Volume 13 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056
Citation: LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056

Intelligent Technology for Aircraft Detection and Recognition through SAR Imagery: Advancements and Prospects

DOI: 10.12000/JR23056
Funds:  The National Natural Science Foundation of China (62001480), Hunan Provincial Natural Science Foundation of China (2021JJ40684), Research Funding of Satellite Information Intelligent Processing and Application Research Laboratory (2022-ZZKY-JJ-10-02)
More Information
  • Corresponding author: ZHAO Lingjun, nudtzlj@163.com
  • Received Date: 2023-04-25
  • Rev Recd Date: 2023-06-26
  • Available Online: 2023-06-29
  • Publish Date: 2023-07-13
  • Synthetic Aperture Radar (SAR), with its coherent imaging mechanism, has the unique advantage of all-day and all-weather imaging. As a typical and important topic, aircraft detection and recognition have been widely studied in the field of SAR image interpretation. With the introduction of deep learning, the performance of aircraft detection and recognition, which is based on SAR imagery, has considerably improved. This paper combines the expertise gathered by our research team on the theory, algorithms, and applications of SAR image-based target detection and recognition, particularly aircraft. Additionally, this paper presents a comprehensive review of deep learning-powered aircraft detection and recognition based on SAR imagery. This review includes a detailed analysis of the aircraft target characteristics and current challenges associated with SAR image-based detection and recognition. Furthermore, the review summarizes the latest research advancements, characteristics, and application scenarios of various technologies and collates public datasets and performance evaluation metrics. Finally, several challenges and potential research prospects are discussed.

     

  • loading
  • [1]
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
    [2]
    CASTELLETTI D, FARQUHARSON G, STRINGHAM C, et al. Capella space first operational SAR satellite[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 1483–1486.
    [3]
    PR Newswire. ICEYE expands world’s largest SAR satellite constellation; launches first U.S. built spacecraft[EB/OL]. https://www.prnewswire.com/news-releases/iceye-expands-worlds-largest-sar-satellite-constellation-launches-first-us-built-spacecraft-301460822.html, 2022.
    [4]
    徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 1–463.

    XU Feng, WANG Haipeng, and JIN Yaqiu. Intelligent Interpretation of Synthetic Aperture Radar Images[M]. Beijing: Science Press, 2020: 1–463.
    [5]
    ROSS T D, BRADLEY J J, HUDSON L J, et al. SAR ATR: So what’s the problem? An MSTAR perspective[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, United States, 1999: 662–672.
    [6]
    郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020.

    GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020.
    [7]
    NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–24.
    [8]
    NOVAK L M, HALVERSEN S D, OWIRKA G J, et al. Effects of polarization and resolution on the performance of a SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1995, 8(1): 49–68.
    [9]
    KREITHEN D E, HALVERSEN S S, and OWIRKA G J. Discriminating targets from clutter[J]. Lincoln Laboratory Journal, 1993, 6(1): 25–52.
    [10]
    ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 143–172. doi: 10.1109/MGRS.2020.3046356.
    [11]
    “天智杯”人工智能挑战赛[EB/OL]. https://rsaicp.com.

    “Smart satellite” artificial intelligence challenge[EB/OL]. https://rsaicp.com, 2021.
    [12]
    “中科星图杯”国际高分遥感图像解译大赛[EB/OL]. https://www.gaofen-challenge.com, 2021.

    “GEOVIS CUP” Gaofen challenge on automated high-resolution earth observation image interpretation[EB/OL]. https://www.gaofen-challenge.com, 2021.
    [13]
    黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 230–246.

    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005: 230–246.
    [14]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005: 169–211.
    [15]
    陈玉洁, 赵凌君, 匡纲要. 基于可变参数化几何模型的SAR图像飞机目标特征提取方法[J]. 现代雷达, 2016, 38(10): 47–53. doi: 10.16592/j.cnki.1004-7859.2016.10.012.

    CHEN Yujie, ZHAO Lingjun, and KUANG Gangyao. Feature extraction of aircraft targets in SAR image based on parametric geometric model[J]. Modern Radar, 2016, 38(10): 47–53. doi: 10.16592/j.cnki.1004-7859.2016.10.012.
    [16]
    高君, 高鑫, 孙显. 基于几何特征的高分辨率SAR图像飞机目标解译方法[J]. 国外电子测量技术, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.

    GAO Jun, GAO Xin, and SUN Xian. Geometrical features-based method for aircraft target interpretation in high-resolution SAR images[J]. Foreign Electronic Measurement Technology, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.
    [17]
    窦方正, 刁文辉, 孙显, 等. 基于深度形状先验的高分辨率SAR飞机目标重建[J]. 雷达学报, 2017, 6(5): 503–513. doi: 10.12000/JR17047.

    DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft reconstruction in high resolution SAR images using deep shape prior[J]. Journal of Radars, 2017, 6(5): 503–513. doi: 10.12000/JR17047.
    [18]
    匡纲要, 高贵, 蒋咏梅, 等. 合成孔径雷达目标检测理论、算法及应用[M]. 长沙: 国防科技大学出版社, 2007: 133–165.

    KUANG Gangyao, GAO Gui, JIANG Yongmei, et al. Synthetic Aperture Radar Target: Detection Theory Algorithms and Applications[M]. Changsha: National University of Defense Technology Press, 2007: 133–165.
    [19]
    HE Chu, TU Mingxia, LIU Xinlong, et al. Mixture statistical distribution based multiple component model for target detection in high resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 336. doi: 10.3390/ijgi6110336.
    [20]
    TAN Yihua, LI Qingyun, LI Yansheng, et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map[J]. Sensors, 2015, 15(9): 23071–23094. doi: 10.3390/s150923071.
    [21]
    DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft recognition in high resolution SAR images using saliency map and scattering structure features[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1575–1578.
    [22]
    CHEN Jiehong, ZHANG Bo, and WANG Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 796–800. doi: 10.1109/LGRS.2014.2362845.
    [23]
    ZHANG Yueting, DING Chibiao, LEI Bin, et al. Feature modeling of SAR images for aircrafts based on typical structures[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 7007–7010.
    [24]
    FU Kun, DOU Fangzheng, LI Hengchao, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206–4217. doi: 10.1109/JSTARS.2018.2872018.
    [25]
    ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
    [26]
    刘小波, 肖肖, 王凌, 等. 基于无锚框的目标检测方法及其在复杂场景下的应用进展[J]. 自动化学报, 2022, 48: 1–23. doi: 10.16383/j.aas.c220115.

    LIU Xiaobo, XIAO Xiao, WANG Ling, et al. Anchor-free based object detection methods and its application progress in complex scenes[J]. Acta Automatica Sinica, 2022, 48: 1–23. doi: 10.16383/j.aas.c220115.
    [27]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [28]
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [29]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [30]
    CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
    [31]
    TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787.
    [32]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [33]
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767v1, 2018.
    [34]
    GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430v2, 2021.
    [35]
    WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475.
    [36]
    TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635.
    [37]
    UZKENT B, YEH C, and ERMON S. Efficient object detection in large images using deep reinforcement learning[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 1813–1822.
    [38]
    ZHANG Linbin, LI Chuyin, ZHAO Lingjun, et al. A cascaded three-look network for aircraft detection in SAR images[J]. Remote Sensing Letters, 2020, 11(1): 57–65. doi: 10.1080/2150704X.2019.1681599.
    [39]
    GUO Qian, WANG Haipeng, KANG Lihong, et al. Aircraft target detection from spaceborne SAR image[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1168–1171.
    [40]
    WANG Jielan, XIAO Hongguang, CHEN Lifu, et al. Integrating weighted feature fusion and the spatial attention module with convolutional neural networks for automatic aircraft detection from SAR images[J]. Remote Sensing, 2021, 13(5): 910. doi: 10.3390/rs13050910.
    [41]
    XIAO Xiayang, YU Xueping, and WANG Haipeng. A high-efficiency aircraft detection approach utilizing auxiliary information in SAR images[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1700–1703.
    [42]
    郭倩, 王海鹏, 徐丰. 星载合成孔径雷达图像的飞机目标检测[J]. 上海航天, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010.

    GUO Qian, WANG Haipeng, and XU Feng. Aircraft target detection from spaceborne synthetic aperture radar image[J]. Aerospace Shanghai, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010.
    [43]
    赵琰, 赵凌君, 匡纲要. 复杂环境大场景SAR图像飞机目标快速检测[J]. 电波科学学报, 2020, 35(4): 594–602. doi: 10.13443/j.cjors.2020040602.

    ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Fast detection of aircrafts in complex large-scene SAR images[J]. Chinese Journal of Radio Science, 2020, 35(4): 594–602. doi: 10.13443/j.cjors.2020040602.
    [44]
    LI Chuyin, ZHAO Lingjun, and KUANG Gangyao. A two-stage airport detection model on large scale SAR images based on faster R-CNN[C]. SPIE 11179, Eleventh International Conference on Digital Image Processing, Guangzhou, China, 2019: 515–525.
    [45]
    CHEN Lifu, TAN Siyu, PAN Zhouhao, et al. A new framework for automatic airports extraction from SAR images using multi-level dual attention mechanism[J]. Remote Sensing, 2020, 12(3): 560. doi: 10.3390/rs12030560.
    [46]
    YIN Shoulin, LI Hang, and TENG Lin. Airport detection based on improved faster RCNN in large scale remote sensing images[J]. Sensing and Imaging, 2020, 21(1): 49. doi: 10.1007/s11220-020-00314-2.
    [47]
    王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009.

    WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009.
    [48]
    DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 137–141. doi: 10.1109/LGRS.2015.2498644.
    [49]
    DIAO Wenhui, DOU Fangzheng, FU Kun, et al. Aircraft detection in SAR images using saliency based location regression network[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 2334–2337.
    [50]
    李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.

    LI Guangshuai, SU Juan, and LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.
    [51]
    AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8333–8349. doi: 10.1109/TGRS.2019.2920534.
    [52]
    XIAO Xiayang, JIA Hecheng, XIAO Penghao, et al. Aircraft detection in SAR images based on peak feature fusion and adaptive deformable network[J]. Remote Sensing, 2022, 14(23): 6077. doi: 10.3390/rs14236077.
    [53]
    CHEN Lifu, LUO Ru, XING Jin, et al. Geospatial transformer is what you need for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225715. doi: 10.1109/TGRS.2022.3162235.
    [54]
    WANG Zhen, XU Nan, GUO Jianxin, et al. SCFNet: Semantic condition constraint guided feature aware network for aircraft detection in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239420. doi: 10.1109/TGRS.2022.3224599.
    [55]
    HAN Ping, LIAO Dayu, HAN Binbin, et al. SEAN: A simple and efficient attention network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(18): 4669. doi: 10.3390/rs14184669.
    [56]
    GUO Qian, WANG Haipeng, and XU Feng. Scattering Enhanced attention pyramid network for aircraft detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7570–7587. doi: 10.1109/TGRS.2020.3027762.
    [57]
    李广帅, 苏娟, 李义红, 等. 基于卷积神经网络与注意力机制的SAR图像飞机检测[J]. 系统工程与电子技术, 2021, 43(11): 3202–3210. doi: 10.12305/j.issn.1001-506X.2021.11.20.

    LI Guangshuai, SU Juan, LI Yihong, et al. Aircraft detection in SAR images based on convolutional neural network and attention mechanism[J]. Systems Engineering and Electronics, 2021, 43(11): 3202–3210. doi: 10.12305/j.issn.1001-506X.2021.11.20.
    [58]
    夏一帆, 赵凤军, 王樱洁, 等. 基于注意力和自适应特征融合的SAR图像飞机目标检测[J/OL]. 电讯技术, https://doi.org/10.20079/j.issn.1001-893x.221014002, 2023.

    XIA Yifan, ZHAO Fengjun, WANG Yingjie, et al. Aircraft detection in SAR images based on attention and adaptive feature fusion[J/OL]. Telecommunication Engineering, https://doi.org/10.20079/j.issn.1001-893x.221014002, 2023.
    [59]
    李佳芯, 朱卫纲, 杨莹, 等. 基于改进YOLOv5的SAR图像飞机目标检测[J]. 电光与控制, 2023, 30(8): 61–67. doi: 10.39691/j.issn.167-637X.2023.08.011.

    LI Jiaxin, ZHU Weigang, YANG Ying, at al. Aircraft targets in SAR images based on improved YOLOv5[J]. Electronics Optics & Control, 2023, 30(8): 61–67. doi: 10.39691/j.issn.1671-637X.2023.08.011.
    [60]
    GUO Qian, WANG Haipeng, and XU Feng. Aircraft detection in high-resolution SAR images using scattering feature information[C]. The 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–5.
    [61]
    KANG Yuzhuo, WANG Zhirui, FU Jiamei, et al. SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5218317. doi: 10.1109/TGRS.2021.3130899.
    [62]
    ZHANG Peng, XU Hao, TIAN Tian, et al. SEFEPNet: Scale expansion and feature enhancement pyramid network for SAR aircraft detection with small sample dataset[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3365–3375. doi: 10.1109/JSTARS.2022.3169339.
    [63]
    GE Ji, WANG Chao, ZHANG Bo, et al. Azimuth-Sensitive object detection of high-resolution SAR images in complex scenes by using a spatial orientation attention enhancement network[J]. Remote Sensing, 2022, 14(9): 2198. doi: 10.3390/rs14092198.
    [64]
    ZHANG Peng, XU Hao, TIAN Tian, et al. SFRE-Net: Scattering feature relation enhancement network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(9): 2076. doi: 10.3390/rs14092076.
    [65]
    ZHAO Yan, ZHAO Lingjun, LI Chuyin, et al. Pyramid attention dilated network for aircraft detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 662–666. doi: 10.1109/LGRS.2020.2981255.
    [66]
    赵琰, 赵凌君, 匡纲要. 基于注意力机制特征融合网络的SAR图像飞机目标快速检测[J]. 电子学报, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.

    ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Attention feature fusion network for rapid aircraft detection in SAR images[J]. Acta Electronica Sinica, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
    [67]
    ZHAO Yan, ZHAO Lingjun, LIU Zhong, et al. Attentional feature refinement and alignment network for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220616. doi: 10.1109/TGRS.2021.3139994.
    [68]
    LUO Ru, CHEN Lifu, XING Jin, et al. A fast aircraft detection method for SAR images based on efficient bidirectional path aggregated attention network[J]. Remote Sensing, 2021, 13(15): 2940. doi: 10.3390/rs13152940.
    [69]
    HE Chu, TU Mingxia, XIONG Dehui, et al. A component-based multi-layer parallel network for airplane detection in SAR imagery[J]. Remote Sensing, 2018, 10(7): 1016. doi: 10.3390/rs10071016.
    [70]
    闫华, 张磊, 陆金文, 等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370–381. doi: 10.12000/JR21005.

    YAN Hua, ZHANG Lei, LU Jinwen, et al. Frequency-dependent factor expression of the GTD scattering center model for the arbitrary multiple scattering mechanism[J]. Journal of Radars, 2021, 10(3): 370–381. doi: 10.12000/JR21005.
    [71]
    LI Mingwu, WEN Gongjian, HUANG Xiaohong, et al. A lightweight detection model for SAR aircraft in a complex environment[J]. Remote Sensing, 2021, 13(24): 5020. doi: 10.3390/rs13245020.
    [72]
    LIN Sizhe, CHEN Ting, HUANG Xiaohong, et al. Synthetic aperture radar image aircraft detection based on target spatial imaging characteristics[J]. Journal of Electronic Imaging, 2022, 32(2): 021608. doi: 10.1117/1.JEI.32.2.021608.
    [73]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [74]
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
    [75]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539.
    [76]
    严继伟, 李广帅, 苏娟. 基于多尺度生成式对抗网络的SAR飞机数据集增广[J]. 电光与控制, 2022, 29(7): 62–68.

    YAN Jiwei, LI Guangshuai, and SU Juan. SAR aircraft data sets augmentation based on multi-scale generative adversarial network[J]. Electronics Optics & Control, 2022, 29(7): 62–68.
    [77]
    GAO Quanwei, FENG Zhixi, YANG Shuyuan, et al. Multi-Path interactive network for aircraft identification with optical and SAR images[J]. Remote Sensing, 2022, 14(16): 3922. doi: 10.3390/rs14163922.
    [78]
    SUN Xian, LV Yixuan, WANG Zhirui, et al. SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226517. doi: 10.1109/TGRS.2022.3166174.
    [79]
    ZHAO Danpei, CHEN Ziqiang, GAO Yue, et al. Classification matters more: Global instance contrast for fine-grained SAR aircraft detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203815. doi: 10.1109/TGRS.2023.3250507.
    [80]
    吕艺璇, 王智睿, 王佩瑾, 等. 基于散射信息和元学习的SAR图像飞机目标识别[J]. 雷达学报, 2022, 11(4): 652–665. doi: 10.12000/JR22044.

    LYU Yixuan, WANG Zhirui, WANG Peijin, et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi: 10.12000/JR22044.
    [81]
    KANG Yuzhuo, WANG Zhirui, ZUO Haoyu, et al. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202117. doi: 10.1109/TGRS.2023.3236987.
    [82]
    PAN Zongxu, QIU Xiaolan, HUANG Zhongling, et al. Airplane recognition in TerraSAR-X images via scatter cluster extraction and reweighted sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 112–116. doi: 10.1109/LGRS.2016.2628162.
    [83]
    王汝意, 张汉卿, 韩冰, 等. 基于角度内插仿真的飞机目标多角度SAR数据集构建方法研究[J]. 雷达学报, 2022, 11(4): 637–651. doi: 10.12000/JR21193.

    WANG Ruyi, ZHANG Hanqing, HAN Bing, et al. Multiangle SAR dataset construction of aircraft targets based on angle interpolation simulation[J]. Journal of Radars, 2022, 11(4): 637–651. doi: 10.12000/JR21193.
    [84]
    AHMADIBENI A, JONES B, BOROOSHAK L, et al. Automatic target recognition of aerial vehicles based on synthetic SAR imagery using hybrid stacked denoising auto-encoders[C]. SPIE 11393, Algoritchms for Synthetic Aperture Radar Imagery XXVII, 2020: 71–82.
    [85]
    LIU Lei, PAN Zongxu, QIU Xiaolan, et al. SAR target classification with CycleGAN transferred simulated samples[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4411–4414.
    [86]
    AUER S, BAMLER R, and REINARTZ P. RaySAR-3D SAR simulator: Now open source[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6730–6733.
    [87]
    ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
    [88]
    LIU Wenlong, ZHAO Yuejin, LIU Ming, et al. Generating simulated SAR images using Generative Adversarial Network[C]. SPIE 10752, Applications of Digital Image Processing XLI, San Diego, USA, 2018: 32–42.
    [89]
    Qi Bin OpenSARSim[EB/OL]. https://sourceforge.net/projects/opensarsimongpu/, 2007.
    [90]
    陈杰, 黄志祥, 夏润繁. 大规模多类SAR目标检测数据集-1.0[J/OL]. 雷达学报, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.

    CHEN Jie, HUANG Zhixiang, and XIA Runfan. Large-scale multi-class SAR image target detection dataset-1.0[J/OL]. Journal of Radars, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
    [91]
    AFRL and DARPA. Sensor data management system website, MSTAR Overview[EB/OL]. https://www.sdms.afrl.af.mil/index.php?collection=mstar, 2022.
    [92]
    LEWIS B, SCARNATI T, SUDKAMP E, et al. A SAR dataset for ATR development: The synthetic and measured paired labeled experiment (SAMPLE)[C]. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, Baltimore, USA, 2019: 39–54.
    [93]
    HAZLETT M, ANDERSH D J, LEE S W, et al. XPATCH: A high-frequency electromagnetic scattering prediction code using shooting and bouncing rays[C]. SPIE 2469, Targets and Backgrounds: Characterization and Representation, Orlando, USA, 1995: 266–275.
    [94]
    ANDERSH D, MOORE J, KOSANOVICH S, et al. Xpatch 4: The next generation in high frequency electromagnetic modeling and simulation software[C]. Record of the IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 844–849.
    [95]
    AHMADIBENI A, BOROOSHAK L, JONES B, et al. Aerial and ground vehicles synthetic SAR dataset generation for automatic target recognition[C]. SPIE 11393, Algorithms for Synthetic Aperture Radar Imagery XXVII, California, United States, 2020: 96–107.
    [96]
    AHMADIBENI A, JONES B, SMITH D, et al. Dynamic transfer learning from physics-based simulated SAR imagery for automatic target recognition[C]. 3rd International Conference on Dynamic Data Driven Application Systems, Boston, USA, 2020: 152–159.
    [97]
    JONES B, AHMADIBENI A, and SHIRKHODAIE A. Physics-based simulated SAR imagery generation of vehicles for deep learning applications[C]. SPIE 11511, Applications of Machine Learning, California, United States, 2020: 162–173.
    [98]
    SHIRKHODAIE A. IRIS-intelligent robotics interface systems[R]. Developed at Tennessee State University, Department of Mechanical and Manufacturing Engineering, 2006.
    [99]
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    [100]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556v6, 2015.
    [101]
    MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 116–131.
    [102]
    TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. https://arxiv.org/abs/1905.11946v5, 2020.
    [103]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [104]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
    [105]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
    [106]
    金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
    [107]
    仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [108]
    郁文贤. 自动目标识别的工程视角述评[J]. 雷达学报, 2022, 11(5): 737–752. doi: 10.12000/JR22178.

    YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178.
    [109]
    邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.

    XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
    [110]
    黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.

    HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
    [111]
    DATCU M, HUANG Zhongling, ANGHEL A, et al. Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 8–25. doi: 10.1109/MGRS.2023.3237465.
    [112]
    MISHRA P. Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python[M]. Berkeley: Apress, 2023: 17–249.
    [113]
    HAQUE A K M B, ISLAM A K M N, and MIKALEF P. Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research[J]. Technological Forecasting and Social Change, 2023, 186: 122120. doi: 10.1016/j.techfore.2022.122120.
    [114]
    ZHANG Quanshi, WANG Xin, WU Yingnian, et al. Interpretable CNNs for object classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3416–3431. doi: 10.1109/TPAMI.2020.2982882.
    [115]
    LUO Ru, XING Jin, CHEN Lifu, et al. Glassboxing deep learning to enhance aircraft detection from SAR imagery[J]. Remote Sensing, 2021, 13(18): 3650. doi: 10.3390/rs13183650.
    [116]
    KAWAUCHI H and FUSE T. SHAP-Based interpretable object detection method for satellite imagery[J]. Remote Sensing, 2022, 14(9): 1970. doi: 10.3390/rs14091970.
    [117]
    GUO Xianpeng, HOU Biao, REN Bo, et al. Network pruning for remote sensing images classification based on interpretable CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5605615. doi: 10.1109/TGRS.2021.3077062.
    [118]
    BELLONI C, BALLERI A, AOUF N, et al. Explainability of deep SAR ATR through feature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 659–673. doi: 10.1109/TAES.2020.3031435.
    [119]
    吕小玲, 仇晓兰, 俞文明, 等. 基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析[J]. 雷达学报, 2022, 11(1): 168–182. doi: 10.12000/JR21179.

    LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsupervised domain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179.
    [120]
    郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.

    GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
    [121]
    HU Mingzhe, ZHANG Jiahan, MATKOVIC L, et al. Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions[J]. Journal of Applied Clinical Medical Physics, 2023, 24(2): e13898. doi: 10.1002/acm2.13898.
    [122]
    杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884–896. doi: 10.12000/JR22121.

    DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121.
    [123]
    LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346.
    [124]
    WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5766) PDF downloads(1496) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint