Citation: | LUO Ru, ZHAO Lingjun, HE Qishan, et al. Intelligent technology for aircraft detection and recognition through SAR imagery: Advancements and prospects[J]. Journal of Radars, 2024, 13(2): 307–330. doi: 10.12000/JR23056 |
[1] |
MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301.
|
[2] |
CASTELLETTI D, FARQUHARSON G, STRINGHAM C, et al. Capella space first operational SAR satellite[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 1483–1486.
|
[3] |
PR Newswire. ICEYE expands world’s largest SAR satellite constellation; launches first U.S. built spacecraft[EB/OL]. https://www.prnewswire.com/news-releases/iceye-expands-worlds-largest-sar-satellite-constellation-launches-first-us-built-spacecraft-301460822.html, 2022.
|
[4] |
徐丰, 王海鹏, 金亚秋. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020: 1–463.
XU Feng, WANG Haipeng, and JIN Yaqiu. Intelligent Interpretation of Synthetic Aperture Radar Images[M]. Beijing: Science Press, 2020: 1–463.
|
[5] |
ROSS T D, BRADLEY J J, HUDSON L J, et al. SAR ATR: So what’s the problem? An MSTAR perspective[C]. SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, United States, 1999: 662–672.
|
[6] |
郭倩, 王海鹏, 徐丰. SAR图像飞机目标检测识别进展[J]. 雷达学报, 2020, 9(3): 497–513. doi: 10.12000/JR20020.
GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020.
|
[7] |
NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–24.
|
[8] |
NOVAK L M, HALVERSEN S D, OWIRKA G J, et al. Effects of polarization and resolution on the performance of a SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1995, 8(1): 49–68.
|
[9] |
KREITHEN D E, HALVERSEN S S, and OWIRKA G J. Discriminating targets from clutter[J]. Lincoln Laboratory Journal, 1993, 6(1): 25–52.
|
[10] |
ZHU Xiaoxiang, MONTAZERI S, ALI M, et al. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(4): 143–172. doi: 10.1109/MGRS.2020.3046356.
|
[11] |
“天智杯”人工智能挑战赛[EB/OL]. https://rsaicp.com.
“Smart satellite” artificial intelligence challenge[EB/OL]. https://rsaicp.com, 2021.
|
[12] |
“中科星图杯”国际高分遥感图像解译大赛[EB/OL]. https://www.gaofen-challenge.com, 2021.
“GEOVIS CUP” Gaofen challenge on automated high-resolution earth observation image interpretation[EB/OL]. https://www.gaofen-challenge.com, 2021.
|
[13] |
黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 230–246.
HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Signature[M]. Beijing: Publishing House of Electronics Industry, 2005: 230–246.
|
[14] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005: 169–211.
|
[15] |
陈玉洁, 赵凌君, 匡纲要. 基于可变参数化几何模型的SAR图像飞机目标特征提取方法[J]. 现代雷达, 2016, 38(10): 47–53. doi: 10.16592/j.cnki.1004-7859.2016.10.012.
CHEN Yujie, ZHAO Lingjun, and KUANG Gangyao. Feature extraction of aircraft targets in SAR image based on parametric geometric model[J]. Modern Radar, 2016, 38(10): 47–53. doi: 10.16592/j.cnki.1004-7859.2016.10.012.
|
[16] |
高君, 高鑫, 孙显. 基于几何特征的高分辨率SAR图像飞机目标解译方法[J]. 国外电子测量技术, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.
GAO Jun, GAO Xin, and SUN Xian. Geometrical features-based method for aircraft target interpretation in high-resolution SAR images[J]. Foreign Electronic Measurement Technology, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008.
|
[17] |
窦方正, 刁文辉, 孙显, 等. 基于深度形状先验的高分辨率SAR飞机目标重建[J]. 雷达学报, 2017, 6(5): 503–513. doi: 10.12000/JR17047.
DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft reconstruction in high resolution SAR images using deep shape prior[J]. Journal of Radars, 2017, 6(5): 503–513. doi: 10.12000/JR17047.
|
[18] |
匡纲要, 高贵, 蒋咏梅, 等. 合成孔径雷达目标检测理论、算法及应用[M]. 长沙: 国防科技大学出版社, 2007: 133–165.
KUANG Gangyao, GAO Gui, JIANG Yongmei, et al. Synthetic Aperture Radar Target: Detection Theory Algorithms and Applications[M]. Changsha: National University of Defense Technology Press, 2007: 133–165.
|
[19] |
HE Chu, TU Mingxia, LIU Xinlong, et al. Mixture statistical distribution based multiple component model for target detection in high resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 336. doi: 10.3390/ijgi6110336.
|
[20] |
TAN Yihua, LI Qingyun, LI Yansheng, et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map[J]. Sensors, 2015, 15(9): 23071–23094. doi: 10.3390/s150923071.
|
[21] |
DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft recognition in high resolution SAR images using saliency map and scattering structure features[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1575–1578.
|
[22] |
CHEN Jiehong, ZHANG Bo, and WANG Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 796–800. doi: 10.1109/LGRS.2014.2362845.
|
[23] |
ZHANG Yueting, DING Chibiao, LEI Bin, et al. Feature modeling of SAR images for aircrafts based on typical structures[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 7007–7010.
|
[24] |
FU Kun, DOU Fangzheng, LI Hengchao, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206–4217. doi: 10.1109/JSTARS.2018.2872018.
|
[25] |
ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
|
[26] |
刘小波, 肖肖, 王凌, 等. 基于无锚框的目标检测方法及其在复杂场景下的应用进展[J]. 自动化学报, 2022, 48: 1–23. doi: 10.16383/j.aas.c220115.
LIU Xiaobo, XIAO Xiao, WANG Ling, et al. Anchor-free based object detection methods and its application progress in complex scenes[J]. Acta Automatica Sinica, 2022, 48: 1–23. doi: 10.16383/j.aas.c220115.
|
[27] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[28] |
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
|
[29] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[30] |
CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6154–6162.
|
[31] |
TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787.
|
[32] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
[33] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767v1, 2018.
|
[34] |
GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. https://arxiv.org/abs/2107.08430v2, 2021.
|
[35] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 7464–7475.
|
[36] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635.
|
[37] |
UZKENT B, YEH C, and ERMON S. Efficient object detection in large images using deep reinforcement learning[C]. 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass, USA, 2020: 1813–1822.
|
[38] |
ZHANG Linbin, LI Chuyin, ZHAO Lingjun, et al. A cascaded three-look network for aircraft detection in SAR images[J]. Remote Sensing Letters, 2020, 11(1): 57–65. doi: 10.1080/2150704X.2019.1681599.
|
[39] |
GUO Qian, WANG Haipeng, KANG Lihong, et al. Aircraft target detection from spaceborne SAR image[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1168–1171.
|
[40] |
WANG Jielan, XIAO Hongguang, CHEN Lifu, et al. Integrating weighted feature fusion and the spatial attention module with convolutional neural networks for automatic aircraft detection from SAR images[J]. Remote Sensing, 2021, 13(5): 910. doi: 10.3390/rs13050910.
|
[41] |
XIAO Xiayang, YU Xueping, and WANG Haipeng. A high-efficiency aircraft detection approach utilizing auxiliary information in SAR images[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1700–1703.
|
[42] |
郭倩, 王海鹏, 徐丰. 星载合成孔径雷达图像的飞机目标检测[J]. 上海航天, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010.
GUO Qian, WANG Haipeng, and XU Feng. Aircraft target detection from spaceborne synthetic aperture radar image[J]. Aerospace Shanghai, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010.
|
[43] |
赵琰, 赵凌君, 匡纲要. 复杂环境大场景SAR图像飞机目标快速检测[J]. 电波科学学报, 2020, 35(4): 594–602. doi: 10.13443/j.cjors.2020040602.
ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Fast detection of aircrafts in complex large-scene SAR images[J]. Chinese Journal of Radio Science, 2020, 35(4): 594–602. doi: 10.13443/j.cjors.2020040602.
|
[44] |
LI Chuyin, ZHAO Lingjun, and KUANG Gangyao. A two-stage airport detection model on large scale SAR images based on faster R-CNN[C]. SPIE 11179, Eleventh International Conference on Digital Image Processing, Guangzhou, China, 2019: 515–525.
|
[45] |
CHEN Lifu, TAN Siyu, PAN Zhouhao, et al. A new framework for automatic airports extraction from SAR images using multi-level dual attention mechanism[J]. Remote Sensing, 2020, 12(3): 560. doi: 10.3390/rs12030560.
|
[46] |
YIN Shoulin, LI Hang, and TENG Lin. Airport detection based on improved faster RCNN in large scale remote sensing images[J]. Sensing and Imaging, 2020, 21(1): 49. doi: 10.1007/s11220-020-00314-2.
|
[47] |
王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009.
WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009.
|
[48] |
DIAO Wenhui, SUN Xian, ZHENG Xinwei, et al. Efficient saliency-based object detection in remote sensing images using deep belief networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 137–141. doi: 10.1109/LGRS.2015.2498644.
|
[49] |
DIAO Wenhui, DOU Fangzheng, FU Kun, et al. Aircraft detection in SAR images using saliency based location regression network[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 2334–2337.
|
[50] |
李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.
LI Guangshuai, SU Juan, and LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159–168. doi: 10.13700/j.bh.1001-5965.2020.0004.
|
[51] |
AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8333–8349. doi: 10.1109/TGRS.2019.2920534.
|
[52] |
XIAO Xiayang, JIA Hecheng, XIAO Penghao, et al. Aircraft detection in SAR images based on peak feature fusion and adaptive deformable network[J]. Remote Sensing, 2022, 14(23): 6077. doi: 10.3390/rs14236077.
|
[53] |
CHEN Lifu, LUO Ru, XING Jin, et al. Geospatial transformer is what you need for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225715. doi: 10.1109/TGRS.2022.3162235.
|
[54] |
WANG Zhen, XU Nan, GUO Jianxin, et al. SCFNet: Semantic condition constraint guided feature aware network for aircraft detection in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5239420. doi: 10.1109/TGRS.2022.3224599.
|
[55] |
HAN Ping, LIAO Dayu, HAN Binbin, et al. SEAN: A simple and efficient attention network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(18): 4669. doi: 10.3390/rs14184669.
|
[56] |
GUO Qian, WANG Haipeng, and XU Feng. Scattering Enhanced attention pyramid network for aircraft detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7570–7587. doi: 10.1109/TGRS.2020.3027762.
|
[57] |
李广帅, 苏娟, 李义红, 等. 基于卷积神经网络与注意力机制的SAR图像飞机检测[J]. 系统工程与电子技术, 2021, 43(11): 3202–3210. doi: 10.12305/j.issn.1001-506X.2021.11.20.
LI Guangshuai, SU Juan, LI Yihong, et al. Aircraft detection in SAR images based on convolutional neural network and attention mechanism[J]. Systems Engineering and Electronics, 2021, 43(11): 3202–3210. doi: 10.12305/j.issn.1001-506X.2021.11.20.
|
[58] |
夏一帆, 赵凤军, 王樱洁, 等. 基于注意力和自适应特征融合的SAR图像飞机目标检测[J/OL]. 电讯技术, https://doi.org/10.20079/j.issn.1001-893x.221014002, 2023.
XIA Yifan, ZHAO Fengjun, WANG Yingjie, et al. Aircraft detection in SAR images based on attention and adaptive feature fusion[J/OL]. Telecommunication Engineering, https://doi.org/10.20079/j.issn.1001-893x.221014002, 2023.
|
[59] |
李佳芯, 朱卫纲, 杨莹, 等. 基于改进YOLOv5的SAR图像飞机目标检测[J]. 电光与控制, 2023, 30(8): 61–67. doi: 10.39691/j.issn.167-637X.2023.08.011.
LI Jiaxin, ZHU Weigang, YANG Ying, at al. Aircraft targets in SAR images based on improved YOLOv5[J]. Electronics Optics & Control, 2023, 30(8): 61–67. doi: 10.39691/j.issn.1671-637X.2023.08.011.
|
[60] |
GUO Qian, WANG Haipeng, and XU Feng. Aircraft detection in high-resolution SAR images using scattering feature information[C]. The 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–5.
|
[61] |
KANG Yuzhuo, WANG Zhirui, FU Jiamei, et al. SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5218317. doi: 10.1109/TGRS.2021.3130899.
|
[62] |
ZHANG Peng, XU Hao, TIAN Tian, et al. SEFEPNet: Scale expansion and feature enhancement pyramid network for SAR aircraft detection with small sample dataset[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3365–3375. doi: 10.1109/JSTARS.2022.3169339.
|
[63] |
GE Ji, WANG Chao, ZHANG Bo, et al. Azimuth-Sensitive object detection of high-resolution SAR images in complex scenes by using a spatial orientation attention enhancement network[J]. Remote Sensing, 2022, 14(9): 2198. doi: 10.3390/rs14092198.
|
[64] |
ZHANG Peng, XU Hao, TIAN Tian, et al. SFRE-Net: Scattering feature relation enhancement network for aircraft detection in SAR images[J]. Remote Sensing, 2022, 14(9): 2076. doi: 10.3390/rs14092076.
|
[65] |
ZHAO Yan, ZHAO Lingjun, LI Chuyin, et al. Pyramid attention dilated network for aircraft detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 662–666. doi: 10.1109/LGRS.2020.2981255.
|
[66] |
赵琰, 赵凌君, 匡纲要. 基于注意力机制特征融合网络的SAR图像飞机目标快速检测[J]. 电子学报, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
ZHAO Yan, ZHAO Lingjun, and KUANG Gangyao. Attention feature fusion network for rapid aircraft detection in SAR images[J]. Acta Electronica Sinica, 2021, 49(9): 1665–1674. doi: 10.12263/DZXB.20200486.
|
[67] |
ZHAO Yan, ZHAO Lingjun, LIU Zhong, et al. Attentional feature refinement and alignment network for aircraft detection in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220616. doi: 10.1109/TGRS.2021.3139994.
|
[68] |
LUO Ru, CHEN Lifu, XING Jin, et al. A fast aircraft detection method for SAR images based on efficient bidirectional path aggregated attention network[J]. Remote Sensing, 2021, 13(15): 2940. doi: 10.3390/rs13152940.
|
[69] |
HE Chu, TU Mingxia, XIONG Dehui, et al. A component-based multi-layer parallel network for airplane detection in SAR imagery[J]. Remote Sensing, 2018, 10(7): 1016. doi: 10.3390/rs10071016.
|
[70] |
闫华, 张磊, 陆金文, 等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370–381. doi: 10.12000/JR21005.
YAN Hua, ZHANG Lei, LU Jinwen, et al. Frequency-dependent factor expression of the GTD scattering center model for the arbitrary multiple scattering mechanism[J]. Journal of Radars, 2021, 10(3): 370–381. doi: 10.12000/JR21005.
|
[71] |
LI Mingwu, WEN Gongjian, HUANG Xiaohong, et al. A lightweight detection model for SAR aircraft in a complex environment[J]. Remote Sensing, 2021, 13(24): 5020. doi: 10.3390/rs13245020.
|
[72] |
LIN Sizhe, CHEN Ting, HUANG Xiaohong, et al. Synthetic aperture radar image aircraft detection based on target spatial imaging characteristics[J]. Journal of Electronic Imaging, 2022, 32(2): 021608. doi: 10.1117/1.JEI.32.2.021608.
|
[73] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
|
[74] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
|
[75] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539.
|
[76] |
严继伟, 李广帅, 苏娟. 基于多尺度生成式对抗网络的SAR飞机数据集增广[J]. 电光与控制, 2022, 29(7): 62–68.
YAN Jiwei, LI Guangshuai, and SU Juan. SAR aircraft data sets augmentation based on multi-scale generative adversarial network[J]. Electronics Optics & Control, 2022, 29(7): 62–68.
|
[77] |
GAO Quanwei, FENG Zhixi, YANG Shuyuan, et al. Multi-Path interactive network for aircraft identification with optical and SAR images[J]. Remote Sensing, 2022, 14(16): 3922. doi: 10.3390/rs14163922.
|
[78] |
SUN Xian, LV Yixuan, WANG Zhirui, et al. SCAN: Scattering characteristics analysis network for few-shot aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226517. doi: 10.1109/TGRS.2022.3166174.
|
[79] |
ZHAO Danpei, CHEN Ziqiang, GAO Yue, et al. Classification matters more: Global instance contrast for fine-grained SAR aircraft detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203815. doi: 10.1109/TGRS.2023.3250507.
|
[80] |
吕艺璇, 王智睿, 王佩瑾, 等. 基于散射信息和元学习的SAR图像飞机目标识别[J]. 雷达学报, 2022, 11(4): 652–665. doi: 10.12000/JR22044.
LYU Yixuan, WANG Zhirui, WANG Peijin, et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi: 10.12000/JR22044.
|
[81] |
KANG Yuzhuo, WANG Zhirui, ZUO Haoyu, et al. ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202117. doi: 10.1109/TGRS.2023.3236987.
|
[82] |
PAN Zongxu, QIU Xiaolan, HUANG Zhongling, et al. Airplane recognition in TerraSAR-X images via scatter cluster extraction and reweighted sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 112–116. doi: 10.1109/LGRS.2016.2628162.
|
[83] |
王汝意, 张汉卿, 韩冰, 等. 基于角度内插仿真的飞机目标多角度SAR数据集构建方法研究[J]. 雷达学报, 2022, 11(4): 637–651. doi: 10.12000/JR21193.
WANG Ruyi, ZHANG Hanqing, HAN Bing, et al. Multiangle SAR dataset construction of aircraft targets based on angle interpolation simulation[J]. Journal of Radars, 2022, 11(4): 637–651. doi: 10.12000/JR21193.
|
[84] |
AHMADIBENI A, JONES B, BOROOSHAK L, et al. Automatic target recognition of aerial vehicles based on synthetic SAR imagery using hybrid stacked denoising auto-encoders[C]. SPIE 11393, Algoritchms for Synthetic Aperture Radar Imagery XXVII, 2020: 71–82.
|
[85] |
LIU Lei, PAN Zongxu, QIU Xiaolan, et al. SAR target classification with CycleGAN transferred simulated samples[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4411–4414.
|
[86] |
AUER S, BAMLER R, and REINARTZ P. RaySAR-3D SAR simulator: Now open source[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6730–6733.
|
[87] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
|
[88] |
LIU Wenlong, ZHAO Yuejin, LIU Ming, et al. Generating simulated SAR images using Generative Adversarial Network[C]. SPIE 10752, Applications of Digital Image Processing XLI, San Diego, USA, 2018: 32–42.
|
[89] |
Qi Bin OpenSARSim[EB/OL]. https://sourceforge.net/projects/opensarsimongpu/, 2007.
|
[90] |
陈杰, 黄志祥, 夏润繁. 大规模多类SAR目标检测数据集-1.0[J/OL]. 雷达学报, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
CHEN Jie, HUANG Zhixiang, and XIA Runfan. Large-scale multi-class SAR image target detection dataset-1.0[J/OL]. Journal of Radars, https://radars.ac.cn/web/data/getData?dataType=MSAR, 2022.
|
[91] |
AFRL and DARPA. Sensor data management system website, MSTAR Overview[EB/OL]. https://www.sdms.afrl.af.mil/index.php?collection=mstar, 2022.
|
[92] |
LEWIS B, SCARNATI T, SUDKAMP E, et al. A SAR dataset for ATR development: The synthetic and measured paired labeled experiment (SAMPLE)[C]. SPIE 10987, Algorithms for Synthetic Aperture Radar Imagery XXVI, Baltimore, USA, 2019: 39–54.
|
[93] |
HAZLETT M, ANDERSH D J, LEE S W, et al. XPATCH: A high-frequency electromagnetic scattering prediction code using shooting and bouncing rays[C]. SPIE 2469, Targets and Backgrounds: Characterization and Representation, Orlando, USA, 1995: 266–275.
|
[94] |
ANDERSH D, MOORE J, KOSANOVICH S, et al. Xpatch 4: The next generation in high frequency electromagnetic modeling and simulation software[C]. Record of the IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 844–849.
|
[95] |
AHMADIBENI A, BOROOSHAK L, JONES B, et al. Aerial and ground vehicles synthetic SAR dataset generation for automatic target recognition[C]. SPIE 11393, Algorithms for Synthetic Aperture Radar Imagery XXVII, California, United States, 2020: 96–107.
|
[96] |
AHMADIBENI A, JONES B, SMITH D, et al. Dynamic transfer learning from physics-based simulated SAR imagery for automatic target recognition[C]. 3rd International Conference on Dynamic Data Driven Application Systems, Boston, USA, 2020: 152–159.
|
[97] |
JONES B, AHMADIBENI A, and SHIRKHODAIE A. Physics-based simulated SAR imagery generation of vehicles for deep learning applications[C]. SPIE 11511, Applications of Machine Learning, California, United States, 2020: 162–173.
|
[98] |
SHIRKHODAIE A. IRIS-intelligent robotics interface systems[R]. Developed at Tennessee State University, Department of Mechanical and Manufacturing Engineering, 2006.
|
[99] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
|
[100] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556v6, 2015.
|
[101] |
MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 116–131.
|
[102] |
TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. https://arxiv.org/abs/1905.11946v5, 2020.
|
[103] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[104] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
[105] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
|
[106] |
金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083.
|
[107] |
仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
|
[108] |
郁文贤. 自动目标识别的工程视角述评[J]. 雷达学报, 2022, 11(5): 737–752. doi: 10.12000/JR22178.
YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178.
|
[109] |
邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
|
[110] |
黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
|
[111] |
DATCU M, HUANG Zhongling, ANGHEL A, et al. Explainable, physics-aware, trustworthy artificial intelligence: A paradigm shift for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 8–25. doi: 10.1109/MGRS.2023.3237465.
|
[112] |
MISHRA P. Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python[M]. Berkeley: Apress, 2023: 17–249.
|
[113] |
HAQUE A K M B, ISLAM A K M N, and MIKALEF P. Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior literature and problematizing avenues for future research[J]. Technological Forecasting and Social Change, 2023, 186: 122120. doi: 10.1016/j.techfore.2022.122120.
|
[114] |
ZHANG Quanshi, WANG Xin, WU Yingnian, et al. Interpretable CNNs for object classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3416–3431. doi: 10.1109/TPAMI.2020.2982882.
|
[115] |
LUO Ru, XING Jin, CHEN Lifu, et al. Glassboxing deep learning to enhance aircraft detection from SAR imagery[J]. Remote Sensing, 2021, 13(18): 3650. doi: 10.3390/rs13183650.
|
[116] |
KAWAUCHI H and FUSE T. SHAP-Based interpretable object detection method for satellite imagery[J]. Remote Sensing, 2022, 14(9): 1970. doi: 10.3390/rs14091970.
|
[117] |
GUO Xianpeng, HOU Biao, REN Bo, et al. Network pruning for remote sensing images classification based on interpretable CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5605615. doi: 10.1109/TGRS.2021.3077062.
|
[118] |
BELLONI C, BALLERI A, AOUF N, et al. Explainability of deep SAR ATR through feature analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 659–673. doi: 10.1109/TAES.2020.3031435.
|
[119] |
吕小玲, 仇晓兰, 俞文明, 等. 基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析[J]. 雷达学报, 2022, 11(1): 168–182. doi: 10.12000/JR21179.
LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsupervised domain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179.
|
[120] |
郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059.
|
[121] |
HU Mingzhe, ZHANG Jiahan, MATKOVIC L, et al. Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions[J]. Journal of Applied Clinical Medical Physics, 2023, 24(2): e13898. doi: 10.1002/acm2.13898.
|
[122] |
杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884–896. doi: 10.12000/JR22121.
DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121.
|
[123] |
LI Bin, CUI Zongyong, CAO Zongjie, et al. Incremental learning based on anchored class centers for SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235313. doi: 10.1109/TGRS.2022.3208346.
|
[124] |
WANG Li, YANG Xinyao, TAN Haoyue, et al. Few-shot class-incremental SAR target recognition based on hierarchical embedding and incremental evolutionary network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204111. doi: 10.1109/TGRS.2023.3248040.
|