-
摘要:
近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。
Abstract:Over the recent years, deep-learning technology has been widely used. However, in research based on Synthetic Aperture Radar (SAR) ship target detection, it is difficult to support the training of a deep-learning network model because of the difficulty in data acquisition and the small scale of the samples. This paper provides a SAR ship detection dataset with a high resolution and large-scale images. This dataset comprises 31 images from Gaofen-3 satellite SAR images, including harbors, islands, reefs, and the sea surface in different conditions. The backgrounds include various scenarios such as the near shore and open sea. We conducted experiments using both traditional detection algorithms and deep-learning algorithms and observed the densely connected end-to-end neural network to achieve the highest average precision of 88.1%. Based on the experiments and performance analysis, corresponding benchmarks are provided as a basis for further research on SAR ship detection using this dataset.
-
Key words:
- SAR ship detection /
- Public dataset /
- Deep learning
-
表 1 数据集信息
Table 1. The dataset information
分辨率 成像模式 极化方式 图像格式 1 m, 3 m 聚束式、条带式 单极化 Tiff 1 AIR-SARShip-1.0数据集详情
1. AIR-SARShip-1.0 dataset information in detail
图像编号 像素尺寸 海况 场景 分辨率(m) 舰船数量 1 3000×3000 2级 近岸 3 5 2 3000×3000 0级 近岸 1 7 3 3000×3000 3级 远海 3 10 4 3000×3000 2级 远海 3 8 5 3000×3000 1级 近岸 3 15 6 3000×3000 4级 远海 3 3 7 3000×3000 4级 远海 3 5 8 3000×3000 1级 近岸 1 2 9 3000×3000 2级 近岸 1 7 10 3000×3000 1级 远海 1 50 11 3000×3000 1级 近岸 1 80 12 3000×3000 2级 近岸 1 18 13 4140×4140 1级 近岸 1 21 14 3000×3000 1级 近岸 1 15 15 3000×3000 1级 近岸 1 77 16 3000×3000 3级 近岸 3 13 17 3000×3000 3级 近岸 3 3 18 3000×3000 3级 近岸 3 2 19 3000×3000 3级 近岸 3 1 20 3000×3000 2级 近岸 3 7 21 3000×3000 2级 近岸 3 9 22 3000×3000 1级 近岸 3 14 23 3000×3000 1级 远海 3 4 24 3000×3000 4级 远海 3 6 25 3000×3000 4级 远海 1 20 26 3000×3000 2级 近岸 3 15 27 3000×3000 2级 近岸 3 19 28 3000×3000 1级 近岸 3 8 29 3000×3000 3级 远海 3 6 30 3000×3000 2级 远海 3 8 31 3000×3000 1级 近岸 3 3 表 2 经典机器学习算法舰船检测性能基准
Table 2. The performance benchmarks of classic ship detection algorithm
算法 AP(%) CFAR 27.1 基于K分布的CFAR 19.2 KSW 28.2 表 3 基于深度学习的SAR舰船检测算法的性能基准
Table 3. The performance benchmarks of SAR ship detection algorithms based on deep learning
性能排名 算法 AP(%) FPS 1 DCENN 88.1 24 2 Faster-RCNN-DR 84.2 29 3 Faster-RCNN 79.3 30 4 SSD-512 74.3 64 5 SSD-300 72.4 151 6 YOLOv1 64.7 160 表 4 不同场景下算法性能结果
Table 4. The performance benchmarks of different scenes based on different algorithms
性能排名 算法 近岸舰船AP(%) 远海舰船AP(%) 1 DCENN 68.1 96.3 2 Faster-RCNN-DR 57.6 94.6 3 SSD-512 40.3 89.4 表 1 The dataset information
Resolution Imaging mode Polarization mode Format 1 m, 3 m Spotlight, Strip Single Tiff 表 2 The performance benchmarks of classic ship detection algorithm
Algorithm AP(%) CFAR 27.1 CFAR method based on K distribution 19.2 KSW 28.2 表 3 The performance benchmarks of SAR ship detection algorithms based on deep learning
Performance ranking Algorithm AP(%) FPS 1 DCENN 88.1 24 2 Faster-RCNN-DR 84.2 29 3 Faster-RCNN 79.3 30 4 SSD-512 74.3 64 5 SSD-300 72.4 151 6 YOLOv1 64.7 160 表 4 The performance benchmarks of different scenes based on different algorithms
Performance ranking Algorithm Nearshore ship AP(%) Offshore ship AP(%) 1 DCENN 68.1 96.3 2 Faster-RCNN-DR 57.6 94.6 3 SSD-512 40.3 89.4 App Tab. 1 AIR-SARShip-1.0 dataset information in detail
Image No. Size Sea condition Scenario Resolution (m) Ship numbe 1 3000×3000 Level 2 nearshore 3 5 2 3000×3000 Level 0 nearshore 1 7 3 3000×3000 Level 3 offshore 3 10 4 3000×3000 Level 2 offshore 3 8 5 3000×3000 Level 1 nearshore 3 15 6 3000×3000 Level 4 offshore 3 3 7 3000×3000 Level 4 offshore 3 5 8 3000×3000 Level 1 nearshore 1 2 9 3000×3000 Level 2 nearshore 1 7 10 3000×3000 Level 1 offshore 1 50 11 3000×3000 Level 1 nearshore 1 80 12 3000×3000 Level 2 nearshore 1 18 13 4140×4140 Level 1 nearshore 1 21 14 3000×3000 Level 1 nearshore 1 15 15 3000×3000 Level 1 nearshore 1 77 16 3000×3000 Level 3 nearshore 3 13 17 3000×3000 Level 3 nearshore 3 3 18 3000×3000 Level 3 nearshore 3 2 19 3000×3000 Level 3 nearshore 3 1 20 3000×3000 Level 2 nearshore 3 7 21 3000×3000 Level 2 nearshore 3 9 22 3000×3000 Level 1 nearshore 3 14 23 3000×3000 Level 1 offshore 3 4 24 3000×3000 Level 4 offshore 3 6 25 3000×3000 Level 4 offshore 1 20 26 3000×3000 Level 2 nearshore 3 15 27 3000×3000 Level 2 nearshore 3 19 28 3000×3000 Level 1 nearshore 3 8 29 3000×3000 Level 3 offshore 3 6 30 3000×3000 Level 2 offshore 3 8 31 3000×3000 Level 1 nearshore 3 3 -
[1] 张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6): 596–606. doi: 10.12000/JR16124ZHANG Jie, ZHANG Xi, FAN Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596–606. doi: 10.12000/JR16124 [2] REY M T, CAMPBELL J, and PETROVIC D. A comparison of ocean clutter distribution estimators for CFAR-based ship detection in RADARSAT imagery[R]. Technical Report No. 1340, 1998. [3] NOVAK L M, BURL M C, and IRVING W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234–244. doi: 10.1109/7.249129 [4] STAGLIANO D, LUPIDI A, and BERIZZI F. Ship detection from SAR images based on CFAR and wavelet transform[C]. 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing, Naples, Italy, 2012: 53–58. [5] HE Jinglu, WANG Yinghua, LIU Hongwei, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 384–388. doi: 10.1109/LGRS.2017.2789204 [6] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. [7] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4 [8] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755. [9] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983. [10] ZHANG Yuanlin, YUAN Yuan, FENG Yachuang, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535–5548. doi: 10.1109/TGRS.2019.2900302 [11] LONG Yang, GONG Yiping, XIAO Zhifeng, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486–2498. doi: 10.1109/TGRS.2016.2645610 [12] XIAO Zhifeng, LIU Qing, TANG Gefu, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618–644. doi: 10.1080/01431161.2014.999881 [13] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Beijing, China, 2017: 1–6. [14] HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672 [15] WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765 [16] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049 [17] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. [19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. [20] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. [21] GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. [22] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99. [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. [24] LIU Peng and JIN Yaqiu. A study of ship rotation effects on SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3132–3144. doi: 10.1109/TGRS.2017.2662038 [25] JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376