AIR-SARShip-1.0:高分辨率SAR舰船检测数据集

孙显 王智睿 孙元睿 刁文辉 张跃 付琨

孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0:高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097
引用本文: 孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0:高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097
SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
Citation: SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097

AIR-SARShip-1.0:高分辨率SAR舰船检测数据集

DOI: 10.12000/JR19097
基金项目: 国家自然科学基金(61725105, 41801349, 41701508),国家高分辨率对地观测系统重大专项(GFZX0404120405)
详细信息
    作者简介:

    孙 显(1981–),男,中国科学院空天信息创新研究院研究员,博士生导师,主要研究方向为计算机视觉与遥感图像理解,IEEE高级会员,雷达学报青年编委。E-mail: sunxian@mail.ie.ac.cn

    王智睿(1990–),男,2018年在清华大学获得博士学位,现任中国科学院空天信息创新研究院助理研究员,主要研究方向为SAR图像智能解译。E-mail: zhirui1990@126.com

    孙元睿(1995–),男,博士生,2017年获得中国地质大学(武汉)工学学士学位,现为中国科学院大学信息与通信工程博士生,主要研究方向为SAR舰船检测。E-mail: sunyuanrui17@mails.ucas.ac.cn

    刁文辉(1988–),男,2016年在中国科学院大学获得博士学位,现任中国科学院空天信息创新研究院助理研究员。主要研究方向为深度学习理论及其在遥感图像解译中的应用,目前已发表论文20余篇。E-mail: whdiao@mail.ie.ac.cn

    张 跃(1990–),男, 2017年在中国科学院大学获得博士学位,现任中国科学院空天信息创新研究院助理研究员。主要研究方向为SAR图像智能分析与解译应用,目前已发表SCI论文10余篇。E-mail: zhangyue@air.cas.ac.cn

    付 琨(1974–),男,研究员,博士生导师,现任中国科学院空天信息创新研究院院长助理,中国科学院重点实验室主任,主要从事地理空间数据分析与挖掘、遥感图像智能解译等领域的研究工作,先后获国家科技进步特等奖、国家科技进步一等奖和省部级一等奖等多项。E-mail: fukun@mail.ie.ac.cn

    通讯作者:

    孙显 sunxian@mail.ie.ac.cn

  • 中图分类号: TN957.51; TN958

AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset (in English)

Funds: The National Natural Science Foundation of China (61725105, 41801349, 41701508), National Major Project on High Resolution Earth Observation System (GFZX0404120405)
More Information
    Author Bio:

    SUN Xian was born in 1981. He is a researcher and doctoral supervisor at the Aerospace Information Research Institute, Chinese Academy of Sciences. His main research fields are computer vision and remote sensing image interpretation. E-mail: sunxian@mail.ie.ac.cn

    WANG Zhirui was born in 1990. He received his PhD from Tsinghua University in 2018. He is currently a research assistant at the Aerospace Information Research Institute, Chinese Academy of Sciences. His main research field is intelligent interpretation of SAR images. E-mail: zhirui1990@126.com

    SUN Yuanrui was born in 1995. He received his bachelor’s degree in engineering from China University of Geosciences (Wuhan) in 2017. He is now a doctoral candidate in information and communication engineering of the University of Chinese Academy of Sciences. His main research field is SAR ship detection. E-mail: sunyuanrui17@mails.ucas.ac.cn

    DIAO Wenhui was born in 1988. He received his PhD from the University of Chinese Academy of Sciences in 2016. He is currently a research assistant at the Aerospace Information Research Institute, Chinese Academy of Sciences. His main research interests include deep learning theory and its application in remote sensing image interpretation. E-mail: whdiao@mail.ie.ac.cn

    ZHANG Yue was born in 1990. He received his PhD from the University of Chinese Academy of Sciences in 2017. He is currently a research assistant at the Aerospace Information Research Institute, Chinese Academy of Sciences. His main research field is intelligent analysis and interpretation of SAR images. E-mail: zhangyue@air.cas.ac.cn

    FU Kun was born in 1974. He is a researcher and doctoral supervisor. He is the president assistant at the Aerospace Information Research Institute, Chinese Academy of Sciences, and the director of the Key Laboratory of the Chinese Academy of Sciences. He is mainly engaged in research in the fields of geospatial data analysis and mining, and remote sensing image intelligent interpretation. He has successively won the National Science and Technology Progress Award, the first prize of the National Science and Technology Progress Award, and the first prize of the Provincial and Ministerial-Level Award. E-mail: fukun@mail.ie.ac.cn

    Corresponding author: SUN Xian, sunxian@mail.ie.ac.cn
  • 摘要:

    近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。

     

  • 图  1  数据集标注示意图

    Figure  1.  The annotated example in the dataset

    图  2  AIR-SARShip-1.0数据集中场景示例

    Figure  2.  The example scenes of AIR-SARShip-1.0 dataset

    图  3  数据集舰船矩形框面积分布

    Figure  3.  The area distribution of ship rectangle in the dataset

    图  4  同一地区不同角度成像示例

    Figure  4.  Imaging examples of the same area at different angles

    图  5  旋转图像示例

    Figure  5.  The examples of rotated images

    图  6  DCENN网络主要结构

    Figure  6.  The main structure of DCENN network

    图  7  基于密集连接融合特征图

    Figure  7.  The fusion feature map based on dense connection

    图  8  基于Faster-RCNN的SAR舰船检测示意图

    Figure  8.  The detection example of SAR ship based on Faster-RCNN

    1  AIR-SARShip-1.0数据集发布地址

    1.  Release address of AIR-SARShip-1.0 dataset

    图  1  Annotated example in the dataset

    图  2  Examples of the AIR-SARShip-1.0 dataset

    图  3  Area distribution of ship rectangle in the dataset

    图  4  Imaging examples of the same area at different angles

    图  5  Examples of original image and rotated images

    图  6  Main structure of the DCENN network

    图  7  Fusion feature map based on dense connection

    图  8  Detection example of SAR ship based on Faster-RCNN

    App   Fig. 1  Release address of the AIR-SARShip-1.0 dataset

    表  1  数据集信息

    Table  1.   The dataset information

    分辨率成像模式极化方式图像格式
    1 m, 3 m聚束式、条带式单极化Tiff
    下载: 导出CSV

    1  AIR-SARShip-1.0数据集详情

    1.   AIR-SARShip-1.0 dataset information in detail

    图像编号像素尺寸海况场景分辨率(m)舰船数量
    13000×30002级近岸35
    23000×30000级近岸17
    33000×30003级远海310
    43000×30002级远海38
    53000×30001级近岸315
    63000×30004级远海33
    73000×30004级远海35
    83000×30001级近岸12
    93000×30002级近岸17
    103000×30001级远海150
    113000×30001级近岸180
    123000×30002级近岸118
    134140×41401级近岸121
    143000×30001级近岸115
    153000×30001级近岸177
    163000×30003级近岸313
    173000×30003级近岸33
    183000×30003级近岸32
    193000×30003级近岸31
    203000×30002级近岸37
    213000×30002级近岸39
    223000×30001级近岸314
    233000×30001级远海34
    243000×30004级远海36
    253000×30004级远海120
    263000×30002级近岸315
    273000×30002级近岸319
    283000×30001级近岸38
    293000×30003级远海36
    303000×30002级远海38
    313000×30001级近岸33
    下载: 导出CSV

    表  2  经典机器学习算法舰船检测性能基准

    Table  2.   The performance benchmarks of classic ship detection algorithm

    算法AP(%)
    CFAR27.1
    基于K分布的CFAR19.2
    KSW28.2
    下载: 导出CSV

    表  3  基于深度学习的SAR舰船检测算法的性能基准

    Table  3.   The performance benchmarks of SAR ship detection algorithms based on deep learning

    性能排名算法AP(%)FPS
    1DCENN88.124
    2Faster-RCNN-DR84.229
    3Faster-RCNN79.330
    4SSD-51274.364
    5SSD-30072.4151
    6YOLOv164.7160
    下载: 导出CSV

    表  4  不同场景下算法性能结果

    Table  4.   The performance benchmarks of different scenes based on different algorithms

    性能排名算法近岸舰船AP(%)远海舰船AP(%)
    1DCENN68.196.3
    2Faster-RCNN-DR57.694.6
    3SSD-51240.389.4
    下载: 导出CSV

    表  1  The dataset information

    Resolution Imaging mode Polarization mode Format
    1 m, 3 m Spotlight, Strip Single Tiff
    下载: 导出CSV

    表  2  The performance benchmarks of classic ship detection algorithm

    Algorithm AP(%)
    CFAR 27.1
    CFAR method based on K distribution 19.2
    KSW 28.2
    下载: 导出CSV

    表  3  The performance benchmarks of SAR ship detection algorithms based on deep learning

    Performance ranking Algorithm AP(%) FPS
    1 DCENN 88.1 24
    2 Faster-RCNN-DR 84.2 29
    3 Faster-RCNN 79.3 30
    4 SSD-512 74.3 64
    5 SSD-300 72.4 151
    6 YOLOv1 64.7 160
    下载: 导出CSV

    表  4  The performance benchmarks of different scenes based on different algorithms

    Performance ranking Algorithm Nearshore ship AP(%) Offshore ship AP(%)
    1 DCENN 68.1 96.3
    2 Faster-RCNN-DR 57.6 94.6
    3 SSD-512 40.3 89.4
    下载: 导出CSV

    App  Tab. 1 AIR-SARShip-1.0 dataset information in detail

    Image No. Size Sea condition Scenario Resolution (m) Ship numbe
    1 3000×3000 Level 2 nearshore 3 5
    2 3000×3000 Level 0 nearshore 1 7
    3 3000×3000 Level 3 offshore 3 10
    4 3000×3000 Level 2 offshore 3 8
    5 3000×3000 Level 1 nearshore 3 15
    6 3000×3000 Level 4 offshore 3 3
    7 3000×3000 Level 4 offshore 3 5
    8 3000×3000 Level 1 nearshore 1 2
    9 3000×3000 Level 2 nearshore 1 7
    10 3000×3000 Level 1 offshore 1 50
    11 3000×3000 Level 1 nearshore 1 80
    12 3000×3000 Level 2 nearshore 1 18
    13 4140×4140 Level 1 nearshore 1 21
    14 3000×3000 Level 1 nearshore 1 15
    15 3000×3000 Level 1 nearshore 1 77
    16 3000×3000 Level 3 nearshore 3 13
    17 3000×3000 Level 3 nearshore 3 3
    18 3000×3000 Level 3 nearshore 3 2
    19 3000×3000 Level 3 nearshore 3 1
    20 3000×3000 Level 2 nearshore 3 7
    21 3000×3000 Level 2 nearshore 3 9
    22 3000×3000 Level 1 nearshore 3 14
    23 3000×3000 Level 1 offshore 3 4
    24 3000×3000 Level 4 offshore 3 6
    25 3000×3000 Level 4 offshore 1 20
    26 3000×3000 Level 2 nearshore 3 15
    27 3000×3000 Level 2 nearshore 3 19
    28 3000×3000 Level 1 nearshore 3 8
    29 3000×3000 Level 3 offshore 3 6
    30 3000×3000 Level 2 offshore 3 8
    31 3000×3000 Level 1 nearshore 3 3
    下载: 导出CSV
  • [1] 张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6): 596–606. doi: 10.12000/JR16124

    ZHANG Jie, ZHANG Xi, FAN Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596–606. doi: 10.12000/JR16124
    [2] REY M T, CAMPBELL J, and PETROVIC D. A comparison of ocean clutter distribution estimators for CFAR-based ship detection in RADARSAT imagery[R]. Technical Report No. 1340, 1998.
    [3] NOVAK L M, BURL M C, and IRVING W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234–244. doi: 10.1109/7.249129
    [4] STAGLIANO D, LUPIDI A, and BERIZZI F. Ship detection from SAR images based on CFAR and wavelet transform[C]. 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing, Naples, Italy, 2012: 53–58.
    [5] HE Jinglu, WANG Yinghua, LIU Hongwei, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 384–388. doi: 10.1109/LGRS.2017.2789204
    [6] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
    [7] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4
    [8] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
    [9] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: A large-scale dataset for object detection in aerial images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974–3983.
    [10] ZHANG Yuanlin, YUAN Yuan, FENG Yachuang, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535–5548. doi: 10.1109/TGRS.2019.2900302
    [11] LONG Yang, GONG Yiping, XIAO Zhifeng, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486–2498. doi: 10.1109/TGRS.2016.2645610
    [12] XIAO Zhifeng, LIU Qing, TANG Gefu, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618–644. doi: 10.1080/01431161.2014.999881
    [13] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Beijing, China, 2017: 1–6.
    [14] HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672
    [15] WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765
    [16] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049
    [17] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [19] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
    [20] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [21] GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [22] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [23] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [24] LIU Peng and JIN Yaqiu. A study of ship rotation effects on SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3132–3144. doi: 10.1109/TGRS.2017.2662038
    [25] JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20892. doi: 10.1109/ACCESS.2018.2825376
  • 加载中
图(18) / 表(10)
计量
  • 文章访问数:  22346
  • HTML全文浏览量:  19225
  • PDF下载量:  2686
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-16
  • 修回日期:  2019-12-17
  • 网络出版日期:  2019-12-01

目录

    /

    返回文章
    返回