全文下载排行

1
被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。 被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。
2
毫米波雷达凭借其出色的环境适应性、高分辨率和隐私保护等优势,在智能家居、智慧养老和安防监控等领域具有广泛的应用前景。毫米波雷达三维点云是一种重要的空间数据表达形式,对于人体行为姿态识别具有极大的价值。然而,由于毫米波雷达点云具有强稀疏性,给精准快速识别人体动作带来了巨大的挑战。针对这一问题,该文公开了一个毫米波雷达人体动作三维点云数据集mmWave-3DPCHM-1.0,并提出了相应的数据处理方法和人体动作识别模型。该数据集由TI公司的IWR1443-ISK和Vayyar公司的vBlu射频成像模组分别采集,包括常见的12种人体动作,如走路、挥手、站立和跌倒等。在网络模型方面,该文将边缘卷积(EdgeConv)与Transformer相结合,提出了一种处理长时序三维点云的网络模型,即Point EdgeConv and Transformer (PETer)网络。该网络通过边缘卷积对三维点云逐帧创建局部有向邻域图,以提取单帧点云的空间几何特征,并通过堆叠多个编码器的Transformer模块,提取多帧点云之间的时序关系。实验结果表明,所提出的PETer网络在所构建的TI数据集和Vayyar数据集上的平均识别准确率分别达到98.77%和99.51%,比传统最优的基线网络模型提高了大约5%,且网络规模仅为1.09 M,适于在存储受限的边缘设备上部署。 毫米波雷达凭借其出色的环境适应性、高分辨率和隐私保护等优势,在智能家居、智慧养老和安防监控等领域具有广泛的应用前景。毫米波雷达三维点云是一种重要的空间数据表达形式,对于人体行为姿态识别具有极大的价值。然而,由于毫米波雷达点云具有强稀疏性,给精准快速识别人体动作带来了巨大的挑战。针对这一问题,该文公开了一个毫米波雷达人体动作三维点云数据集mmWave-3DPCHM-1.0,并提出了相应的数据处理方法和人体动作识别模型。该数据集由TI公司的IWR1443-ISK和Vayyar公司的vBlu射频成像模组分别采集,包括常见的12种人体动作,如走路、挥手、站立和跌倒等。在网络模型方面,该文将边缘卷积(EdgeConv)与Transformer相结合,提出了一种处理长时序三维点云的网络模型,即Point EdgeConv and Transformer (PETer)网络。该网络通过边缘卷积对三维点云逐帧创建局部有向邻域图,以提取单帧点云的空间几何特征,并通过堆叠多个编码器的Transformer模块,提取多帧点云之间的时序关系。实验结果表明,所提出的PETer网络在所构建的TI数据集和Vayyar数据集上的平均识别准确率分别达到98.77%和99.51%,比传统最优的基线网络模型提高了大约5%,且网络规模仅为1.09 M,适于在存储受限的边缘设备上部署。
3
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。 针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。
4
极化合成孔径雷达(PolSAR)地物分类是SAR图像智能解译领域的研究热点之一。为了进一步促进该领域研究的发展,该文组织并发布了一个面向大规模复杂场景的极化SAR地物分类数据集AIR-PolSAR-Seg-2.0。该数据集由三景不同区域的高分三号卫星L1A级复数SAR影像构成,空间分辨率8 m,包含HH, HV, VH和VV共4种极化方式,涵盖水体、植被、裸地、建筑、道路、山脉等6类典型的地物类别,具有场景复杂规模大、强弱散射多样、边界分布不规则、类别尺度多样、样本分布不均衡的特点。为方便试验验证,该文将三景完整的SAR影像裁剪成24,672张512像素×512像素的切片,并使用一系列通用的深度学习方法进行了实验验证。实验结果显示,基于双通道自注意力方法的DANet性能表现最佳,在幅度数据和幅相融合数据的平均交并比分别达到了85.96%和87.03%。该数据集与实验指标基准有助于其他学者进一步展开极化SAR地物分类相关研究。 极化合成孔径雷达(PolSAR)地物分类是SAR图像智能解译领域的研究热点之一。为了进一步促进该领域研究的发展,该文组织并发布了一个面向大规模复杂场景的极化SAR地物分类数据集AIR-PolSAR-Seg-2.0。该数据集由三景不同区域的高分三号卫星L1A级复数SAR影像构成,空间分辨率8 m,包含HH, HV, VH和VV共4种极化方式,涵盖水体、植被、裸地、建筑、道路、山脉等6类典型的地物类别,具有场景复杂规模大、强弱散射多样、边界分布不规则、类别尺度多样、样本分布不均衡的特点。为方便试验验证,该文将三景完整的SAR影像裁剪成24,672张512像素×512像素的切片,并使用一系列通用的深度学习方法进行了实验验证。实验结果显示,基于双通道自注意力方法的DANet性能表现最佳,在幅度数据和幅相融合数据的平均交并比分别达到了85.96%和87.03%。该数据集与实验指标基准有助于其他学者进一步展开极化SAR地物分类相关研究。
5
低频超宽带(UWB)雷达因其良好穿透性和分辨率,在人体行为识别领域具有显著的优势。针对现有的动作识别算法运算量大、网络参数多的问题,该文提出了一种基于时空点云的高效且轻量的超宽带雷达人体行为识别方法。首先通过UWB雷达采集人体的四维运动数据,然后采用离散采样的方法将雷达图像转换为点云表示,由于人体行为识别属于时间序列上的分类问题,该文结合PointNet++网络与Transformer网络提出了一种轻量化的时空网络,通过提取并分析四维点云的时空特征,实现了对人体行为的端到端识别。在模型的训练过程中,提出了一种点云数据多阈值融合的方法,进一步提高了模型的泛化性和识别能力。该文根据公开的四维雷达成像数据集对所提方法进行验证,并与现有方法进行了比较。结果表明,所提方法在人体行为识别率达到96.75%,且消耗较少的参数量和运算量,验证了其有效性。 低频超宽带(UWB)雷达因其良好穿透性和分辨率,在人体行为识别领域具有显著的优势。针对现有的动作识别算法运算量大、网络参数多的问题,该文提出了一种基于时空点云的高效且轻量的超宽带雷达人体行为识别方法。首先通过UWB雷达采集人体的四维运动数据,然后采用离散采样的方法将雷达图像转换为点云表示,由于人体行为识别属于时间序列上的分类问题,该文结合PointNet++网络与Transformer网络提出了一种轻量化的时空网络,通过提取并分析四维点云的时空特征,实现了对人体行为的端到端识别。在模型的训练过程中,提出了一种点云数据多阈值融合的方法,进一步提高了模型的泛化性和识别能力。该文根据公开的四维雷达成像数据集对所提方法进行验证,并与现有方法进行了比较。结果表明,所提方法在人体行为识别率达到96.75%,且消耗较少的参数量和运算量,验证了其有效性。
6
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。 无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
7

飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。

飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。

8
随着电子技术的快速发展,雷达面临的电磁环境日益复杂。当存在主瓣有源欺骗干扰时,传统相控阵雷达自适应波束形成抗干扰失效,主瓣干扰抑制已成为雷达领域亟待解决的共性难题。该文针对来自主瓣的自卫式转发干扰,提出了一种时空多维域编码抗主瓣欺骗式干扰方法。首先,设计发射通道-脉冲-子脉冲编码,在接收端采用多普勒分多址方法实现了发射信号分离。针对目标高速运动导致的分离错位现象,提出一种基于波束形成能量差的移位数估计方法。随后,利用目标与干扰的延时相位差,设计收发联合的双重编码相位补偿方法,在发射空间频率域实现对真实目标、跨脉冲转发干扰、脉内转发干扰的区分,并且通过构建联合发射-接收权矢量,对主瓣欺骗式干扰进行空域滤波抑制。针对实际中波达角度(DOA)误差造成的抗干扰性能下降问题,构建了以最大化输出信干噪比(SINR)为目标函数的约束优化问题,基于交替迭代算法对接收权矢量,发射编码系数、接收编码系数分别进行优化。仿真实验验证了所提方法相比于其他雷达体制在抗主瓣欺骗干扰方面的有效性,其中相比于传统MIMO雷达,所提阵列时空多维域编码技术在4个主瓣干扰存在的情况下SINR可提升34 dB。 随着电子技术的快速发展,雷达面临的电磁环境日益复杂。当存在主瓣有源欺骗干扰时,传统相控阵雷达自适应波束形成抗干扰失效,主瓣干扰抑制已成为雷达领域亟待解决的共性难题。该文针对来自主瓣的自卫式转发干扰,提出了一种时空多维域编码抗主瓣欺骗式干扰方法。首先,设计发射通道-脉冲-子脉冲编码,在接收端采用多普勒分多址方法实现了发射信号分离。针对目标高速运动导致的分离错位现象,提出一种基于波束形成能量差的移位数估计方法。随后,利用目标与干扰的延时相位差,设计收发联合的双重编码相位补偿方法,在发射空间频率域实现对真实目标、跨脉冲转发干扰、脉内转发干扰的区分,并且通过构建联合发射-接收权矢量,对主瓣欺骗式干扰进行空域滤波抑制。针对实际中波达角度(DOA)误差造成的抗干扰性能下降问题,构建了以最大化输出信干噪比(SINR)为目标函数的约束优化问题,基于交替迭代算法对接收权矢量,发射编码系数、接收编码系数分别进行优化。仿真实验验证了所提方法相比于其他雷达体制在抗主瓣欺骗干扰方面的有效性,其中相比于传统MIMO雷达,所提阵列时空多维域编码技术在4个主瓣干扰存在的情况下SINR可提升34 dB。
9
海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步。针对海上目标散射特性数据不足的问题,升级“雷达对海探测数据共享计划(SDRDSP)”,扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持。后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持。 海上目标检测识别受制于海上目标及海杂波环境特性,基于实测数据认知海上目标的本质特征有利于推进目标检测识别技术进步。针对海上目标散射特性数据不足的问题,升级“雷达对海探测数据共享计划(SDRDSP)”,扩展雷达目标观测的物理维度、提升雷达及辅助数据采集能力,获取不同极化、海况下的海上目标及环境数据,构建海上目标双极化多海况散射特性数据集,并分析其统计分布特性、时间与空间相关性和多普勒谱特性,为数据使用提供支持。后续将推进海上目标类型与数量的持续积累,为海上目标检测识别性能提升和智能化发展提供数据支持。
10
逆合成孔径雷达(ISAR)是空间目标成像和监测的重要手段之一,大转角下空间目标成像结果的越分辨单元徙动(MTRC)现象加剧,严重影响ISAR成像的性能。为快速估计和补偿空间目标运动产生的回波相位误差,结合BFGS优化算法效率高与极坐标格式变换算法(PFA)补偿精度高的优势,该文提出了一种基于联合运动参数快速估计的空间目标ISAR成像方法。所提方法建立了目标平动和转动参数联合估计的最小化图像熵优化模型;为降低优化陷入局部最优的可能,设计了目标参数粗估计和精估计的高效BFGS求解子步骤,实现了目标转动参数的快速估计与大转角情况下MTRC的补偿。点目标仿真和实测民航客机数据成像结果表明,相比PSO-PFA算法,所提方法在低信噪比条件下的运动参数估计精度更高,运算时间缩短为原来的五分之一,具有显著优势。 逆合成孔径雷达(ISAR)是空间目标成像和监测的重要手段之一,大转角下空间目标成像结果的越分辨单元徙动(MTRC)现象加剧,严重影响ISAR成像的性能。为快速估计和补偿空间目标运动产生的回波相位误差,结合BFGS优化算法效率高与极坐标格式变换算法(PFA)补偿精度高的优势,该文提出了一种基于联合运动参数快速估计的空间目标ISAR成像方法。所提方法建立了目标平动和转动参数联合估计的最小化图像熵优化模型;为降低优化陷入局部最优的可能,设计了目标参数粗估计和精估计的高效BFGS求解子步骤,实现了目标转动参数的快速估计与大转角情况下MTRC的补偿。点目标仿真和实测民航客机数据成像结果表明,相比PSO-PFA算法,所提方法在低信噪比条件下的运动参数估计精度更高,运算时间缩短为原来的五分之一,具有显著优势。
11
基于深度学习的合成孔径雷达(SAR)图像目标识别技术日趋成熟。然而,受散射特性、噪声干扰等影响,同类目标的SAR成像结果存在差异。面向高精度目标识别需求,该文将目标实体、生存环境及其交互空间中不变性特征的组合抽象为目标本质特征,提出基于图网络与不变性特征感知的SAR图像目标识别方法。该方法用双分支网络处理多视角SAR图像,通过旋转可学习单元对齐双支特征并强化旋转免疫的不变性特征。为实现多粒度本质特征提取,设计目标本体特征强化单元、环境特征采样单元、上下文自适应融合更新单元,并基于图神经网络分析其融合结果,构建本质特征拓扑,输出目标类别向量。该文使用t-SNE方法定性评估算法的类别辨识能力,基于准确率等指标定量分析关键单元及整体网络,采用类激活图可视化方法验证各阶段、各分支网络的不变性特征提取能力。该文所提方法在MSTAR车辆、SAR-ACD飞机、OpenSARShip船只数据集上的平均识别准确率分别达到了98.56%, 94.11%, 86.20%。实验结果表明,该算法具备在SAR图像目标识别任务中目标本质特征提取能力,在多类别目标识别方面展现出较高的稳健性。 基于深度学习的合成孔径雷达(SAR)图像目标识别技术日趋成熟。然而,受散射特性、噪声干扰等影响,同类目标的SAR成像结果存在差异。面向高精度目标识别需求,该文将目标实体、生存环境及其交互空间中不变性特征的组合抽象为目标本质特征,提出基于图网络与不变性特征感知的SAR图像目标识别方法。该方法用双分支网络处理多视角SAR图像,通过旋转可学习单元对齐双支特征并强化旋转免疫的不变性特征。为实现多粒度本质特征提取,设计目标本体特征强化单元、环境特征采样单元、上下文自适应融合更新单元,并基于图神经网络分析其融合结果,构建本质特征拓扑,输出目标类别向量。该文使用t-SNE方法定性评估算法的类别辨识能力,基于准确率等指标定量分析关键单元及整体网络,采用类激活图可视化方法验证各阶段、各分支网络的不变性特征提取能力。该文所提方法在MSTAR车辆、SAR-ACD飞机、OpenSARShip船只数据集上的平均识别准确率分别达到了98.56%, 94.11%, 86.20%。实验结果表明,该算法具备在SAR图像目标识别任务中目标本质特征提取能力,在多类别目标识别方面展现出较高的稳健性。
12
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。 雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
13
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。 合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。
14
米波雷达波束较宽,探测低仰角目标时多径信号严重影响直达信号的显著性,低仰角测角性能较差。针对此问题,该文提出了一种信号级特征博弈的多径抑制与高精度测角方法,构建一组直达信号提取器和直达信号特征检验器,直达信号提取器挖掘出多径信号湮没的直达信号,直达信号特征检验器用于鉴别、分析提取的直达信号的有效性,直达信号提取器和直达信号特征检验器相互博弈、优化,有效实现直达信号增强和多径信号抑制的效果,并利用已有的超分辨算法进行波达方向估计(DOA)。计算机仿真结果表明,所提算法不依赖于严格的目标角度信息,能够有效抑制多径信号,经典的超分辨算法在多种场景下的估计性能显著提升,且较已有的有监督学习模型而言,所提算法对未知的信号参数及多径分布模型具有更好的泛化性。 米波雷达波束较宽,探测低仰角目标时多径信号严重影响直达信号的显著性,低仰角测角性能较差。针对此问题,该文提出了一种信号级特征博弈的多径抑制与高精度测角方法,构建一组直达信号提取器和直达信号特征检验器,直达信号提取器挖掘出多径信号湮没的直达信号,直达信号特征检验器用于鉴别、分析提取的直达信号的有效性,直达信号提取器和直达信号特征检验器相互博弈、优化,有效实现直达信号增强和多径信号抑制的效果,并利用已有的超分辨算法进行波达方向估计(DOA)。计算机仿真结果表明,所提算法不依赖于严格的目标角度信息,能够有效抑制多径信号,经典的超分辨算法在多种场景下的估计性能显著提升,且较已有的有监督学习模型而言,所提算法对未知的信号参数及多径分布模型具有更好的泛化性。
15
作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。 作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。
16
传统多功能雷达仅面向目标特性优化发射资源,在动态电磁环境下面临干扰智能时变、优化模型失配的问题。因此,该文提出一种基于数据驱动的一体化发射资源管理方案,旨在通过对动态干扰信息在线感知与利用提升多功能雷达在动态电磁环境下的多目标跟踪(MTT)性能。该方案首先建立马尔可夫决策过程,数学化描述雷达被敌方截获和干扰的风险。而后将该马尔可夫决策过程感知的干扰信息耦合进MTT精度计算,一体化发射资源管理方法被设计为具有约束动作空间的优化问题。最后提出一种贪婪排序回溯算法对其进行求解。仿真结果表明,所提方法在面向动态干扰环境时不仅可以降低敌方截获概率,还能在被干扰时降低干扰对雷达的影响,改善MTT性能。 传统多功能雷达仅面向目标特性优化发射资源,在动态电磁环境下面临干扰智能时变、优化模型失配的问题。因此,该文提出一种基于数据驱动的一体化发射资源管理方案,旨在通过对动态干扰信息在线感知与利用提升多功能雷达在动态电磁环境下的多目标跟踪(MTT)性能。该方案首先建立马尔可夫决策过程,数学化描述雷达被敌方截获和干扰的风险。而后将该马尔可夫决策过程感知的干扰信息耦合进MTT精度计算,一体化发射资源管理方法被设计为具有约束动作空间的优化问题。最后提出一种贪婪排序回溯算法对其进行求解。仿真结果表明,所提方法在面向动态干扰环境时不仅可以降低敌方截获概率,还能在被干扰时降低干扰对雷达的影响,改善MTT性能。
17
针对复杂电磁环境下雷达干扰增多且靠近强干扰信号的目标信号难以准确估计的问题,该文提出了一种强间歇干扰下基于黎曼平均的稀疏波达方向(DOA)估计方法。首先,在扩展互质阵列接收数据模型下,利用在整个采样周期内目标信号持续活动而强干扰信号间歇性活动的特性,引入黎曼平均对干扰信号进行抑制;然后,将经过处理的数据协方差矩阵向量化,得到虚拟阵列接收数据;最后,在虚拟域中运用稀疏迭代协方差估计(SPICE)算法对稀疏信号进行重构,得到目标信号的DOA估计。仿真结果表明,在信号源数目未知的情况下,该方法可以对角度与强干扰信号紧密相邻的弱目标信号进行高精度的DOA估计。与现有子空间算法和稀疏重构类算法相比,所提算法在较小快拍数和低信噪比下具有更高的估计精度和角度分辨力。 针对复杂电磁环境下雷达干扰增多且靠近强干扰信号的目标信号难以准确估计的问题,该文提出了一种强间歇干扰下基于黎曼平均的稀疏波达方向(DOA)估计方法。首先,在扩展互质阵列接收数据模型下,利用在整个采样周期内目标信号持续活动而强干扰信号间歇性活动的特性,引入黎曼平均对干扰信号进行抑制;然后,将经过处理的数据协方差矩阵向量化,得到虚拟阵列接收数据;最后,在虚拟域中运用稀疏迭代协方差估计(SPICE)算法对稀疏信号进行重构,得到目标信号的DOA估计。仿真结果表明,在信号源数目未知的情况下,该方法可以对角度与强干扰信号紧密相邻的弱目标信号进行高精度的DOA估计。与现有子空间算法和稀疏重构类算法相比,所提算法在较小快拍数和低信噪比下具有更高的估计精度和角度分辨力。
18
多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。 多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。
19
传统雷达分辨能力主要利用模糊函数来进行分析,其极限分辨力一般用瑞利限表征。自然界中蝙蝠具有相当敏锐的听觉系统,学者提出谱相关及变换(SCAT)模型对蝙蝠听觉系统建模,探索了蝙蝠的超分辨原理,为突破雷达目标常规(瑞利)分辨力提供了一个可能的途径。为了进一步提高SCAT模型的分辨性能,通过抑制距离像负半轴和原点处多余的波瓣,改进了基向量解卷积法和基带SCAT (BSCT)两种蝙蝠超分辨模型,同时提出可靠分辨力概念及计算方法,统一了SCAT分辨力与瑞利分辨力的衡量标准,对比验证了可靠分辨力概念的合理性以及改进算法的有效性。仿真与实测实验表明,改进超分辨算法均获得了可观的分辨力提升,其中改进基向量解卷积法性能最佳,将原基向量解卷积法的分辨力提高约2 dB,同时将匹配滤波分辨力提高约5 dB。 传统雷达分辨能力主要利用模糊函数来进行分析,其极限分辨力一般用瑞利限表征。自然界中蝙蝠具有相当敏锐的听觉系统,学者提出谱相关及变换(SCAT)模型对蝙蝠听觉系统建模,探索了蝙蝠的超分辨原理,为突破雷达目标常规(瑞利)分辨力提供了一个可能的途径。为了进一步提高SCAT模型的分辨性能,通过抑制距离像负半轴和原点处多余的波瓣,改进了基向量解卷积法和基带SCAT (BSCT)两种蝙蝠超分辨模型,同时提出可靠分辨力概念及计算方法,统一了SCAT分辨力与瑞利分辨力的衡量标准,对比验证了可靠分辨力概念的合理性以及改进算法的有效性。仿真与实测实验表明,改进超分辨算法均获得了可观的分辨力提升,其中改进基向量解卷积法性能最佳,将原基向量解卷积法的分辨力提高约2 dB,同时将匹配滤波分辨力提高约5 dB。
20
随着电磁频谱成为现代战争的关键作战域之一,在未来军事作战中,现代雷达将面临日益复杂、灵巧和智能的电磁干扰环境。认知智能雷达具备环境主动感知、任意发射和接收设计、智能处理和资源调度等能力,可适应复杂多变的战场电磁对抗环境,是雷达技术领域重点发展的方向之一。该文将认知智能雷达从结构上分解为认知发射、认知接收、智能处理以及智能控制等4大功能模块,梳理出干扰感知、发射设计、接收设计、信号处理和资源调度等认知智能雷达每个环节的抗干扰原理,并对近几年代表性文献进行归纳总结,分析了该领域技术发展趋势,旨在为以后的技术研究提供必要的参考和依据。 随着电磁频谱成为现代战争的关键作战域之一,在未来军事作战中,现代雷达将面临日益复杂、灵巧和智能的电磁干扰环境。认知智能雷达具备环境主动感知、任意发射和接收设计、智能处理和资源调度等能力,可适应复杂多变的战场电磁对抗环境,是雷达技术领域重点发展的方向之一。该文将认知智能雷达从结构上分解为认知发射、认知接收、智能处理以及智能控制等4大功能模块,梳理出干扰感知、发射设计、接收设计、信号处理和资源调度等认知智能雷达每个环节的抗干扰原理,并对近几年代表性文献进行归纳总结,分析了该领域技术发展趋势,旨在为以后的技术研究提供必要的参考和依据。
  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 共:5页