiaolong, CHEN Baoxin, HUANG Yong, et al. Frequency diverse array radar signal processing via space-range-Doppler focus (SRDF) method[J]. Journal of Radars, 2018, 7(2): 183–193. doi: 10.12000/JR18018. [77] 郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059. [78] 罗迎, 倪嘉成, 张群. 基于“数据驱动+智能学习”的合成孔径雷达学习成像[J]. 雷达学报, 2020, 9(1): 107–122. doi: 10.12000/JR19103.LUO Ying, NI Jiacheng, and ZHANG Qun. Synthetic aperture radar learning-imaging method based on data-driven technique and artificial intelligence[J]. Journal of Radars, 2020, 9(1): 107–122. doi: 10.12000/JR19103. [79] 黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165. 期刊类型引用(3)
1. 张佳辉,苗洪利,杨忠昊,刘昆池. 基于SAR子孔径分解的海表面二维流场反演. 海洋学报. 2023(08): 24-30 . 百度学术
2. 李志远,郭嘉逸,张月婷,黄丽佳,李洁,吴一戎. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法. 雷达学报. 2022(01): 83-94 . 本站查看
3. 雷禹,冷祥光,孙忠镇,计科峰. 宽幅SAR海上大型运动舰船目标数据集构建及识别性能分析. 雷达学报. 2022(03): 347-362 . 本站查看
其他类型引用(2)
-