微波视觉与SAR图像智能解译

徐丰 金亚秋

徐丰, 金亚秋. 微波视觉与SAR图像智能解译[J]. 雷达学报(中英文), 2024, 13(2): 285–306. doi: 10.12000/JR23225
引用本文: 徐丰, 金亚秋. 微波视觉与SAR图像智能解译[J]. 雷达学报(中英文), 2024, 13(2): 285–306. doi: 10.12000/JR23225
XU Feng and JIN Yaqiu. Microwave vision and intelligent perception of radar imagery[J]. Journal of Radars, 2024, 13(2): 285–306. doi: 10.12000/JR23225
Citation: XU Feng and JIN Yaqiu. Microwave vision and intelligent perception of radar imagery[J]. Journal of Radars, 2024, 13(2): 285–306. doi: 10.12000/JR23225

微波视觉与SAR图像智能解译

DOI: 10.12000/JR23225
基金项目: 国家自然科学基金(61991422)
详细信息
    作者简介:

    徐 丰,博士,教授,主要研究方向为SAR图像解译、电磁散射建模、人工智能等

    金亚秋,博士,教授,中国科学院院士,主要研究方向为复杂自然环境与目标电磁散射辐射传输、空间微波遥感和计算电磁

    通讯作者:

    徐丰 fengxu@fudan.edu.cn

  • 责任主编:仇晓兰 Corresponding Editor: QIU Xiaolan
  • 中图分类号: TN957.51

Microwave Vision and Intelligent Perception of Radar Imagery

Funds: The National Natural Science Foundation of China (61991422)
More Information
  • 摘要: 高分辨率雷达成像技术和人工智能、大数据技术的快速发展,有力促进了雷达图像智能解译技术的进步。由于雷达传感器本身的特殊性和电磁散射成像物理的复杂性,雷达图像的解译缺乏光学图像的直观性,准确迅速识别分类的需求对雷达图像解译提出了迫切的挑战。在借鉴人脑光视觉感知机理和计算机视觉图像处理相关技术基础上,进一步融合电磁散射物理规律及其雷达成像机理,我们提出发展微波域雷达图像解译的“微波视觉”的新交叉领域研究。该文介绍微波视觉的概念与内涵,提出微波视觉认知模型,阐述其基础理论问题与技术路线,最后介绍了作者团队在相关问题上的初步研究进展。

     

  • 图  1  微波视觉概念示意图

    Figure  1.  Concept of microwave vision

    图  2  同一目标在光学图像和SAR图像上的特点对比

    Figure  2.  Comparision of the characteristics of the same targets in optical and SAR images

    图  3  光学视觉认知规律在微波图像域将失效

    Figure  3.  Visual perceptual rules become invalid in the microwave image domain

    图  4  微波视觉与光学视觉的关系

    Figure  4.  Relationship between microwave vision and optical vision

    图  5  微波视觉认知模型

    Figure  5.  The perception model of microwave vision

    图  6  微波视觉的可能实现方法

    Figure  6.  Possible implementations of microwave vision

    图  7  语义电磁散射基本属性与实现途径

    Figure  7.  Basic properties and implementations of semantic electromagnetic scattering model

    图  8  物理先验与神经网络的不同层次融合

    Figure  8.  Fusion of physical priors and neural networks at different levels

    图  9  智能体、模拟器及专家之间的交互模式

    Figure  9.  Interaction modes among agents, simulators, and experts

    图  10  相干散射子基元字典及SAR图像语义表征模式[39]

    Figure  10.  Primitive Scatterer Dictionary (PSD) and semantic representation of SAR images[39]

    图  11  仿真辅助数据增广对于目标分类性能的提升

    Figure  11.  Performance improvements for target classification with simulation-assisted data augmentation

    图  12  SAR图像因果模型

    Figure  12.  Causal model of SAR images

    图  13  SAR-NeRF原理与等价计算图[50]

    Figure  13.  SAR-NeRF principle and the equivalent computation graph[50]

    图  14  可微SAR渲染器(DSR)

    Figure  14.  Differentiable SAR Renderer (DSR)

    图  15  智能体与模拟器交互式反演架构[53]

    Figure  15.  Interactive inversion architecture between agents and simulators[53]

    图  16  智能体与专家交互的人机协同学习模式[38]

    Figure  16.  Human-machine collaborative learning mode with interactions between agents and experts[38]

    表  1  光学图像和SAR图像对比

    Table  1.   Comparison between optical and SAR images

    图像特性 光学图像 SAR图像
    物理特性 波段 可见光波段 微波波段
    探测方式 外界光源、被动接收 主动辐射、后向散射
    反射/散射形态 连续、面状 离散、点状
    成像机制 聚焦机制 真实孔径 相干合成孔径
    随机噪声 加性噪声 乘性相干斑
    投影方式 透视投影 斜距投影
    投影方向 俯仰角-方位角 距离向-方位向
    图像形态 图像畸变效应 透视效应,分辨率与距离成正比 收缩、叠掩、倒置,分辨率与距离无关
    目标与场景呈现方式 自然图像:人眼视角、大目标小背景 遥感图像:鹰眼视角、大背景小目标
    数据形式 颜色、强度 相位、幅度、极化
    下载: 导出CSV

    表  2  微波视觉认知模型中的基本概念

    Table  2.   Notations of the perception model of microwave vision

    概念 定义 举例
    目标语义知识 $ k{\text{~}}{P}_{k}\left(k\right)\in {\mathbb{C}}^{{N}_{k}} $ 目标型号:T72, BTR60 ···
    目标多样性 $ d{\text{~}}{P}_{d}\left(d\right)\in {\mathbb{C}}^{{N}_{d}} $ 细节变化、个体差异、背景环境···
    目标物理信息 $ x{\text{~}}{P}_{x}\left(x\right)\in {\mathbb{R}}^{{N}_{x}} $ 目标几何模型、表面材质···
    观测数据 $ y{\text{~}}{P}_{y}\left(y\right)\in {\mathbb{R}}^{{N}_{y}} $ SAR图像
    观测配置 $ \theta $ 波段、入射角、分辨率···
    观测噪声 $ \delta $ 传感器噪声、测量误差、模型误差···
    下载: 导出CSV
  • [1] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047.

    WU Yirong. Concept on multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047.
    [2] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130.

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130.
    [3] 徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 1–463.

    XU Feng, WANG Haipeng, and JIN Yaqiu. Intelligent Interpretation of Synthetic Aperture Radar Imagery[M]. Beijing: Science Press, 2020: 1–463.
    [4] 杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104.

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104.
    [5] 郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.

    GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
    [6] 黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.

    HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
    [7] 邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.

    XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
    [8] 李军, 孙显, 于瀚雯, 等. 遥感与人工智能的交叉创新专题简介[J]. 中国科学: 信息科学, 2023, 53(5): 1026. doi: 10.1360/SSI-2023-0103.

    LI Jun, SUN Xian, YU Hanwen, et al. Special topic: Artificial intelligence innovation in remote sensing[J]. Scientia Sinica Informationis, 2023, 53(5): 1026. doi: 10.1360/SSI-2023-0103.
    [9] 高勋章, 张志伟, 刘梅, 等. 雷达像智能识别对抗研究进展[J]. 雷达学报, 2023, 12(4): 696–712. doi: 10.12000/JR23098.

    GAO Xunzhang, ZHANG Zhiwei, LIU Mei, et al. Intelligent radar image recognition countermeasures: A review[J]. Journal of Radars, 2023, 12(4): 696–712. doi: 10.12000/JR23098.
    [10] 罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报, 2024, 13(2): 307–330. doi: 10.12000/JR23056.

    LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056.
    [11] 刘宏伟, 位寅生, 关键, 等. “雷达智能探测新技术专题”编者按[J]. 雷达学报, 2020, 9(4): 封二.

    LIU Hongwei, WEI Yinsheng, GUAN Jian, et al. Editorial comments of special issue on novel the intelligent radar detecting technology[J]. Journal of Radars, 2020, 9(4): Inside front cover.
    [12] 金亚秋, 徐丰. 加强智能科学交叉领域研究[J]. 科技导报, 2018, 36(17): 1.

    JIN Yaqiu and XU Feng. Enhance the research in interdisciplinary fields of intelligent science[J]. Science & Technology Review, 2018, 36(17): 1.
    [13] 徐丰, 金亚秋. 从物理智能到微波视觉[J]. 科技导报, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004.

    XU Feng and JIN Yaqiu. From the emergence of intelligent science to the research of microwave vision[J]. Science & Technology Review, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004.
    [14] 金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
    [15] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090.

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
    [16] 丁赤飚, 徐丰, 董秋雷, 等. “合成孔径雷达微波视觉理论与技术专刊”编者按[J]. 雷达学报, 2022, 11(1): 封二.

    DING Chibiao, XU Feng, DONG Qiulei, et al. Editorial comments of theory and system of synthetic aperture radar microwave vision[J]. Journal of Radars, 2022, 11(1): Inside front cover.
    [17] ROCK I and DIVITA J. A case of viewer-centered object perception[J]. Cognitive Psychology, 1987, 19(2): 280–293. doi: 10.1016/0010-0285(87)90013-2.
    [18] PIZLO Z. Perception viewed as an inverse problem[J]. Vision Research, 2001, 41(24): 3145–3161. doi: 10.1016/S0042-6989(01)00173-0.
    [19] MARR D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information[M]. Cambridge: MIT Press, 2010: 31–38.
    [20] WAGEMANS J, ELDER J H, KUBOVY M, et al. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization[J]. Psychological Bulletin, 2012, 138(6): 1172–1217. doi: 10.1037/a0029333.
    [21] MONGA V, LI Yuelong, and ELDAR Y C. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing[J]. IEEE Signal Processing Magazine, 2021, 38(2): 18–44. doi: 10.1109/MSP.2020.3016905.
    [22] LIU Zhuoyang and XU Feng. Interpretable neural networks: Principles and applications[J]. Frontiers in Artificial Intelligence, 2023, 6: 974295. doi: 10.3389/frai.2023.974295.
    [23] XU Feng and ZHANG Xu. On the concept of semantic electromagnetics[C]. 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 2022: 1–3. doi: 10.1109/ACES-China56081.2022.10065038.
    [24] FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi: 10.1109/TIP.2022.3215069.
    [25] KARNIADAKIS G E, KEVREKIDIS I G, LU Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422–440. doi: 10.1038/s42254-021-00314-5.
    [26] GUO Qian, XU Huilin, and XU Feng. Causal adversarial autoencoder for disentangled SAR image representation and few-shot target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5221114. doi: 10.1109/TGRS.2023.3330478.
    [27] LI Shangyang, LIU Zhuoyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi: 10.1109/TAP.2022.3140891.
    [28] 刘彻, 杨恺乔, 鲍江涵, 等. 智能电磁计算的若干进展[J]. 雷达学报, 2023, 12(4): 657–683. doi: 10.12000/JR23133.

    LIU Che, YANG Kaiqiao, BAO Jianghan, et al. Recent progress in intelligent electromagnetic computing[J]. Journal of Radars, 2023, 12(4): 657–683. doi: 10.12000/JR23133.
    [29] SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 2256–2265.
    [30] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2022, 65(1): 99–106. doi: 10.1145/3503250.
    [31] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [32] EDELMAN S. On What it Means To See, and What We Can Do About It[M]. DICKINSON S, LEONARDIS A, SCHIELE B, et al. Object Categorization: Computer and Human Vision Perspectives. Cambridge: Cambridge University Press, 2009: 69–86.
    [33] LECUN Y. A path towards autonomous machine intelligence version 0.9.2, 2022-06-27[EB/OL]. https://openreview.net/pdf?id=BZ5a1r-kVsf, 2022.
    [34] FRISTON K. Is the free-energy principle neurocentric?[J]. Nature Reviews Neuroscience, 2010, 11(8): 605. doi: 10.1038/nrn2787-c2.
    [35] ZHANG Zhengquan and XU Feng. An overview of the free energy principle and related research[J]. Neural Computation, 2024. doi: 10.1162/neco_a_01642.
    [36] 尤瑞希, 钱昱彤, 徐丰. 格式塔感知规律在SAR图像中的有效性初探[J]. 雷达学报, 2024, 13(2): 345–359. doi: 10.12000/JR23187.

    YOU Ruixi, QIAN Yutong, and XU Feng. Preliminary research on the effectiveness of Gestalt perceptual principles in SAR images[J]. Journal of Radars, 13(2): 345–359. doi: 10.12000/JR23187.
    [37] LI Dong and ZHANG Yunhua. Epipolar geometry comparison of SAR and optical camera[C]. SPIE 9901, 2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), Xiamen, China, 2015: 99010V. doi: 10.1117/12.2234943.
    [38] JIA Hecheng and XU Feng. Ship Detection in SAR Images with Human-in-the-Loop[EB/OL]. https://arxiv.org/abs/2401.08213, 2024.
    [39] ZHANG Xu, XU Feng, YANG Ying, et al. A primitive scatterer dictionary for semantic representation of radar target images[J]. IEEE Transactions on Antennas and Propagation, 2023. doi: 10.1109/TAP.2023.3321386.
    [40] ZHANG Xu, XU Feng, and JIN Yaqiu. A unified bidirectional scattering distribution function for convex quadric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 2003015. doi: 10.1109/TGRS.2023.3294017.
    [41] ZHANG Xu and XU Feng. Coherent spatially varying bidirectional scattering distribution function of rough surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2004017. doi: 10.1109/TGRS.2021.3136572.
    [42] YUE Dongxiao, XU Feng, FRERY A C, et al. A generalized gaussian coherent scatterer model for correlated SAR texture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2947–2964. doi: 10.1109/TGRS.2019.2958125.
    [43] SONG Qian, CHEN Hui, XU Feng, et al. EM simulation-aided zero-shot learning for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1092–1096. doi: 10.1109/LGRS.2019.2936897.
    [44] LV Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-aided SAR target classification via dual-branch reconstruction and subdomain alignment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5214414. doi: 10.1109/TGRS.2023.3305094.
    [45] SONG Qian, XU Feng, ZHU Xiaoxiang, et al. Learning to generate SAR images with adversarial autoencoder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210015. doi: 10.1109/TGRS.2021.3086817.
    [46] GUO Qian, QIAN Yutong, WANG Haipeng, et al. Recognition rate versus substitution rate curve: An objective utility assessment criterion of simulated training data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5224415. doi: 10.1109/TGRS.2022.3154932.
    [47] GUO Qian, WANG Haipeng, and XU Feng. Scattering enhanced attention pyramid network for aircraft detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7570–7587. doi: 10.1109/TGRS.2020.3027762.
    [48] XU Huilin and XU Feng. Multi-scale capsule network with coordinate attention for sar automatic target recognition[C]. 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia, 2021: 1–5. doi: 10.1109/APSAR52370.2021.9688428.
    [49] SONG Qian, XU Feng, and ZHU Xiaoxiang. Physical-aware radar image synthesis with projective network[C]. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 2021: 1–4. doi: 10.23919/URSIGASS51995.2021.9560559.
    [50] LEI Zhengxin, XU Feng, WEI Jiangtao, et al. SAR-NeRF: Neural radiance fields for synthetic aperture radar multi-view representation[EB/OL]. https://arxiv.org/abs/2307.05087, 2023.
    [51] WEI Jiangtao, LUOMEI Yixiang, ZHANG Xu, et al. Learning surface scattering parameters from SAR images using differentiable ray tracing[EB/OL]. https://arxiv.org/abs/2401.01175, 2024.
    [52] FU Shilei, JIA Hecheng, PU Xinyang, et al. Extension of differentiable SAR renderer for ground target reconstruction from multi-view images and shadows[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217013. doi: 10.1109/TGRS.2023.3320515.
    [53] WANG Yanni, JIA Hecheng, FU Shilei, et al. Reinforcement learning for SAR view angle inversion with differentiable SAR renderer[EB/OL]. https://arxiv.org/abs/2401.01165, 2024.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  2058
  • HTML全文浏览量:  859
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 修回日期:  2024-01-07
  • 网络出版日期:  2024-01-30
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回