引用排行
(被引数据来源于全网,每月更新)
1
2024, 13(1): 1-22.
后向投影(BP)算法是合成孔径雷达成像算法发展的重要方向之一。然而,由于BP算法具有较大的计算量,阻碍了其在工程应用上的发展。因此,近年来如何有效地提高BP算法的运算效率受到了广泛的重视。该文讨论了基于多种成像面坐标系的快速BP算法,包括距离-方位平面坐标系、地平面坐标系和非欧氏坐标系。该文首先简要介绍了原始BP算法的原理和不同坐标系对加速BP算法的影响,并对BP算法的发展历程进行梳理。然后讨论了基于不同成像面坐标系的快速BP算法的研究进展,并重点介绍了作者所在研究团队近年来在快速BP成像方面完成的研究工作。最后介绍了快速BP算法在工程上的应用,并展望了未来快速BP成像算法的研究发展趋势。
后向投影(BP)算法是合成孔径雷达成像算法发展的重要方向之一。然而,由于BP算法具有较大的计算量,阻碍了其在工程应用上的发展。因此,近年来如何有效地提高BP算法的运算效率受到了广泛的重视。该文讨论了基于多种成像面坐标系的快速BP算法,包括距离-方位平面坐标系、地平面坐标系和非欧氏坐标系。该文首先简要介绍了原始BP算法的原理和不同坐标系对加速BP算法的影响,并对BP算法的发展历程进行梳理。然后讨论了基于不同成像面坐标系的快速BP算法的研究进展,并重点介绍了作者所在研究团队近年来在快速BP成像方面完成的研究工作。最后介绍了快速BP算法在工程上的应用,并展望了未来快速BP成像算法的研究发展趋势。
2
2024, 13(1): 87-96.
该文提出了一种新的多模态协同感知框架,通过融合激光雷达和相机传感器的输入来增强自动驾驶感知系统的性能。首先,构建了一个多模态融合的基线系统,能有效地整合来自激光雷达和相机传感器的数据,为后续研究提供了可比较的基准。其次,在多车协同环境下,探索了多种流行的特征融合策略,包括通道级拼接、元素级求和,以及基于Transformer的融合方法,以此来融合来自不同类型传感器的特征并评估它们对模型性能的影响。最后,使用大规模公开仿真数据集OPV2V进行了一系列实验和评估。实验结果表明,基于注意力机制的多模态融合方法在协同感知任务中展现出更优越的性能和更强的鲁棒性,能够提供更精确的目标检测结果,从而增加了自动驾驶系统的安全性和可靠性。
该文提出了一种新的多模态协同感知框架,通过融合激光雷达和相机传感器的输入来增强自动驾驶感知系统的性能。首先,构建了一个多模态融合的基线系统,能有效地整合来自激光雷达和相机传感器的数据,为后续研究提供了可比较的基准。其次,在多车协同环境下,探索了多种流行的特征融合策略,包括通道级拼接、元素级求和,以及基于Transformer的融合方法,以此来融合来自不同类型传感器的特征并评估它们对模型性能的影响。最后,使用大规模公开仿真数据集OPV2V进行了一系列实验和评估。实验结果表明,基于注意力机制的多模态融合方法在协同感知任务中展现出更优越的性能和更强的鲁棒性,能够提供更精确的目标检测结果,从而增加了自动驾驶系统的安全性和可靠性。
3
2024, 13(2): 307-330.
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。
4
2024, 13(1): 46-67.
随着雷达目标探测需求的增加,基于压缩感知(CS)模型的稀疏恢复(SR)技术被广泛应用于雷达信号处理领域。该文首先对压缩感知的基本理论进行梳理;接着从场景稀疏以及稀疏观测两个角度介绍了雷达信号处理中的稀疏特性;然后基于稀疏特性,从空域处理、脉冲压缩、相参处理、雷达成像以及目标检测等角度概述了压缩感知技术在雷达信号处理中的应用。最后,对压缩感知技术在雷达信号处理中的应用进行了总结。
随着雷达目标探测需求的增加,基于压缩感知(CS)模型的稀疏恢复(SR)技术被广泛应用于雷达信号处理领域。该文首先对压缩感知的基本理论进行梳理;接着从场景稀疏以及稀疏观测两个角度介绍了雷达信号处理中的稀疏特性;然后基于稀疏特性,从空域处理、脉冲压缩、相参处理、雷达成像以及目标检测等角度概述了压缩感知技术在雷达信号处理中的应用。最后,对压缩感知技术在雷达信号处理中的应用进行了总结。
5
2024, 13(3): 539-553.
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了5.3 dB,旋翼叶长估计误差降低了27.7%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
6
2024, 13(1): 227-239.
自卫式干扰机发射的瞄准干扰使多种基于信号处理的被动干扰抑制方法失效,对现代雷达产生了严重威胁,频率捷变作为一种主动对抗方式为对抗瞄准干扰提供了可能。针对传统随机跳频抗干扰性能不稳定、频点选取自由度有限、策略学习所需时间长等问题,该文面向频率捷变雷达,提出了一种快速自适应跳频策略学习方法。首先设计了一种频点可重复选取的频率捷变波形,为最优解提供了更多选择。在此基础上,通过利用雷达与干扰机持续对抗收集到的数据,基于深度强化学习的探索与反馈机制,不断优化频点选取策略。具体来说,通过将上一时刻雷达频点及当前时刻感知到的干扰频点作为强化学习输入,神经网络智能选取当前时刻各子脉冲频点,并根据目标检测结果以及信干噪比两方面评价抗干扰效能,从而优化策略直至最优。从提高最优策略收敛速度出发,设计的输入状态不依赖历史时间步、引入贪婪策略平衡搜索-利用机制、配合信干噪比提高奖励差异。多组仿真实验结果表明,所提方法能够收敛到最优策略且具备较高的收敛效率。
自卫式干扰机发射的瞄准干扰使多种基于信号处理的被动干扰抑制方法失效,对现代雷达产生了严重威胁,频率捷变作为一种主动对抗方式为对抗瞄准干扰提供了可能。针对传统随机跳频抗干扰性能不稳定、频点选取自由度有限、策略学习所需时间长等问题,该文面向频率捷变雷达,提出了一种快速自适应跳频策略学习方法。首先设计了一种频点可重复选取的频率捷变波形,为最优解提供了更多选择。在此基础上,通过利用雷达与干扰机持续对抗收集到的数据,基于深度强化学习的探索与反馈机制,不断优化频点选取策略。具体来说,通过将上一时刻雷达频点及当前时刻感知到的干扰频点作为强化学习输入,神经网络智能选取当前时刻各子脉冲频点,并根据目标检测结果以及信干噪比两方面评价抗干扰效能,从而优化策略直至最优。从提高最优策略收敛速度出发,设计的输入状态不依赖历史时间步、引入贪婪策略平衡搜索-利用机制、配合信干噪比提高奖励差异。多组仿真实验结果表明,所提方法能够收敛到最优策略且具备较高的收敛效率。
7
2024, 13(1): 23-45.
多径利用雷达(MER)目标探测技术主要基于电磁波在介质表面的反射、衍射等非直视(NLOS)多路径传播特性,实现对城市街角、车辆遮挡等“视觉”盲区内隐蔽目标的有效探测,其能够为城市作战、智能驾驶等多种应用提供服务,具有重要的现实意义和研究价值。为获知该领域的发展脉络,并预测未来可能的发展趋势,该文对21世纪初以来该领域国内外公开文献进行了归纳总结。相关文献的梳理结果表明,根据探测平台类型的不同,多径利用雷达目标探测技术目前主要包括两类:基于空中平台的多径探测技术和基于地面平台的多径探测技术。这两类技术均已取得一定具有实际意义的研究成果。针对空中平台,该文围绕可行性验证、影响因素分析、建筑环境感知和非视距目标探测4个方面展开梳理;针对地面平台,该文则从目标检测与识别、目标二维定位、目标三维信息获取及新型探测方法4个方面展开论述。最后,对多径利用雷达目标探测技术进行总结和展望,指出该技术在目前实际应用中所面临的潜在问题和挑战。这些结果表明,多径利用雷达目标探测技术正朝着多样化、智能化的方向发展。
多径利用雷达(MER)目标探测技术主要基于电磁波在介质表面的反射、衍射等非直视(NLOS)多路径传播特性,实现对城市街角、车辆遮挡等“视觉”盲区内隐蔽目标的有效探测,其能够为城市作战、智能驾驶等多种应用提供服务,具有重要的现实意义和研究价值。为获知该领域的发展脉络,并预测未来可能的发展趋势,该文对21世纪初以来该领域国内外公开文献进行了归纳总结。相关文献的梳理结果表明,根据探测平台类型的不同,多径利用雷达目标探测技术目前主要包括两类:基于空中平台的多径探测技术和基于地面平台的多径探测技术。这两类技术均已取得一定具有实际意义的研究成果。针对空中平台,该文围绕可行性验证、影响因素分析、建筑环境感知和非视距目标探测4个方面展开梳理;针对地面平台,该文则从目标检测与识别、目标二维定位、目标三维信息获取及新型探测方法4个方面展开论述。最后,对多径利用雷达目标探测技术进行总结和展望,指出该技术在目前实际应用中所面临的潜在问题和挑战。这些结果表明,多径利用雷达目标探测技术正朝着多样化、智能化的方向发展。
8
2024, 13(1): 215-226.
时域编码超表面是一项可以对电磁波进行时变调制的新技术,针对该技术的调控特性,该文提出了一种基于时域编码超表面脉内-脉间编码优化的雷达干扰方法。首先分别在快时间域和慢时间域建立优化模型,通过优化脉内-脉间相位编码,实现目标能量的搬移,形成距离-多普勒二维图上的欺骗干扰。然后通过遗传算法对该离散优化模型进行求解。另外,该文从超表面编码策略的角度分析了多种调控因素对干扰效果的影响,为实现欺骗干扰的最佳策略提供指导。
时域编码超表面是一项可以对电磁波进行时变调制的新技术,针对该技术的调控特性,该文提出了一种基于时域编码超表面脉内-脉间编码优化的雷达干扰方法。首先分别在快时间域和慢时间域建立优化模型,通过优化脉内-脉间相位编码,实现目标能量的搬移,形成距离-多普勒二维图上的欺骗干扰。然后通过遗传算法对该离散优化模型进行求解。另外,该文从超表面编码策略的角度分析了多种调控因素对干扰效果的影响,为实现欺骗干扰的最佳策略提供指导。
9
2024, 13(1): 68-86.
穿墙雷达能够穿透建筑物墙体,实现室内人体目标探测。利用深度学习提取不同肢节点的微多普勒特征,可以有效辨识障碍物后的人体行为。但是,当生成训练、验证集与生成测试集的受试者不同时,基于深度学习的行为识别方法测试准确率相对验证准确率往往较低,泛化能力较差。因此,该文提出一种基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术。该方法利用Harris与Moravec检测器提取雷达图像上的角点特征,建立角点特征数据集;利用多链路并行卷积和Non-Local机制构建全局上下文信息提取网络,学习图像像素的全局分布特征;将全局上下文信息提取网络重复堆叠4次得到角点语义特征图,经多层感知机输出行为预测概率。仿真和实测结果表明,所提方法可以有效识别室内人体步行过程中存在的坐卧、跌倒等突发步态异常终止行为,在提升识别准确率、鲁棒性的前提下,有效控制泛化精度误差不超过\begin{document}$ 6.4\% $\end{document} ![]()
![]()
。
穿墙雷达能够穿透建筑物墙体,实现室内人体目标探测。利用深度学习提取不同肢节点的微多普勒特征,可以有效辨识障碍物后的人体行为。但是,当生成训练、验证集与生成测试集的受试者不同时,基于深度学习的行为识别方法测试准确率相对验证准确率往往较低,泛化能力较差。因此,该文提出一种基于微多普勒角点特征与Non-Local机制的穿墙雷达人体步态异常终止行为辨识技术。该方法利用Harris与Moravec检测器提取雷达图像上的角点特征,建立角点特征数据集;利用多链路并行卷积和Non-Local机制构建全局上下文信息提取网络,学习图像像素的全局分布特征;将全局上下文信息提取网络重复堆叠4次得到角点语义特征图,经多层感知机输出行为预测概率。仿真和实测结果表明,所提方法可以有效识别室内人体步行过程中存在的坐卧、跌倒等突发步态异常终止行为,在提升识别准确率、鲁棒性的前提下,有效控制泛化精度误差不超过\begin{document}$ 6.4\% $\end{document} ![]()
![]()
。
10
2024, 13(2): 411-427.
随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题。在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力。该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取。在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合。该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度。实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%。而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率。所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性。
随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题。在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力。该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取。在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合。该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度。实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%。而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率。所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性。
11
2024, 13(3): 565-583.
该文针对分布式相控阵多雷达网络的多目标跟踪场景,研究非理想检测条件下的节点选择与辐射资源联合优化分配算法。首先,根据分布式相控阵多雷达网络构成、目标运动模型、雷达量测模型以及雷达节点检测情况,推导非理想检测下以雷达节点选择、辐射功率和信号带宽为变量的贝叶斯克拉默-拉奥下界(BCRLB)闭式解析表达式,并以此作为多目标跟踪精度衡量指标。在此基础上,以最小化系统各雷达节点对所有目标的总辐射功率为优化目标,以满足目标跟踪精度门限以及给定的系统射频辐射资源限制为约束条件,建立非理想检测条件下多雷达网络节点选择与辐射资源联合优化分配模型,对各时刻雷达节点选择、辐射功率和信号带宽等参数进行联合优化设计,以提升多雷达网络的射频隐身性能。最后,针对上述非线性、非凸优化问题,采用基于障碍函数法和循环最小化算法的4步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能在满足给定多目标跟踪精度的条件下有效降低分布式相控阵多雷达网络的总辐射功率,至少降低了约32.3%,从而提升其射频隐身性能。
该文针对分布式相控阵多雷达网络的多目标跟踪场景,研究非理想检测条件下的节点选择与辐射资源联合优化分配算法。首先,根据分布式相控阵多雷达网络构成、目标运动模型、雷达量测模型以及雷达节点检测情况,推导非理想检测下以雷达节点选择、辐射功率和信号带宽为变量的贝叶斯克拉默-拉奥下界(BCRLB)闭式解析表达式,并以此作为多目标跟踪精度衡量指标。在此基础上,以最小化系统各雷达节点对所有目标的总辐射功率为优化目标,以满足目标跟踪精度门限以及给定的系统射频辐射资源限制为约束条件,建立非理想检测条件下多雷达网络节点选择与辐射资源联合优化分配模型,对各时刻雷达节点选择、辐射功率和信号带宽等参数进行联合优化设计,以提升多雷达网络的射频隐身性能。最后,针对上述非线性、非凸优化问题,采用基于障碍函数法和循环最小化算法的4步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能在满足给定多目标跟踪精度的条件下有效降低分布式相控阵多雷达网络的总辐射功率,至少降低了约32.3%,从而提升其射频隐身性能。
12
2024, 13(3): 696-713.
作为一种由众多亚波长单元周期性或非周期性排列构成的二维人工结构,超表面展示了其在电磁波极化调控领域的卓越能力,开辟了电磁波调控的新途径。电控可重构极化调控超表面,可通过电信号实时调整其结构或材料特性进而动态地调控电磁波的极化状态,因而受到广泛研究关注。该文全面综述了电控可重构极化调控超表面的发展历程,详细探讨了微波段具备不同传输特性的电控可重构极化调控超表面的技术进展,并对电控可重构极化调控超表面技术的未来发展进行了深入的探讨和展望。
作为一种由众多亚波长单元周期性或非周期性排列构成的二维人工结构,超表面展示了其在电磁波极化调控领域的卓越能力,开辟了电磁波调控的新途径。电控可重构极化调控超表面,可通过电信号实时调整其结构或材料特性进而动态地调控电磁波的极化状态,因而受到广泛研究关注。该文全面综述了电控可重构极化调控超表面的发展历程,详细探讨了微波段具备不同传输特性的电控可重构极化调控超表面的技术进展,并对电控可重构极化调控超表面技术的未来发展进行了深入的探讨和展望。
13
2024, 13(1): 160-173.
正交频分复用(OFDM)波形设计是实现雷达通信一体化的物理层关键技术之一。OFDM波形通常存在峰均功率比(PAPR)高,以及波形自相关旁瓣电平高的问题。该文针对现有联合降低PAPR和自相关旁瓣方法存在的通信速率下降问题,提出了一种基于数据失真的一体化波形设计方法。该文还将通信数据的误差矢量幅度作为优化目标之一,降低了数据失真引起的通信误码率。首先,构建了PAPR约束下最小化积分旁瓣比和误差矢量幅度的优化模型。其次,根据调制星座图特点,通过外围星座调制的数据失真和所有调制数据失真,将多目标高维非凸优化问题转化为两个单目标优化子问题,分别采取凸松弛操作和交替方向乘子法(ADMM)求解简化后的子问题,得到低积分旁瓣比波形和PAPR约束下的低误差矢量幅度波形。仿真结果表明该方法设计的一体化波形可满足PAPR要求,同时具有良好的感知和通信性能。
正交频分复用(OFDM)波形设计是实现雷达通信一体化的物理层关键技术之一。OFDM波形通常存在峰均功率比(PAPR)高,以及波形自相关旁瓣电平高的问题。该文针对现有联合降低PAPR和自相关旁瓣方法存在的通信速率下降问题,提出了一种基于数据失真的一体化波形设计方法。该文还将通信数据的误差矢量幅度作为优化目标之一,降低了数据失真引起的通信误码率。首先,构建了PAPR约束下最小化积分旁瓣比和误差矢量幅度的优化模型。其次,根据调制星座图特点,通过外围星座调制的数据失真和所有调制数据失真,将多目标高维非凸优化问题转化为两个单目标优化子问题,分别采取凸松弛操作和交替方向乘子法(ADMM)求解简化后的子问题,得到低积分旁瓣比波形和PAPR约束下的低误差矢量幅度波形。仿真结果表明该方法设计的一体化波形可满足PAPR要求,同时具有良好的感知和通信性能。
14
2024, 13(1): 174-186.
在开展认知雷达波形设计时,由于发射波形与接收滤波器的非匹配体制,互模糊函数赋形相比传统模糊函数赋形优化自由度更高。该文针对强杂波条件下微弱运动目标检测问题,以最大化信干噪比为优化准则,提出了一种联合发射相位编码序列与接收滤波器设计的互模糊函数赋形方法。在恒模约束下,优化问题被建模为二次分式规划形式;然后通过引入辅助变量,并利用共轭梯度法求解Stiefel流形空间上的最小化问题,非凸优化据此转化为恒模约束二次优化问题;通过交替循环和类幂迭代算法求得最优解。此外考虑到发射波形受硬件限制而难以实现严格恒模,该文构建了一种低峰均比约束二次优化问题模型,并利用最近邻向量法求得最优解。最后,不同参数下的仿真与实测数据实验表明,该文赋形方法相较于传统方法具有较高的信干噪比增益和收敛速度。
在开展认知雷达波形设计时,由于发射波形与接收滤波器的非匹配体制,互模糊函数赋形相比传统模糊函数赋形优化自由度更高。该文针对强杂波条件下微弱运动目标检测问题,以最大化信干噪比为优化准则,提出了一种联合发射相位编码序列与接收滤波器设计的互模糊函数赋形方法。在恒模约束下,优化问题被建模为二次分式规划形式;然后通过引入辅助变量,并利用共轭梯度法求解Stiefel流形空间上的最小化问题,非凸优化据此转化为恒模约束二次优化问题;通过交替循环和类幂迭代算法求得最优解。此外考虑到发射波形受硬件限制而难以实现严格恒模,该文构建了一种低峰均比约束二次优化问题模型,并利用最近邻向量法求得最优解。最后,不同参数下的仿真与实测数据实验表明,该文赋形方法相较于传统方法具有较高的信干噪比增益和收敛速度。
15
2024, 13(1): 150-159.
传统的波达角(DOA)估计方法的实现通常基于相控阵天线系统,而其高昂的硬件成本限制该技术在不同领域的应用和推广,此外相控阵天线普遍不具备隐身性能,其在工作频段内雷达散射截面积(RCS)普遍较高。为解决上述问题,该文在时空编码(STC)理论的基础上提出了一种基于超表面同时实现RCS缩减和DOA估计的方法,并利用一款毫米波超表面对算法进行了验证。实验结果表明,该方法实现的波达角估计误差在1°以内,同时RCS缩减大于10 dB,为DOA估计和RCS缩减功能的集成提供了全新的思路,具有高性能、低成本等特点。
传统的波达角(DOA)估计方法的实现通常基于相控阵天线系统,而其高昂的硬件成本限制该技术在不同领域的应用和推广,此外相控阵天线普遍不具备隐身性能,其在工作频段内雷达散射截面积(RCS)普遍较高。为解决上述问题,该文在时空编码(STC)理论的基础上提出了一种基于超表面同时实现RCS缩减和DOA估计的方法,并利用一款毫米波超表面对算法进行了验证。实验结果表明,该方法实现的波达角估计误差在1°以内,同时RCS缩减大于10 dB,为DOA估计和RCS缩减功能的集成提供了全新的思路,具有高性能、低成本等特点。
16
2024, 13(2): 359-373.
卷积神经网络(CNN)在合成孔径雷达(SAR)图像目标分类任务中应用广泛。由于网络工作机理不透明,CNN模型难以满足高可靠性实际应用的要求。类激活映射方法常用于可视化CNN模型的决策区域,但现有方法主要基于通道级或空间级类激活权重,且在SAR图像数据集上的应用仍处于起步阶段。基于此,该文从神经元特征提取能力和网络决策依据两个层面出发,提出了一种面向SAR图像的CNN模型可视化方法。首先,基于神经元的激活值,对神经元在其感受野范围内的目标结构学习能力进行可视化,然后提出一种通道-空间混合的类激活映射方法,通过对SAR图像中的重要区域进行定位,为模型的决策过程提供依据。实验结果表明,该方法给出了模型在不同设置下的可解释性分析,有效拓展了卷积神经网络在SAR图像上的可视化应用。
卷积神经网络(CNN)在合成孔径雷达(SAR)图像目标分类任务中应用广泛。由于网络工作机理不透明,CNN模型难以满足高可靠性实际应用的要求。类激活映射方法常用于可视化CNN模型的决策区域,但现有方法主要基于通道级或空间级类激活权重,且在SAR图像数据集上的应用仍处于起步阶段。基于此,该文从神经元特征提取能力和网络决策依据两个层面出发,提出了一种面向SAR图像的CNN模型可视化方法。首先,基于神经元的激活值,对神经元在其感受野范围内的目标结构学习能力进行可视化,然后提出一种通道-空间混合的类激活映射方法,通过对SAR图像中的重要区域进行定位,为模型的决策过程提供依据。实验结果表明,该方法给出了模型在不同设置下的可解释性分析,有效拓展了卷积神经网络在SAR图像上的可视化应用。
17
2024, 13(2): 331-344.
合成孔径雷达(SAR)目标识别智能算法目前仍面临缺少鲁棒性、泛化性和可解释性的挑战,理解SAR目标微波特性并将其结合先进的深度学习算法,实现高效鲁棒的SAR目标识别,是目前领域较为关注的研究重点。SAR目标特性反演方法通常计算复杂度较高,难以结合深度神经网络实现端到端的实时预测。为促进SAR目标物理特性在智能识别任务中的应用,发展高效、智能、可解释的微波物理特性感知方法至关重要。该文将高分辨SAR目标的非平稳特性作为一种典型的微波视觉特性,提出一种改进的基于时频分析的目标特性智能感知方法,优化了处理流程和计算效率,使之更适用于SAR目标识别场景,并进一步将其应用到SAR目标智能识别算法中,实现了稳定的性能提升。该方法泛化性强、计算效率高,能得到物理可解释的SAR目标特性分类结果,对目标识别算法的性能提升与属性散射中心模型相当。
合成孔径雷达(SAR)目标识别智能算法目前仍面临缺少鲁棒性、泛化性和可解释性的挑战,理解SAR目标微波特性并将其结合先进的深度学习算法,实现高效鲁棒的SAR目标识别,是目前领域较为关注的研究重点。SAR目标特性反演方法通常计算复杂度较高,难以结合深度神经网络实现端到端的实时预测。为促进SAR目标物理特性在智能识别任务中的应用,发展高效、智能、可解释的微波物理特性感知方法至关重要。该文将高分辨SAR目标的非平稳特性作为一种典型的微波视觉特性,提出一种改进的基于时频分析的目标特性智能感知方法,优化了处理流程和计算效率,使之更适用于SAR目标识别场景,并进一步将其应用到SAR目标智能识别算法中,实现了稳定的性能提升。该方法泛化性强、计算效率高,能得到物理可解释的SAR目标特性分类结果,对目标识别算法的性能提升与属性散射中心模型相当。
18
2024, 13(2): 285-306.
高分辨率雷达成像技术和人工智能、大数据技术的快速发展,有力促进了雷达图像智能解译技术的进步。由于雷达传感器本身的特殊性和电磁散射成像物理的复杂性,雷达图像的解译缺乏光学图像的直观性,准确迅速识别分类的需求对雷达图像解译提出了迫切的挑战。在借鉴人脑光视觉感知机理和计算机视觉图像处理相关技术基础上,进一步融合电磁散射物理规律及其雷达成像机理,我们提出发展微波域雷达图像解译的“微波视觉”的新交叉领域研究。该文介绍微波视觉的概念与内涵,提出微波视觉认知模型,阐述其基础理论问题与技术路线,最后介绍了作者团队在相关问题上的初步研究进展。
高分辨率雷达成像技术和人工智能、大数据技术的快速发展,有力促进了雷达图像智能解译技术的进步。由于雷达传感器本身的特殊性和电磁散射成像物理的复杂性,雷达图像的解译缺乏光学图像的直观性,准确迅速识别分类的需求对雷达图像解译提出了迫切的挑战。在借鉴人脑光视觉感知机理和计算机视觉图像处理相关技术基础上,进一步融合电磁散射物理规律及其雷达成像机理,我们提出发展微波域雷达图像解译的“微波视觉”的新交叉领域研究。该文介绍微波视觉的概念与内涵,提出微波视觉认知模型,阐述其基础理论问题与技术路线,最后介绍了作者团队在相关问题上的初步研究进展。
19
2024, 13(2): 428-442.
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律。该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度。该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性。在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法。
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律。该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度。该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性。在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法。
20
2024, 13(3): 501-524.
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
雷达微弱目标处理是实现优异探测性能的基础和前提,在复杂的实际环境应用过程中,由于强杂波干扰、目标信号微弱、图像特征不明显、有效特征难提取等问题,导致雷达微弱目标检测与识别一直是雷达处理领域中的难点之一。传统模型类处理方法与实际工作背景和目标特性匹配不精准,导致通用性不强。近年来,深度学习在雷达智能信息处理领域取得了显著进展,深度学习算法通过构建深层神经网络,可以自动地从大量雷达数据中学习特征表示,提高目标检测和识别的性能。该文分别从雷达目标微弱信号处理、图像处理、特征学习等多个方面系统梳理和总结近年来雷达微弱目标智能化处理的研究进展,具体包括噪声与杂波抑制、微弱目标信号增强;低、高分辨雷达图像和特征图处理;特征提取、融合、目标分类与识别等。针对目前微弱目标智能化处理应用存在的泛化能力有限、特征单一、可解释性不足等问题,从小样本目标检测(迁移学习、强化学习)、多维多特征融合检测、网络模型可解释性、知识与数据联合驱动等方面对未来发展进行了展望。
- 首页
- 上一页
- 1
- 2
- 下一页
- 末页
- 共:2页