多旋翼无人机载4D成像雷达生命体征感知方法

李志 唐成垚 戴永鹏 金添

李志, 唐成垚, 戴永鹏, 等. 多旋翼无人机载4D成像雷达生命体征感知方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24128
引用本文: 李志, 唐成垚, 戴永鹏, 等. 多旋翼无人机载4D成像雷达生命体征感知方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24128
LI Zhi, TANG Chengyao, DAI Yongpeng, et al. Multirotor UAV-borne vital signs sensing using 4D imaging radar[J]. Journal of Radars, in press. doi: 10.12000/JR24128
Citation: LI Zhi, TANG Chengyao, DAI Yongpeng, et al. Multirotor UAV-borne vital signs sensing using 4D imaging radar[J]. Journal of Radars, in press. doi: 10.12000/JR24128

多旋翼无人机载4D成像雷达生命体征感知方法

DOI: 10.12000/JR24128
基金项目: 重庆市自然科学基金(CSTB2024NSCQ-MSX1143)
详细信息
    作者简介:

    李 志,博士,讲师,主要研究方向为雷达成像、雷达信号处理与机器学习

    唐成垚,博士生,主要研究方向为穿墙雷达信号处理与机器学习

    戴永鹏,博士,讲师,主要研究方向为MIMO阵列雷达成像与图像增强

    金 添,教授,主要研究方向为新体制雷达系统、智能感知与处理

    通讯作者:

    金添 tianjin@nudt.edu.cn

  • 责任主编:郭世盛 Corresponding Editor: GUO Shisheng
  • 中图分类号: TN957

Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar

Funds: Natural Science Foundation of Chongqing China (CSTB2024NSCQ-MSX1143)
More Information
  • 摘要: 无人机载雷达具有高机动灵活的特点,可解决传统非接触式生命体征感知中存在的探测范围小和探测场景受限等问题。该项研究工作将4D成像雷达搭载于多旋翼无人机上,提出一种基于点云配准的无人机载4D雷达生命体征感知方法。该方法通过对雷达点云进行配准和运动补偿,消除无人机在悬停状态时的运动误差干扰,进而对齐人体目标后实现生命体征信号的获取。仿真实验结果表明该方法能够对齐4D成像雷达点云序列,有效抑制无人机的运动干扰,从而准确提取人体目标的呼吸和心跳信号,为无人机载非接触式生命体征感知提供了一种新的技术途径。

     

  • 图  1  无人机载4D雷达生命体征感知场景示意

    Figure  1.  Vital signs sensing principle of the UAV-borne 4D radar

    图  2  无人机载4D成像雷达生命体征感知信号处理流程

    Figure  2.  Signal processing flow of vital signs sensing with the UAV-borne 4D radar

    图  3  雷达平台运动分析

    Figure  3.  Motion analysis of the UAV-borne 4D radar platform

    图  4  运动补偿方法信号处理流程

    Figure  4.  Signal processing flow of the proposed motion compensation method

    图  5  雷达系统结构与MIMO天线等效虚拟阵列

    Figure  5.  Structure of the UAV-borne 4D radar system and its equivalent virtual array

    图  6  仿真实验场景

    Figure  6.  Simulated experimental scene

    图  7  点云配准前和配准后结果

    Figure  7.  Results before and after point cloud registration

    图  8  雷达运动轨迹估计

    Figure  8.  Motion trajectory estimation of the UAV-borne 4D radar

    图  9  运动补偿前提取的人体目标生命体征信号结果

    Figure  9.  Extracted vital sign signals of human target before motion compensation

    图  10  运动补偿后提取的人体目标生命体征信号结果

    Figure  10.  Extracted vital sign signals of human target after motion compensation

    表  1  无人机载4D成像雷达主要参数

    Table  1.   Key parameters of the UAV-borne 4D radar prototype

    参数 参数值
    中心频率 67 GHz
    信号带宽 1 GHz
    发射功率 –10 dBm
    帧率 30 Hz
    阵元数量 20 Tx, 20 Rx
    阵列尺寸 6 cm × 6 cm
    下载: 导出CSV

    表  2  六自由度估计误差统计

    Table  2.   Estimation error statistics of the 6DOF

    指标 MEAN RMSE
    垂直偏移(m) 0.0031 0.0140
    水平偏移X (m) 0.0069 0.0261
    水平偏移Y (m) 0.0071 0.0249
    俯仰角(°) 0.0372 0.1108
    偏航角(°) 0.0515 0.1932
    翻滚角(°) 0.0355 0.1099
    下载: 导出CSV
  • [1] LI Changzhi. Vital-sign monitoring on the go[J]. Nature Electronics, 2019, 2(6): 219–220. doi: 10.1038/s41928-019-0260-z.
    [2] RONG Yu, GUTIERREZ R, MISHRA K V, et al. Noncontact vital sign detection with UAV-borne radars: An overview of recent advances[J]. IEEE Vehicular Technology Magazine, 2021, 16(3): 118–128. doi: 10.1109/MVT.2021.3086442.
    [3] ISLAM S M M, OBA L, LUBECKE L, et al. Contactless vital sign monitoring with unmanned aerial vehicle-borne radar[J]. IEEE Potentials, 2023, 42(1): 27–34. doi: 10.1109/MPOT.2021.3138726.
    [4] STOCKEL P, WALLRATH P, HERSCHEL R, et al. Motion compensation in six degrees of freedom for a MIMO radar mounted on a hovering UAV[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5791–5801. doi: 10.1109/TAES.2023.3266181.
    [5] 李悦丽, 李泽森, 王建, 等. 多旋翼无人机载SAR的视线运动误差修正与补偿[J]. 雷达学报, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.

    LI Yueli, LI Zesen, WANG Jian, et al. Modification and compensation of the line-of-sight motion error for multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.
    [6] CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
    [7] NAKATA R H, HARUNA B, YAMAGUCHI T, et al. Motion compensation for an unmanned aerial vehicle remote radar life sensor[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8(2): 329–337. doi: 10.1109/JETCAS.2018.2821624.
    [8] ISLAM S M M, LUBECKE L C, GRADO C, et al. An adaptive filter technique for platform motion compensation in unmanned aerial vehicle based remote life sensing radar[C]. 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 2021: 937–940. doi: 10.23919/EuMC48046.2021.9338011.
    [9] RONG Yu, HERSCHFELT A, HOLTOM J, et al. Cardiac and respiratory sensing from a hovering UAV radar platform[C]. 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021: 541–545. doi: 10.1109/SSP49050.2021.9513771.
    [10] JING Yu, QI Fugui, YANG Fang, et al. Respiration detection of ground injured human target using UWB radar mounted on a hovering UAV[J]. Drones, 2022, 6(9): 235. doi: 10.3390/drones6090235.
    [11] MA Junqi, CHANG Zhaoxin, ZHANG Fusang, et al. Mobi2Sense: Enabling wireless sensing under device motions[C]. The 28th Annual International Conference on Mobile Computing and Networking, Sydney, Australia, 2022: 766–768. doi: 10.1145/3495243.3558748.
    [12] ZHANG Binbin, ZHANG Dongheng, SONG Ruiyuan, et al. RF-search: Searching unconscious victim in smoke scenes with RF-enabled drone[C]. The 29th Annual International Conference on Mobile Computing and Networking, Madrid, Spain, 2023: 91. doi: 10.1145/3570361.3613305.
    [13] LI Zhi, JIN Tian, HU Xikun, et al. Remote respiratory and cardiac motion patterns separation with 4D imaging radars[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(6): 2717–2728. doi: 10.1109/JBHI.2022.3171554.
    [14] LI Zhi, JIN Tian, LI Lianlin, et al. Spatiotemporal processing for remote sensing of trapped victims using 4-D imaging radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5103412. doi: 10.1109/TGRS.2023.3266039.
    [15] TOSTI F, GENNARELLI G, LANTINI L, et al. The use of GPR and microwave tomography for the assessment of the internal structure of hollow trees[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2002314. doi: 10.1109/TGRS.2021.3115408.
    [16] DOERRY A W, BISHOP E E, and MILLER J A. Basics of backprojection algorithm for processing synthetic aperture radar images[R]. SAND2016-1682, 2016: 19–50.
    [17] LI Zhi, JIN Tian, DAI Yongpeng, et al. Through-wall multi-subject localization and vital signs monitoring using UWB MIMO imaging radar[J]. Remote Sensing, 2021, 13(15): 2905. doi: 10.3390/rs13152905.
    [18] WANG Jingyu, WANG Xiang, CHEN Lei, et al. Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(1): 145–153. doi: 10.1109/TIM.2013.2277530.
    [19] RAMACHANDRAN G and SINGH M. Three-dimensional reconstruction of cardiac displacement patterns on the chest wall during the P, QRS and T-segments of the ECG by laser speckle inteferometry[J]. Medical and Biological Engineering and Computing, 1989, 27(5): 525–530. doi: 10.1007/BF02441473.
    [20] ZHANG Juyong, YAO Yuxin, and DENG Bailin. Fast and robust iterative closest point[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3450–3466. doi: 10.1109/TPAMI.2021.3054619.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  35
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-09-25
  • 网络出版日期:  2024-10-16

目录

    /

    返回文章
    返回