全文下载排行
1
2024, 13(5): 941-954.
三维合成孔径雷达在测绘制图、防灾减灾等诸多领域有应用潜力,已经成为SAR的重要研究方向。为减少三维SAR的观测次数或天线阵元数量,推动三维SAR的应用和发展,中国科学院空天信息创新研究院牵头研制了微波视觉三维SAR实验系统,旨在为微波视觉SAR三维成像提供实验平台和数据。该文针对微波视觉三维SAR实验系统及其全极化数据处理方法进行介绍,涵盖了极化校正、极化相干增强、极化约束三维成像、三维融合可视化等全流程的关键步骤。基于发布的SAR微波视觉三维成像全极化数据集,给出了三维成像结果示例,验证了微波视觉三维SAR实验系统的全极化性能以及处理方法的有效性。该文发布的数据集将为SAR三维成像研究提供良好的数据条件。
三维合成孔径雷达在测绘制图、防灾减灾等诸多领域有应用潜力,已经成为SAR的重要研究方向。为减少三维SAR的观测次数或天线阵元数量,推动三维SAR的应用和发展,中国科学院空天信息创新研究院牵头研制了微波视觉三维SAR实验系统,旨在为微波视觉SAR三维成像提供实验平台和数据。该文针对微波视觉三维SAR实验系统及其全极化数据处理方法进行介绍,涵盖了极化校正、极化相干增强、极化约束三维成像、三维融合可视化等全流程的关键步骤。基于发布的SAR微波视觉三维成像全极化数据集,给出了三维成像结果示例,验证了微波视觉三维SAR实验系统的全极化性能以及处理方法的有效性。该文发布的数据集将为SAR三维成像研究提供良好的数据条件。
2
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
3
状态: , 更新:
被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。
被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。
4
2024, 13(3): 539-553.
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
5
2023, 12(4): 906-922.
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。
6
2024, 13(3): 501-524.
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
7
2023, 12(5): 923-970.
作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。
作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。
8
2024, 13(5): 1004-1018.
在雷达有源干扰识别任务中,如何实现多域浅层特征与时频域深层网络特征的稳健联合,并在极端小样本下维持高干扰识别准确率是亟待解决的关键问题。针对此问题,该文提出一种多域浅层特征引导下雷达有源干扰多模态对比识别方法。在充分提取有源干扰多域浅层特征基础上,设计优选单元自动选择有效特征,生成对应含有隐式专家知识的文本模态。将文本模态与时频变换图像分别输入文本和图像编码器,构建多模态特征对并映射至模态对齐高维空间中,利用文本特征作为锚点,通过对比学习引导同类干扰的时频图像特征聚合,以优化图像编码器表征能力,实现干扰识别特征类内更聚集、类间更分离。实验结果表明,相较于已有深浅特征直接联合,所提引导式联合方法可以实现特征差异处理,从而提高识别特征判别力和泛化力。且在极端小样本条件(每类干扰训练样本为2~3个)下,所提识别方法较先进对比方法的准确率提升9.84%,证明了该文方法的有效性与鲁棒性。
在雷达有源干扰识别任务中,如何实现多域浅层特征与时频域深层网络特征的稳健联合,并在极端小样本下维持高干扰识别准确率是亟待解决的关键问题。针对此问题,该文提出一种多域浅层特征引导下雷达有源干扰多模态对比识别方法。在充分提取有源干扰多域浅层特征基础上,设计优选单元自动选择有效特征,生成对应含有隐式专家知识的文本模态。将文本模态与时频变换图像分别输入文本和图像编码器,构建多模态特征对并映射至模态对齐高维空间中,利用文本特征作为锚点,通过对比学习引导同类干扰的时频图像特征聚合,以优化图像编码器表征能力,实现干扰识别特征类内更聚集、类间更分离。实验结果表明,相较于已有深浅特征直接联合,所提引导式联合方法可以实现特征差异处理,从而提高识别特征判别力和泛化力。且在极端小样本条件(每类干扰训练样本为2~3个)下,所提识别方法较先进对比方法的准确率提升9.84%,证明了该文方法的有效性与鲁棒性。
9
2021, 10(3): 467-484.
随着无线通信技术的发展,全球通信产业对于无线频谱的需求日益增加。在此背景下,雷达与通信的频谱共享(RCSS)引起了工业界和学术界的极大关注。其内涵不仅包括促成雷达与通信设备的同频共存、互不干扰,从而高效利用频谱,还包括设计一种兼容二者的新型一体化系统,使得该系统能同时完成信息传输与目标探测两种功能。该文围绕雷达与通信频谱共享的两种解决方案:(1)雷达与通信系统的同频共存(RCC); (2)雷达通信一体化(DFRC)系统设计,进行了深入而系统的综述。具体而言,该文首先讨论雷达通信在多个频段共存的实例,然后简要介绍了雷达通信一体化技术在多个领域的应用场景。进一步地,讨论雷达通信同频共存和一体化系统的研究进展。最后,总结全文并讨论了该领域内的若干开放问题。
随着无线通信技术的发展,全球通信产业对于无线频谱的需求日益增加。在此背景下,雷达与通信的频谱共享(RCSS)引起了工业界和学术界的极大关注。其内涵不仅包括促成雷达与通信设备的同频共存、互不干扰,从而高效利用频谱,还包括设计一种兼容二者的新型一体化系统,使得该系统能同时完成信息传输与目标探测两种功能。该文围绕雷达与通信频谱共享的两种解决方案:(1)雷达与通信系统的同频共存(RCC); (2)雷达通信一体化(DFRC)系统设计,进行了深入而系统的综述。具体而言,该文首先讨论雷达通信在多个频段共存的实例,然后简要介绍了雷达通信一体化技术在多个领域的应用场景。进一步地,讨论雷达通信同频共存和一体化系统的研究进展。最后,总结全文并讨论了该领域内的若干开放问题。
10
2024, 13(5): 985-1003.
星载合成孔径雷达(SAR)系统常受到强电磁干扰而导致成像质量下降,但现有基于图像域的干扰抑制方法易造成图像失真、纹理细节信息丢失等难题。针对上述问题,该文提出了一种基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法。首先,建立了星载SAR图像域有源压制干扰信号和图像模型;其次,设计一种基于区域特征感知的高精度干扰识别网络,利用高效通道注意力机制,提取SAR图像有源压制干扰图样特征,可以有效识别SAR图像干扰区域;然后,构建一种基于SAR图像和压制干扰特征联合学习的多元区域特征细化干扰抑制网络,将SAR图像切分为多元区域,采用多模块协同处理多元区域上的压制干扰特征,实现复杂场景条件下SAR图像有源压制干扰的精细化抑制。最后,构建SAR图像有源压制干扰仿真数据集,且采用哨兵1号实测数据进行实验验证分析。实验结果表明所提方法能有效识别和抑制星载SAR图像多种典型有源压制干扰。
星载合成孔径雷达(SAR)系统常受到强电磁干扰而导致成像质量下降,但现有基于图像域的干扰抑制方法易造成图像失真、纹理细节信息丢失等难题。针对上述问题,该文提出了一种基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法。首先,建立了星载SAR图像域有源压制干扰信号和图像模型;其次,设计一种基于区域特征感知的高精度干扰识别网络,利用高效通道注意力机制,提取SAR图像有源压制干扰图样特征,可以有效识别SAR图像干扰区域;然后,构建一种基于SAR图像和压制干扰特征联合学习的多元区域特征细化干扰抑制网络,将SAR图像切分为多元区域,采用多模块协同处理多元区域上的压制干扰特征,实现复杂场景条件下SAR图像有源压制干扰的精细化抑制。最后,构建SAR图像有源压制干扰仿真数据集,且采用哨兵1号实测数据进行实验验证分析。实验结果表明所提方法能有效识别和抑制星载SAR图像多种典型有源压制干扰。
11
2024, 13(5): 1073-1091.
实孔径雷达(RAR)通过天线扫描工作,以获取大范围探测区域内目标的观测信息。但是,由于雷达天线尺寸小,受天线衍射机理限制,与距离分辨率相比,其角分辨率通常较低。角超分辨处理方法,可利用天线方向图与目标散射间的卷积关系,通过求解卷积反演问题,以提高扫描雷达角分辨率。但是,由于测量矩阵的低秩特性,传统角超分辨处理方法,存在正则化参数选择难、迭代更新慢等问题,并且在低信噪比条件下,角超分辨处理性能明显下降。针对上述问题,该文提出了一种基于深度网络的迭代自适应实孔径扫描雷达角超分辨成像方法。首先,该文将实孔径扫描雷达的卷积反演问题转化为回波自相关矩阵反演求解问题,以改善求逆矩阵的病态性;其次,将可学习的修正矩阵引入到迭代自适应求解方法中,以实现迭代自适应求解方法与深度网络的结合;最后,通过迭代学习更新回波自相关矩阵,降低噪声对反演结果的影响,提高实孔径雷达的角分辨率。仿真及实测数据结果表明,所提方法可避免传统算法中的手动参数选择和迭代更新慢等问题。同时,由于深度网络的学习拟合能力,所提方法可在低信噪比条件下保持良好的角超分辨性能。
实孔径雷达(RAR)通过天线扫描工作,以获取大范围探测区域内目标的观测信息。但是,由于雷达天线尺寸小,受天线衍射机理限制,与距离分辨率相比,其角分辨率通常较低。角超分辨处理方法,可利用天线方向图与目标散射间的卷积关系,通过求解卷积反演问题,以提高扫描雷达角分辨率。但是,由于测量矩阵的低秩特性,传统角超分辨处理方法,存在正则化参数选择难、迭代更新慢等问题,并且在低信噪比条件下,角超分辨处理性能明显下降。针对上述问题,该文提出了一种基于深度网络的迭代自适应实孔径扫描雷达角超分辨成像方法。首先,该文将实孔径扫描雷达的卷积反演问题转化为回波自相关矩阵反演求解问题,以改善求逆矩阵的病态性;其次,将可学习的修正矩阵引入到迭代自适应求解方法中,以实现迭代自适应求解方法与深度网络的结合;最后,通过迭代学习更新回波自相关矩阵,降低噪声对反演结果的影响,提高实孔径雷达的角分辨率。仿真及实测数据结果表明,所提方法可避免传统算法中的手动参数选择和迭代更新慢等问题。同时,由于深度网络的学习拟合能力,所提方法可在低信噪比条件下保持良好的角超分辨性能。
12
2024, 13(3): 554-564.
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。
13
2024, 13(5): 1092-1108.
考虑到主动式电扫描毫米波成像系统在实际应用中成像场景要求大,分辨率要求高,但毫米波的波长短,继而造成满足奈奎斯特采样定理的均匀阵列规模及馈电网络复杂度过高,面临着成像精度、成像速度和系统成本之间的矛盾。针对以上问题,该文提出了可信推断近场稀疏综合阵列算法(CBI-SAS),在全贝叶斯学习框架下,该算法基于贝叶斯推断对复激励权值进行稀疏优化,得到复激励权值的完全统计后验概率密度函数,从而利用其高阶统计信息得到复激励权值的最优值及其置信区间和置信度。在贝叶斯推断中,为了实现较少数量的阵元合成期望波束方向图,可通过对复值激励权值引入重尾的拉普拉斯稀疏先验。然而,由于先验概率模型与参考方向图数据模型非共轭,因此需对先验模型进行分层贝叶斯建模,从而保证得到的复激励权值完全后验分布具有闭合解析解。为了避免求解完全后验分布的高维积分,采用变分贝叶斯期望最大化方法计算复激励权值后验概率密度函数,实现复激励权值的可信推断。仿真模拟实验结果显示,相较于传统稀疏阵列合成方法,所提方法阵元稀疏度更低、归一化均方误差更小、匹配方向图精度更好。此外,基于设计的稀疏阵列采集近场一维电扫和二维平面全电扫实测回波数据后,利用改进三维时域算法进行三维重建,验证了所提CBI-SAS算法在保证成像结果的同时降低了系统复杂性的优势。
考虑到主动式电扫描毫米波成像系统在实际应用中成像场景要求大,分辨率要求高,但毫米波的波长短,继而造成满足奈奎斯特采样定理的均匀阵列规模及馈电网络复杂度过高,面临着成像精度、成像速度和系统成本之间的矛盾。针对以上问题,该文提出了可信推断近场稀疏综合阵列算法(CBI-SAS),在全贝叶斯学习框架下,该算法基于贝叶斯推断对复激励权值进行稀疏优化,得到复激励权值的完全统计后验概率密度函数,从而利用其高阶统计信息得到复激励权值的最优值及其置信区间和置信度。在贝叶斯推断中,为了实现较少数量的阵元合成期望波束方向图,可通过对复值激励权值引入重尾的拉普拉斯稀疏先验。然而,由于先验概率模型与参考方向图数据模型非共轭,因此需对先验模型进行分层贝叶斯建模,从而保证得到的复激励权值完全后验分布具有闭合解析解。为了避免求解完全后验分布的高维积分,采用变分贝叶斯期望最大化方法计算复激励权值后验概率密度函数,实现复激励权值的可信推断。仿真模拟实验结果显示,相较于传统稀疏阵列合成方法,所提方法阵元稀疏度更低、归一化均方误差更小、匹配方向图精度更好。此外,基于设计的稀疏阵列采集近场一维电扫和二维平面全电扫实测回波数据后,利用改进三维时域算法进行三维重建,验证了所提CBI-SAS算法在保证成像结果的同时降低了系统复杂性的优势。
14
2020, 9(1): 1-33.
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
15
2024, 13(1): 46-67.
随着雷达目标探测需求的增加,基于压缩感知(CS)模型的稀疏恢复(SR)技术被广泛应用于雷达信号处理领域。该文首先对压缩感知的基本理论进行梳理;接着从场景稀疏以及稀疏观测两个角度介绍了雷达信号处理中的稀疏特性;然后基于稀疏特性,从空域处理、脉冲压缩、相参处理、雷达成像以及目标检测等角度概述了压缩感知技术在雷达信号处理中的应用。最后,对压缩感知技术在雷达信号处理中的应用进行了总结。
随着雷达目标探测需求的增加,基于压缩感知(CS)模型的稀疏恢复(SR)技术被广泛应用于雷达信号处理领域。该文首先对压缩感知的基本理论进行梳理;接着从场景稀疏以及稀疏观测两个角度介绍了雷达信号处理中的稀疏特性;然后基于稀疏特性,从空域处理、脉冲压缩、相参处理、雷达成像以及目标检测等角度概述了压缩感知技术在雷达信号处理中的应用。最后,对压缩感知技术在雷达信号处理中的应用进行了总结。
16
2020, 9(1): 86-106.
合成孔径雷达(SAR)得益于其全天时全天候、高分辨率的工作模式,在最近几十年吸引了全球雷达学者的目光。作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果,因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对不同的干扰样式、干扰来源、干扰散射机理、雷达天线配置、目标特性等合成孔径雷达抗干扰及高分辨成像的关键要素和主要思路进行了总结梳理,并依照干扰对抗算法的本质,对近些年代表性的合成孔径雷达对抗压制干扰和欺骗干扰算法的文献进行介绍和归纳,旨在为以后的研究提供一定的参考。
合成孔径雷达(SAR)得益于其全天时全天候、高分辨率的工作模式,在最近几十年吸引了全球雷达学者的目光。作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果,因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对不同的干扰样式、干扰来源、干扰散射机理、雷达天线配置、目标特性等合成孔径雷达抗干扰及高分辨成像的关键要素和主要思路进行了总结梳理,并依照干扰对抗算法的本质,对近些年代表性的合成孔径雷达对抗压制干扰和欺骗干扰算法的文献进行介绍和归纳,旨在为以后的研究提供一定的参考。
17
2022, 11(3): 418-433.
雷达辐射源信号分选是雷达信号侦察的关键技术之一,同时也是战场态势感知的重要环节。该文系统梳理了雷达辐射源信号分选的主流技术,从基于脉间调制特征、基于脉内调制特征、基于机器学习的雷达辐射源信号分选3个角度阐述了目前雷达辐射源信号分选工作的主要研究方向及进展,并重点阐释了基于深度神经网络、数据流聚类等最新分选技术的原理与特点。最后,对现有雷达辐射源信号分选技术的不足进行了总结并对未来趋势进行了预测。
雷达辐射源信号分选是雷达信号侦察的关键技术之一,同时也是战场态势感知的重要环节。该文系统梳理了雷达辐射源信号分选的主流技术,从基于脉间调制特征、基于脉内调制特征、基于机器学习的雷达辐射源信号分选3个角度阐述了目前雷达辐射源信号分选工作的主要研究方向及进展,并重点阐释了基于深度神经网络、数据流聚类等最新分选技术的原理与特点。最后,对现有雷达辐射源信号分选技术的不足进行了总结并对未来趋势进行了预测。
18
2023, 12(3): 471-499.
多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。
多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。
19
2021, 10(1): 173-182.
针对雷达海上目标探测关键技术攻关对雷达实测数据的迫切需求,2019年提出了“雷达对海探测数据共享计划”。该计划旨在通过开展雷达试验获取数据,公开共享。2020年度该计划继续推进,开展了雷达目标RCS定标、不同海况海杂波与目标探测、海上机动目标检测跟踪3个方面的多次试验,获取了不同距离处不锈钢球定标体的雷达慢速扫描模式测量数据、不同方位下海杂波凝视模式测量数据、海上目标凝视模式探测数据、海上机动快艇雷达扫描模式测量数据,并同步获取了风和浪要素数据、目标AIS数据、可见光/红外数据等配合传感器数据。
针对雷达海上目标探测关键技术攻关对雷达实测数据的迫切需求,2019年提出了“雷达对海探测数据共享计划”。该计划旨在通过开展雷达试验获取数据,公开共享。2020年度该计划继续推进,开展了雷达目标RCS定标、不同海况海杂波与目标探测、海上机动目标检测跟踪3个方面的多次试验,获取了不同距离处不锈钢球定标体的雷达慢速扫描模式测量数据、不同方位下海杂波凝视模式测量数据、海上目标凝视模式探测数据、海上机动快艇雷达扫描模式测量数据,并同步获取了风和浪要素数据、目标AIS数据、可见光/红外数据等配合传感器数据。
20
极化合成孔径雷达(PolSAR)使用二维脉冲压缩技术获取高分辨力极化信息图像,目前已广泛应用在军事侦察、地形测绘、环境与自然灾害监视、海上舰船目标检测等领域。如何解决复杂海杂波的建模与参数估计、慢小目标检测、密集目标检测等问题仍然是当前PolSAR图像舰船目标检测的难点。该文归纳梳理了PolSAR图像舰船目标检测的4类主流方法:极化特征目标检测方法、慢速运动目标检测方法、舰船目标尾迹检测方法以及基于深度学习的目标检测方法等,同时给出了各类方法所存在的问题以及可能的解决方法,并预测了其未来研究重点和发展趋势。
极化合成孔径雷达(PolSAR)使用二维脉冲压缩技术获取高分辨力极化信息图像,目前已广泛应用在军事侦察、地形测绘、环境与自然灾害监视、海上舰船目标检测等领域。如何解决复杂海杂波的建模与参数估计、慢小目标检测、密集目标检测等问题仍然是当前PolSAR图像舰船目标检测的难点。该文归纳梳理了PolSAR图像舰船目标检测的4类主流方法:极化特征目标检测方法、慢速运动目标检测方法、舰船目标尾迹检测方法以及基于深度学习的目标检测方法等,同时给出了各类方法所存在的问题以及可能的解决方法,并预测了其未来研究重点和发展趋势。
- 首页
- 上一页
- 1
- 2
- 3
- 4
- 5
- 下一页
- 末页
- 共:5页