全文下载排行
1
2024, 13(3): 501-524.
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
2
2023, 12(4): 906-922.
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220, A320/321, A330, ARJ21, Boeing737, Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。
3
2024, 13(3): 539-553.
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
4
2024, 13(3): 554-564.
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。
5
2024, 13(4): 791-806.
非视距(NLOS)三维成像雷达是一种利用多径散射回波探测隐藏目标的新技术,但存在多路径回波分离、孔径遮蔽缩减、反射面相位误差等问题,传统视距雷达三维成像方法难以实现非视距隐藏目标的高精度成像。为此,该文提出了一种基于迭代稀疏重构的非视距隐藏目标三维成像雷达精确成像方法(NSIR)。在该方法中,首先构建非视距毫米波雷达三维成像的多径信号模型,利用视距/非视距回波特性,通过模型驱动方法提取非视距隐藏目标的多路径回波,实现视距/非视距回波信号的分离;其次,构建耦合多径反射面相位误差的全变分多约束隐藏目标重构优化问题,利用分裂Bregman全变分(TV)正则化算子和最小均方误差的相位误差估计准则,联合求解多约束最优化问题,实现非视距目标的精确成像及轮廓重构。最后,搭建平面扫描的三维成像雷达试验平台,完成了拐角非视距场景下刀具、铁架等目标的实验验证,验证了非视距毫米波三维成像雷达隐匿目标探测能力及该文方法的有效性。
非视距(NLOS)三维成像雷达是一种利用多径散射回波探测隐藏目标的新技术,但存在多路径回波分离、孔径遮蔽缩减、反射面相位误差等问题,传统视距雷达三维成像方法难以实现非视距隐藏目标的高精度成像。为此,该文提出了一种基于迭代稀疏重构的非视距隐藏目标三维成像雷达精确成像方法(NSIR)。在该方法中,首先构建非视距毫米波雷达三维成像的多径信号模型,利用视距/非视距回波特性,通过模型驱动方法提取非视距隐藏目标的多路径回波,实现视距/非视距回波信号的分离;其次,构建耦合多径反射面相位误差的全变分多约束隐藏目标重构优化问题,利用分裂Bregman全变分(TV)正则化算子和最小均方误差的相位误差估计准则,联合求解多约束最优化问题,实现非视距目标的精确成像及轮廓重构。最后,搭建平面扫描的三维成像雷达试验平台,完成了拐角非视距场景下刀具、铁架等目标的实验验证,验证了非视距毫米波三维成像雷达隐匿目标探测能力及该文方法的有效性。
6
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
7
2024, 13(5): 1123-1133.
为了降低阵列互耦对多输入多输出(MIMO)雷达波达角度(DOA)估计性能的影响,实现少量快拍条件下的目标角度估计,该文提出了基于迭代最小化稀疏学习(SLIM)算法的互耦校正和目标角度估计算法。所提算法利用目标回波信号的空域稀疏性,通过迭代优化算法估计了MIMO雷达发射和接收阵列的阵元互耦系数,以及目标稀疏空间谱。该算法无需设置超参数,且具有良好的收敛特性。仿真结果表明,当MIMO雷达发射和接收阵列存在互耦时,如果目标角度间隔较小,所提算法能够在较高信噪比条件下基于少量快拍高精度地估计目标角度;如果目标角度间隔较大,则在较低信噪比和少量快拍条件下仍有较高的角度估计精度。
为了降低阵列互耦对多输入多输出(MIMO)雷达波达角度(DOA)估计性能的影响,实现少量快拍条件下的目标角度估计,该文提出了基于迭代最小化稀疏学习(SLIM)算法的互耦校正和目标角度估计算法。所提算法利用目标回波信号的空域稀疏性,通过迭代优化算法估计了MIMO雷达发射和接收阵列的阵元互耦系数,以及目标稀疏空间谱。该算法无需设置超参数,且具有良好的收敛特性。仿真结果表明,当MIMO雷达发射和接收阵列存在互耦时,如果目标角度间隔较小,所提算法能够在较高信噪比条件下基于少量快拍高精度地估计目标角度;如果目标角度间隔较大,则在较低信噪比和少量快拍条件下仍有较高的角度估计精度。
8
2024, 13(4): 731-746.
传统手持或车载穿墙雷达由于架设高度受限,无法对城市高层建筑内部目标进行透视成像,无人机载穿墙雷达具有灵活机动、高效便捷、无高度限制等优势,可对城市高层楼宇进行大范围三维穿透探测。三维层析合成孔径雷达(SAR)成像广泛采用多基线扫描模式,以获得高度向高分辨能力,但存在高度向空域欠采样导致的栅瓣问题。对此,该文提出一种基于遗传算法的无人机载穿墙三维SAR航迹规划方法,通过非均匀化飞行航迹,削弱周期性的雷达回波能量叠加,从而抑制栅瓣、实现更优的成像质量。该算法结合飞行距离与无人机载穿墙雷达成像质量的内在关系,建立了无人机航迹规划代价函数;利用遗传算法对3种典型的无人机飞行轨迹关键控制点进行基因编码,并进行基因杂交、变异等以优化种群与个体;最终通过最小化代价函数,分别筛选出3种典型飞行模式下的最优飞行航迹。仿真和实测数据的三维成像结果表明:相较于传统等间距多基线飞行模式,所提方法显著抑制了成像目标的栅瓣效应;此外,无人机斜线飞行的航迹长度明显缩短,提高了无人机载穿墙SAR成像效率。
传统手持或车载穿墙雷达由于架设高度受限,无法对城市高层建筑内部目标进行透视成像,无人机载穿墙雷达具有灵活机动、高效便捷、无高度限制等优势,可对城市高层楼宇进行大范围三维穿透探测。三维层析合成孔径雷达(SAR)成像广泛采用多基线扫描模式,以获得高度向高分辨能力,但存在高度向空域欠采样导致的栅瓣问题。对此,该文提出一种基于遗传算法的无人机载穿墙三维SAR航迹规划方法,通过非均匀化飞行航迹,削弱周期性的雷达回波能量叠加,从而抑制栅瓣、实现更优的成像质量。该算法结合飞行距离与无人机载穿墙雷达成像质量的内在关系,建立了无人机航迹规划代价函数;利用遗传算法对3种典型的无人机飞行轨迹关键控制点进行基因编码,并进行基因杂交、变异等以优化种群与个体;最终通过最小化代价函数,分别筛选出3种典型飞行模式下的最优飞行航迹。仿真和实测数据的三维成像结果表明:相较于传统等间距多基线飞行模式,所提方法显著抑制了成像目标的栅瓣效应;此外,无人机斜线飞行的航迹长度明显缩短,提高了无人机载穿墙SAR成像效率。
9
2024, 13(2): 307-330.
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。
10
2023, 12(5): 923-970.
作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。
作为高级驾驶辅助系统(ADAS)核心之一的汽车毫米波雷达因其具有全天时、全天候、小型化、集成度高等优势,提供了关键的感知能力,逐渐成为国内外学者及厂商关注的焦点。汽车毫米波雷达以汽车作为平台,其核心性能指标主要有距离、速度、角度分辨率、视场范围等,此外,精度、成本、实时性、检测性能和体积也是需要考虑的关键问题。日益提升的性能需求给汽车毫米波雷达信号处理带来了诸多挑战。为了改进雷达性能以满足更严格的要求,雷达的信号处理技术是至关重要的一环。获取致密的雷达点云、生成精确的雷达成像结果、对抗多个雷达系统间的相互干扰是其中的重点,也是后续跟踪、识别等应用的基础。因此,该文从汽车毫米波雷达的实际应用出发,立足于信号处理的关键技术,总结了相关研究成果,主要讨论与车载毫米波雷达相关的以下主题: (1)点云成像处理;(2)合成孔径雷达成像处理;(3)互扰抑制。文章最后对国内外研究现状进行了总结,并展望未来汽车毫米波雷达的发展趋势,希望能给相关领域读者以启发。
11
2020, 9(1): 1-33.
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
12
2024, 13(3): 525-538.
地物精细分类是合成孔径雷达(SAR)的主要应用方向之一。在多波段全极化SAR工作模式下,可充分获取目标不同波段信息和极化响应特征,有望提高目标分类精度。然而国内外现有的数据集仅有个别波段、少数地区、少量样本的低分辨率全极化分类数据。为推动多波段全极化SAR分类应用的发展,在高分航空观测系统应用校飞与验证项目支持下,利用多维度SAR在海南的校飞数据构建了一个样本量充分大、地物类别较为丰富、分类可靠性较高的多波段全极化精细分类数据集。该文概述了该数据集的构成,给出了发布数据(MPOLSAR-1.0)的信息描述方式、数据集制作流程和方法,并分别基于极化特征分类方法和经典机器学习分类方法给出了初步的分类实验结果,为该数据集的共享和应用提供支撑。
地物精细分类是合成孔径雷达(SAR)的主要应用方向之一。在多波段全极化SAR工作模式下,可充分获取目标不同波段信息和极化响应特征,有望提高目标分类精度。然而国内外现有的数据集仅有个别波段、少数地区、少量样本的低分辨率全极化分类数据。为推动多波段全极化SAR分类应用的发展,在高分航空观测系统应用校飞与验证项目支持下,利用多维度SAR在海南的校飞数据构建了一个样本量充分大、地物类别较为丰富、分类可靠性较高的多波段全极化精细分类数据集。该文概述了该数据集的构成,给出了发布数据(MPOLSAR-1.0)的信息描述方式、数据集制作流程和方法,并分别基于极化特征分类方法和经典机器学习分类方法给出了初步的分类实验结果,为该数据集的共享和应用提供支撑。
13
2023, 12(3): 471-499.
多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。
多雷达协同探测技术通过有机地联动多部雷达,形成广域分布的探测构型,可充分获取空间、频率分集等探测增益,显著提升雷达系统的目标探测性能和电磁干扰环境顽存能力,是雷达技术领域重点发展的方向之一。近年来,国内外针对多雷达协同探测技术开展了广泛研究,在系统架构设计、信号处理、资源调度等技术方向积累了诸多研究成果。该文首先总结了多雷达协同探测技术的概念内涵,阐述了其基于信号处理闭环反馈的协同机制,分析了其实现过程中所面临的技术挑战;随后,聚焦于认知跟踪与资源调度算法,从内涵特点、系统构成、跟踪模型、信息融合、性能评估、调度算法、优化准则、认知流程等方面进行了技术总结,并分析了协同认知跟踪及其与系统资源调度的关系;接着从雷达资源要素、信息融合架构、跟踪性能指标、资源调度模型、复杂任务场景5个方面梳理和总结了协同认知跟踪与资源调度算法近年来的研究进展;最后总结全文并展望了该领域未来技术的发展趋势,旨在为后续的相关技术研究提供参考。
14
2022, 11(6): 974-1002.
随着电磁频谱成为现代战争的关键作战域之一,在未来军事作战中,现代雷达将面临日益复杂、灵巧和智能的电磁干扰环境。认知智能雷达具备环境主动感知、任意发射和接收设计、智能处理和资源调度等能力,可适应复杂多变的战场电磁对抗环境,是雷达技术领域重点发展的方向之一。该文将认知智能雷达从结构上分解为认知发射、认知接收、智能处理以及智能控制等4大功能模块,梳理出干扰感知、发射设计、接收设计、信号处理和资源调度等认知智能雷达每个环节的抗干扰原理,并对近几年代表性文献进行归纳总结,分析了该领域技术发展趋势,旨在为以后的技术研究提供必要的参考和依据。
随着电磁频谱成为现代战争的关键作战域之一,在未来军事作战中,现代雷达将面临日益复杂、灵巧和智能的电磁干扰环境。认知智能雷达具备环境主动感知、任意发射和接收设计、智能处理和资源调度等能力,可适应复杂多变的战场电磁对抗环境,是雷达技术领域重点发展的方向之一。该文将认知智能雷达从结构上分解为认知发射、认知接收、智能处理以及智能控制等4大功能模块,梳理出干扰感知、发射设计、接收设计、信号处理和资源调度等认知智能雷达每个环节的抗干扰原理,并对近几年代表性文献进行归纳总结,分析了该领域技术发展趋势,旨在为以后的技术研究提供必要的参考和依据。
15
2024, 13(4): 917-928.
在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。
在实际应用中,空时自适应处理(STAP)算法的性能受限于足够多独立同分布(IID)样本的获取。然而,目前可有效减少IID样本需求的算法仍面临一些问题。针对这些问题,该文融合数据驱动和模型驱动思想,构建了具有明确数学含义的多模块深度卷积神经网络(MDCNN),实现了小样本条件下对杂波协方差矩阵快速、准确、稳定估计。所构建MDCNN网络由映射模块、数据模块、先验模块和超参数模块组成。其中,前后端映射模块分别对应数据的预处理和后处理;单组数据模块和先验模块共同完成一次迭代优化,网络主体由多组数据模块和先验模块构成,可实现多次等效迭代优化;超参数模块则用来调整等效迭代中可训练参数。上述子模块均具有明确数学表述和物理含义,因此所构造网络具有良好的可解释性。实测数据处理结果表明,在实际非均匀杂波环境下该文所提方法杂波抑制性能优于现有典型小样本STAP方法,且运算时间较后者大幅降低。
16
海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在“超杂波检测”的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制(“双高”体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。
海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在“超杂波检测”的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制(“双高”体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。
17
2022, 11(3): 418-433.
雷达辐射源信号分选是雷达信号侦察的关键技术之一,同时也是战场态势感知的重要环节。该文系统梳理了雷达辐射源信号分选的主流技术,从基于脉间调制特征、基于脉内调制特征、基于机器学习的雷达辐射源信号分选3个角度阐述了目前雷达辐射源信号分选工作的主要研究方向及进展,并重点阐释了基于深度神经网络、数据流聚类等最新分选技术的原理与特点。最后,对现有雷达辐射源信号分选技术的不足进行了总结并对未来趋势进行了预测。
雷达辐射源信号分选是雷达信号侦察的关键技术之一,同时也是战场态势感知的重要环节。该文系统梳理了雷达辐射源信号分选的主流技术,从基于脉间调制特征、基于脉内调制特征、基于机器学习的雷达辐射源信号分选3个角度阐述了目前雷达辐射源信号分选工作的主要研究方向及进展,并重点阐释了基于深度神经网络、数据流聚类等最新分选技术的原理与特点。最后,对现有雷达辐射源信号分选技术的不足进行了总结并对未来趋势进行了预测。
18
2024, 13(5): 985-1003.
星载合成孔径雷达(SAR)系统常受到强电磁干扰而导致成像质量下降,但现有基于图像域的干扰抑制方法易造成图像失真、纹理细节信息丢失等难题。针对上述问题,该文提出了一种基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法。首先,建立了星载SAR图像域有源压制干扰信号和图像模型;其次,设计一种基于区域特征感知的高精度干扰识别网络,利用高效通道注意力机制,提取SAR图像有源压制干扰图样特征,可以有效识别SAR图像干扰区域;然后,构建一种基于SAR图像和压制干扰特征联合学习的多元区域特征细化干扰抑制网络,将SAR图像切分为多元区域,采用多模块协同处理多元区域上的压制干扰特征,实现复杂场景条件下SAR图像有源压制干扰的精细化抑制。最后,构建SAR图像有源压制干扰仿真数据集,且采用哨兵1号实测数据进行实验验证分析。实验结果表明所提方法能有效识别和抑制星载SAR图像多种典型有源压制干扰。
星载合成孔径雷达(SAR)系统常受到强电磁干扰而导致成像质量下降,但现有基于图像域的干扰抑制方法易造成图像失真、纹理细节信息丢失等难题。针对上述问题,该文提出了一种基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法。首先,建立了星载SAR图像域有源压制干扰信号和图像模型;其次,设计一种基于区域特征感知的高精度干扰识别网络,利用高效通道注意力机制,提取SAR图像有源压制干扰图样特征,可以有效识别SAR图像干扰区域;然后,构建一种基于SAR图像和压制干扰特征联合学习的多元区域特征细化干扰抑制网络,将SAR图像切分为多元区域,采用多模块协同处理多元区域上的压制干扰特征,实现复杂场景条件下SAR图像有源压制干扰的精细化抑制。最后,构建SAR图像有源压制干扰仿真数据集,且采用哨兵1号实测数据进行实验验证分析。实验结果表明所提方法能有效识别和抑制星载SAR图像多种典型有源压制干扰。
19
2024, 13(1): 46-67.
随着雷达目标探测需求的增加,基于压缩感知(CS)模型的稀疏恢复(SR)技术被广泛应用于雷达信号处理领域。该文首先对压缩感知的基本理论进行梳理;接着从场景稀疏以及稀疏观测两个角度介绍了雷达信号处理中的稀疏特性;然后基于稀疏特性,从空域处理、脉冲压缩、相参处理、雷达成像以及目标检测等角度概述了压缩感知技术在雷达信号处理中的应用。最后,对压缩感知技术在雷达信号处理中的应用进行了总结。
随着雷达目标探测需求的增加,基于压缩感知(CS)模型的稀疏恢复(SR)技术被广泛应用于雷达信号处理领域。该文首先对压缩感知的基本理论进行梳理;接着从场景稀疏以及稀疏观测两个角度介绍了雷达信号处理中的稀疏特性;然后基于稀疏特性,从空域处理、脉冲压缩、相参处理、雷达成像以及目标检测等角度概述了压缩感知技术在雷达信号处理中的应用。最后,对压缩感知技术在雷达信号处理中的应用进行了总结。
20
2024, 13(1): 1-22.
后向投影(BP)算法是合成孔径雷达成像算法发展的重要方向之一。然而,由于BP算法具有较大的计算量,阻碍了其在工程应用上的发展。因此,近年来如何有效地提高BP算法的运算效率受到了广泛的重视。该文讨论了基于多种成像面坐标系的快速BP算法,包括距离-方位平面坐标系、地平面坐标系和非欧氏坐标系。该文首先简要介绍了原始BP算法的原理和不同坐标系对加速BP算法的影响,并对BP算法的发展历程进行梳理。然后讨论了基于不同成像面坐标系的快速BP算法的研究进展,并重点介绍了作者所在研究团队近年来在快速BP成像方面完成的研究工作。最后介绍了快速BP算法在工程上的应用,并展望了未来快速BP成像算法的研究发展趋势。
后向投影(BP)算法是合成孔径雷达成像算法发展的重要方向之一。然而,由于BP算法具有较大的计算量,阻碍了其在工程应用上的发展。因此,近年来如何有效地提高BP算法的运算效率受到了广泛的重视。该文讨论了基于多种成像面坐标系的快速BP算法,包括距离-方位平面坐标系、地平面坐标系和非欧氏坐标系。该文首先简要介绍了原始BP算法的原理和不同坐标系对加速BP算法的影响,并对BP算法的发展历程进行梳理。然后讨论了基于不同成像面坐标系的快速BP算法的研究进展,并重点介绍了作者所在研究团队近年来在快速BP成像方面完成的研究工作。最后介绍了快速BP算法在工程上的应用,并展望了未来快速BP成像算法的研究发展趋势。
- 首页
- 上一页
- 1
- 2
- 3
- 4
- 5
- 下一页
- 末页
- 共:5页