摘要浏览排行

1

近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。

近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。

2
随着无线通信技术的发展,全球通信产业对于无线频谱的需求日益增加。在此背景下,雷达与通信的频谱共享(RCSS)引起了工业界和学术界的极大关注。其内涵不仅包括促成雷达与通信设备的同频共存、互不干扰,从而高效利用频谱,还包括设计一种兼容二者的新型一体化系统,使得该系统能同时完成信息传输与目标探测两种功能。该文围绕雷达与通信频谱共享的两种解决方案:(1)雷达与通信系统的同频共存(RCC); (2)雷达通信一体化(DFRC)系统设计,进行了深入而系统的综述。具体而言,该文首先讨论雷达通信在多个频段共存的实例,然后简要介绍了雷达通信一体化技术在多个领域的应用场景。进一步地,讨论雷达通信同频共存和一体化系统的研究进展。最后,总结全文并讨论了该领域内的若干开放问题。 随着无线通信技术的发展,全球通信产业对于无线频谱的需求日益增加。在此背景下,雷达与通信的频谱共享(RCSS)引起了工业界和学术界的极大关注。其内涵不仅包括促成雷达与通信设备的同频共存、互不干扰,从而高效利用频谱,还包括设计一种兼容二者的新型一体化系统,使得该系统能同时完成信息传输与目标探测两种功能。该文围绕雷达与通信频谱共享的两种解决方案:(1)雷达与通信系统的同频共存(RCC); (2)雷达通信一体化(DFRC)系统设计,进行了深入而系统的综述。具体而言,该文首先讨论雷达通信在多个频段共存的实例,然后简要介绍了雷达通信一体化技术在多个领域的应用场景。进一步地,讨论雷达通信同频共存和一体化系统的研究进展。最后,总结全文并讨论了该领域内的若干开放问题。
3
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。 星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
4
合成孔径雷达3维成像技术可以消除目标和地形在2维图像上产生的严重混叠,显著提升目标识别和3维建模能力,已经成为当前SAR发展的重要趋势。合成孔径雷达3维成像技术经过了数十年的发展,已提出多种技术体制。该文系统性回顾了SAR 3维成像技术领域的发展过程,深入分析了现有SAR 3维成像技术的特点;指出了SAR回波及图像中蕴含的未被现有技术利用的3维信息,提出“合成孔径雷达微波视觉3维成像”的新概念和新思路,将SAR成像方法与微波散射机制和图像视觉语义有机融合,形成SAR微波视觉3维成像理论与方法,实现高效能、低成本的SAR 3维成像。该文重点阐述了SAR微波视觉3维成像的概念、目标和关键科学问题,并给出了初步的技术途径,为SAR 3维成像提供了新的技术思路。 合成孔径雷达3维成像技术可以消除目标和地形在2维图像上产生的严重混叠,显著提升目标识别和3维建模能力,已经成为当前SAR发展的重要趋势。合成孔径雷达3维成像技术经过了数十年的发展,已提出多种技术体制。该文系统性回顾了SAR 3维成像技术领域的发展过程,深入分析了现有SAR 3维成像技术的特点;指出了SAR回波及图像中蕴含的未被现有技术利用的3维信息,提出“合成孔径雷达微波视觉3维成像”的新概念和新思路,将SAR成像方法与微波散射机制和图像视觉语义有机融合,形成SAR微波视觉3维成像理论与方法,实现高效能、低成本的SAR 3维成像。该文重点阐述了SAR微波视觉3维成像的概念、目标和关键科学问题,并给出了初步的技术途径,为SAR 3维成像提供了新的技术思路。
5
可重构电磁超表面是电磁超表面领域广受关注的热点方向。将可控器件/材料引入超表面设计,可重构超表面的电磁调控性能可以实时灵活动态控制。这极大丰富了超表面的功能,有力推动了超表面由理论设计向工程应用突破。近年来该团队持续关注电磁超表面的最新发展,围绕微波频段的可重构超表面,从理论、技术与应用3个层面开展探索研究。该文首先梳理了国内外在该领域的研究历程,然后从可重构超表面对电磁波的幅度、相位和极化特性调控及其应用等方面着手,综述了该团队在该领域的研究成果,并给出对未来工作的展望。 可重构电磁超表面是电磁超表面领域广受关注的热点方向。将可控器件/材料引入超表面设计,可重构超表面的电磁调控性能可以实时灵活动态控制。这极大丰富了超表面的功能,有力推动了超表面由理论设计向工程应用突破。近年来该团队持续关注电磁超表面的最新发展,围绕微波频段的可重构超表面,从理论、技术与应用3个层面开展探索研究。该文首先梳理了国内外在该领域的研究历程,然后从可重构超表面对电磁波的幅度、相位和极化特性调控及其应用等方面着手,综述了该团队在该领域的研究成果,并给出对未来工作的展望。
6
多输入多输出(MIMO)雷达作为一种新体制雷达,利用其发射波形分集的特点,在目标检测、参数估计、射频隐身及抗干扰等诸多方面展现出了突出的性能,经过学者们近20年的深入研究,基于正交波形的MIMO雷达相关理论日臻完善,并在汽车辅助驾驶、安全防卫等领域得到广泛应用。近年来,随着电磁环境感知及知识辅助等概念的引入,基于波形优化的MIMO雷达主动抗干扰、射频隐身、以及探测-通信一体化等技术受到学者们的关注并得到深入研究。该文力图对学者们近20年来围绕MIMO雷达的研究工作进行归纳与综述,内容主要包括:正交波形MIMO雷达原理、目标探测性能分析、典型应用;正交波形MIMO雷达波形设计与特点;基于知识的认知MIMO波形设计与算法;基于MIMO的探测-通信一体化波形设计与算法;MIMO雷达信号处理、数据处理及资源管理。论文最后对MIMO雷达在机载应用中的空时处理(STAP)、MIMO雷达在成像中的信号处理、以及基于时分多波形分集的线性调频毫米波MIMO雷达信号处理等进行了讨论。 多输入多输出(MIMO)雷达作为一种新体制雷达,利用其发射波形分集的特点,在目标检测、参数估计、射频隐身及抗干扰等诸多方面展现出了突出的性能,经过学者们近20年的深入研究,基于正交波形的MIMO雷达相关理论日臻完善,并在汽车辅助驾驶、安全防卫等领域得到广泛应用。近年来,随着电磁环境感知及知识辅助等概念的引入,基于波形优化的MIMO雷达主动抗干扰、射频隐身、以及探测-通信一体化等技术受到学者们的关注并得到深入研究。该文力图对学者们近20年来围绕MIMO雷达的研究工作进行归纳与综述,内容主要包括:正交波形MIMO雷达原理、目标探测性能分析、典型应用;正交波形MIMO雷达波形设计与特点;基于知识的认知MIMO波形设计与算法;基于MIMO的探测-通信一体化波形设计与算法;MIMO雷达信号处理、数据处理及资源管理。论文最后对MIMO雷达在机载应用中的空时处理(STAP)、MIMO雷达在成像中的信号处理、以及基于时分多波形分集的线性调频毫米波MIMO雷达信号处理等进行了讨论。
7

雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。

雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。

8
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。 目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
9
深度学习技术近年来在合成孔径雷达(SAR)图像解译领域发展迅速,但当前基于数据驱动的方法通常忽视了SAR潜在的物理特性,预测结果高度依赖训练数据,甚至违背了物理认知。深层次地整合理论驱动和数据驱动的方法在 SAR 图像解译领域尤为重要,数据驱动的方法擅长从大规模数据中自动挖掘新模式,对物理过程能起到有效的补充;反之,在数据驱动方法中加入可解释的物理模型能提升深度学习算法的透明度,并降低模型对标记样本的依赖。该文提出在SAR图像解译应用领域发展物理可解释的深度学习技术,从SAR信号、特性理解到图像语义和应用场景等多个维度开展研究,并结合物理机器学习提出了几种在SAR解译中融合物理模型和深度学习模型的研究思路,逐步发展可学习且可解释的智能化SAR图像解译新范式。在此基础上,该文回顾了近两三年在SAR图像解译相关领域中整合数据驱动深度学习和理论驱动物理模型的相关工作,主要聚焦信号特性理解和图像语义理解两大方向,并结合研究现状和其他领域的相关研究探讨了目前面临的挑战和未来可能的发展方向。 深度学习技术近年来在合成孔径雷达(SAR)图像解译领域发展迅速,但当前基于数据驱动的方法通常忽视了SAR潜在的物理特性,预测结果高度依赖训练数据,甚至违背了物理认知。深层次地整合理论驱动和数据驱动的方法在 SAR 图像解译领域尤为重要,数据驱动的方法擅长从大规模数据中自动挖掘新模式,对物理过程能起到有效的补充;反之,在数据驱动方法中加入可解释的物理模型能提升深度学习算法的透明度,并降低模型对标记样本的依赖。该文提出在SAR图像解译应用领域发展物理可解释的深度学习技术,从SAR信号、特性理解到图像语义和应用场景等多个维度开展研究,并结合物理机器学习提出了几种在SAR解译中融合物理模型和深度学习模型的研究思路,逐步发展可学习且可解释的智能化SAR图像解译新范式。在此基础上,该文回顾了近两三年在SAR图像解译相关领域中整合数据驱动深度学习和理论驱动物理模型的相关工作,主要聚焦信号特性理解和图像语义理解两大方向,并结合研究现状和其他领域的相关研究探讨了目前面临的挑战和未来可能的发展方向。
10
近年来,以卷积神经网络为代表的深度识别模型取得重要突破,不断刷新光学和SAR图像场景分类、目标检测、语义分割与变化检测等多项任务性能水平。然而深度识别模型以统计学习为主要特征,依赖大规模高质量训练数据,只能提供有限的可靠性能保证。深度卷积神经网络图像识别模型很容易被视觉不可感知的微小对抗扰动欺骗,给其在医疗、安防、自动驾驶和军事等安全敏感领域的广泛部署带来巨大隐患。该文首先从信息安全角度分析了基于深度卷积神经网络的图像识别系统潜在安全风险,并重点讨论了投毒攻击和逃避攻击特性及对抗脆弱性成因;其次给出了对抗鲁棒性的基本定义,分别建立对抗学习攻击与防御敌手模型,系统总结了对抗样本攻击、主被动对抗防御、对抗鲁棒性评估技术的研究进展,并结合SAR图像目标识别对抗攻击实例分析了典型方法特性;最后结合团队研究工作,指出存在的开放性问题,为提升深度卷积神经网络图像识别模型在开放、动态、对抗环境中的鲁棒性提供参考。 近年来,以卷积神经网络为代表的深度识别模型取得重要突破,不断刷新光学和SAR图像场景分类、目标检测、语义分割与变化检测等多项任务性能水平。然而深度识别模型以统计学习为主要特征,依赖大规模高质量训练数据,只能提供有限的可靠性能保证。深度卷积神经网络图像识别模型很容易被视觉不可感知的微小对抗扰动欺骗,给其在医疗、安防、自动驾驶和军事等安全敏感领域的广泛部署带来巨大隐患。该文首先从信息安全角度分析了基于深度卷积神经网络的图像识别系统潜在安全风险,并重点讨论了投毒攻击和逃避攻击特性及对抗脆弱性成因;其次给出了对抗鲁棒性的基本定义,分别建立对抗学习攻击与防御敌手模型,系统总结了对抗样本攻击、主被动对抗防御、对抗鲁棒性评估技术的研究进展,并结合SAR图像目标识别对抗攻击实例分析了典型方法特性;最后结合团队研究工作,指出存在的开放性问题,为提升深度卷积神经网络图像识别模型在开放、动态、对抗环境中的鲁棒性提供参考。
11
太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,简要介绍了太赫兹雷达在预警探测、安检反恐等领域的应用,最后对太赫兹雷达技术的发展方向进行了展望。 太赫兹雷达具有带宽大、分辨率高、多普勒敏感、抗干扰等独特优势,是目标探测领域的重要发展方向。该文首先回顾和介绍了电子学和光学太赫兹雷达系统历史、现状和最新进展,其次对太赫兹雷达目标特性从机理、计算、测量3个方面进行了梳理和概要介绍,同时阐述了太赫兹ISAR、SAR、阵列和孔径编码成像研究状况,简要介绍了太赫兹雷达在预警探测、安检反恐等领域的应用,最后对太赫兹雷达技术的发展方向进行了展望。
12
针对合成孔径雷达(SAR)舰船斜框检测数据集较少,难以满足算法发展和实际应用需求的问题,该文公开了SAR舰船斜框检测数据集(RSDD-SAR),该数据集由84景高分3号数据和41景TerraSAR-X数据切片及2景未剪裁大图,共127景数据构成,包含多种成像模式、多种极化方式、多种分辨率切片7000张,舰船实例10263个,通过自动标注和人工修正相结合的方式高效标注。同时,该文对几种常用的光学遥感图像斜框检测算法和SAR舰船斜框检测算法进行了实验,其中单阶段算法S2ANet检测效果最佳,平均精度达到90.06%。通过实验对比分析形成基准指标,可供相关学者参考。最后,该文通过泛化能力测试,分析讨论了RSDD-SAR数据集训练模型在其他数据集和未剪裁大图上的性能,结果表明:该数据集训练模型具有较好的泛化能力,说明该数据集具有较强的应用价值。RSDD-SAR数据集可在以下网址下载:https://radars.ac.cn/web/data/getData?dataType=SDD-SAR 针对合成孔径雷达(SAR)舰船斜框检测数据集较少,难以满足算法发展和实际应用需求的问题,该文公开了SAR舰船斜框检测数据集(RSDD-SAR),该数据集由84景高分3号数据和41景TerraSAR-X数据切片及2景未剪裁大图,共127景数据构成,包含多种成像模式、多种极化方式、多种分辨率切片7000张,舰船实例10263个,通过自动标注和人工修正相结合的方式高效标注。同时,该文对几种常用的光学遥感图像斜框检测算法和SAR舰船斜框检测算法进行了实验,其中单阶段算法S2ANet检测效果最佳,平均精度达到90.06%。通过实验对比分析形成基准指标,可供相关学者参考。最后,该文通过泛化能力测试,分析讨论了RSDD-SAR数据集训练模型在其他数据集和未剪裁大图上的性能,结果表明:该数据集训练模型具有较好的泛化能力,说明该数据集具有较强的应用价值。RSDD-SAR数据集可在以下网址下载:https://radars.ac.cn/web/data/getData?dataType=SDD-SAR
13
雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。 雷达通过发射天线发射电磁波,经过不同物体反射接收到相应的反射波,对其接收结果进行分析,能得到物体距雷达的位置,径向运动速度等信息,所以对雷达信号的分析具有重要的研究意义。近些年深度学习成为各个领域的研究热点,而在雷达领域同样可通过深度学习算法实现对信号的相应的信息处理。与传统方法相比,深度学习算法具有自动提取深层特征、获取较高准确率等优势。该文具体介绍了近期典型的深度学习算法在雷达信号处理中的应用及研究情况。此外,该文介绍了两个在雷达领域中应用深度学习亟待解决的问题,即过拟合和可解译性。
14
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。 飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
15
三维成像是合成孔径雷达技术发展的前沿趋势之一,目前的SAR三维成像体制主要包括层析和阵列干涉,但面临数据采集周期长或系统过于复杂的问题,为此该文提出了SAR微波视觉三维成像的新技术思路,即充分挖掘利用SAR微波散射机制和图像视觉语义中蕴含的三维线索,并将其与SAR成像模型有效结合,以显著降低SAR三维成像的系统复杂度,实现高效能、低成本的SAR三维成像。为推动SAR微波视觉三维成像理论技术的发展,在国家自然科学基金重大项目支持下,拟构建一个比较完整的SAR微波视觉三维成像数据集。该文概述了该数据集的构成和构建规划,并给出了第一批发布数据(SARMV3D-1.0)的组成和信息描述方式、数据集制作的方法,为该数据集的共享和应用提供支撑。 三维成像是合成孔径雷达技术发展的前沿趋势之一,目前的SAR三维成像体制主要包括层析和阵列干涉,但面临数据采集周期长或系统过于复杂的问题,为此该文提出了SAR微波视觉三维成像的新技术思路,即充分挖掘利用SAR微波散射机制和图像视觉语义中蕴含的三维线索,并将其与SAR成像模型有效结合,以显著降低SAR三维成像的系统复杂度,实现高效能、低成本的SAR三维成像。为推动SAR微波视觉三维成像理论技术的发展,在国家自然科学基金重大项目支持下,拟构建一个比较完整的SAR微波视觉三维成像数据集。该文概述了该数据集的构成和构建规划,并给出了第一批发布数据(SARMV3D-1.0)的组成和信息描述方式、数据集制作的方法,为该数据集的共享和应用提供支撑。
16
随着人口老龄化的到来,跌倒检测逐渐成为研究热点。针对基于毫米波雷达的人体跌倒检测应用,该文提出了一种融合卷积神经网络和长短时记忆网络的距离多普勒热图序列检测网络(RDSNet)模型。首先通过卷积神经网络对距离多普勒热图进行特征提取得到特征向量,然后将动态序列对应的特征向量序列依次输入长短时记忆网络,进而学习得到热图序列的时间相关性信息,最后通过分类器网络得到检测结果。利用毫米波雷达采集了不同对象的多种人体动作,构建了距离多普勒热图数据集。对比试验表明,所提出的RDSNet网络模型检测准确率可达到96.67%,计算时延小于50 ms,而且具有良好的泛化能力,可为跌倒检测和人体姿态识别提供新的技术思路。 随着人口老龄化的到来,跌倒检测逐渐成为研究热点。针对基于毫米波雷达的人体跌倒检测应用,该文提出了一种融合卷积神经网络和长短时记忆网络的距离多普勒热图序列检测网络(RDSNet)模型。首先通过卷积神经网络对距离多普勒热图进行特征提取得到特征向量,然后将动态序列对应的特征向量序列依次输入长短时记忆网络,进而学习得到热图序列的时间相关性信息,最后通过分类器网络得到检测结果。利用毫米波雷达采集了不同对象的多种人体动作,构建了距离多普勒热图数据集。对比试验表明,所提出的RDSNet网络模型检测准确率可达到96.67%,计算时延小于50 ms,而且具有良好的泛化能力,可为跌倒检测和人体姿态识别提供新的技术思路。
17
全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。
18
辐射源个体识别是一种仅通过信号的外部特征测量手段,提取辐射源指纹特征,从而识别发射给定信号的特定辐射源个体的技术。近年来,辐射源个体识别技术相关理论与实践应用不断完善,指纹特征提取方法的研究取得了较大的进展。该文在分析国内外大量学术研究成果的基础上,从指纹特征的内在逻辑出发提出了一种新的特征框架。该框架根据不同特征对辐射源指纹的描述特性以及相互之间的关联,将指纹特征划分为直接测量特征和降维变换特征两大类共3个层次,并系统性地梳理了辐射源指纹特征提取方法的研究现状。最后,该文对辐射源指纹特征提取的几个潜在研究方向进行了分析和展望, 希望对辐射源个体识别的研究和应用有所裨益。 辐射源个体识别是一种仅通过信号的外部特征测量手段,提取辐射源指纹特征,从而识别发射给定信号的特定辐射源个体的技术。近年来,辐射源个体识别技术相关理论与实践应用不断完善,指纹特征提取方法的研究取得了较大的进展。该文在分析国内外大量学术研究成果的基础上,从指纹特征的内在逻辑出发提出了一种新的特征框架。该框架根据不同特征对辐射源指纹的描述特性以及相互之间的关联,将指纹特征划分为直接测量特征和降维变换特征两大类共3个层次,并系统性地梳理了辐射源指纹特征提取方法的研究现状。最后,该文对辐射源指纹特征提取的几个潜在研究方向进行了分析和展望, 希望对辐射源个体识别的研究和应用有所裨益。
19
非接触式的医疗健康监测系统解决了用户依从性问题,避免了佩戴电极、传感设备进行监测带来的不舒适感,更有助于将健康监测融入日常生活。非接触式监测手段具有持续地监测用户健康状况的潜力,能够在突发急性医疗事件出现时及时示警,且能够满足新生儿、烧伤患者、传染病患者等特殊人群的监测需求。调频连续波(FMCW)雷达能够同时捕获雷达视场内目标的距离、速度信息,可用于非接触式地监测用户的心率、呼吸率等生理体征及跌倒等行为动作,且从技术上易于单片集成,成本可控,因此在医疗健康监测领域有着重要的应用价值。该文首先阐述了将FMCW雷达应用于非接触式医疗健康监测技术的理论基础,然后系统性地归纳了该领域中的典型前沿应用,最后总结了基于FMCW雷达的医疗健康应用这一领域的研究现状及局限性,并对其应用前景与潜在的研究方向进行了展望。 非接触式的医疗健康监测系统解决了用户依从性问题,避免了佩戴电极、传感设备进行监测带来的不舒适感,更有助于将健康监测融入日常生活。非接触式监测手段具有持续地监测用户健康状况的潜力,能够在突发急性医疗事件出现时及时示警,且能够满足新生儿、烧伤患者、传染病患者等特殊人群的监测需求。调频连续波(FMCW)雷达能够同时捕获雷达视场内目标的距离、速度信息,可用于非接触式地监测用户的心率、呼吸率等生理体征及跌倒等行为动作,且从技术上易于单片集成,成本可控,因此在医疗健康监测领域有着重要的应用价值。该文首先阐述了将FMCW雷达应用于非接触式医疗健康监测技术的理论基础,然后系统性地归纳了该领域中的典型前沿应用,最后总结了基于FMCW雷达的医疗健康应用这一领域的研究现状及局限性,并对其应用前景与潜在的研究方向进行了展望。
20
阵列信号处理是雷达领域各类应用的核心技术之一。近年来,互质阵列的提出打破了传统方法受限于奈奎斯特采样速率这一瓶颈,其稀疏布设的阵列结构和互质欠采样的信号处理方式大幅降低了系统所需的软硬件开销,为当前不断提升的实际应用需求提供了理论基础和技术前提。鉴于其在自由度、分辨率及计算复杂度等方面的性能优势,互质阵列信号处理的理论和技术研究受到了国内外学者的广泛关注。该文分别从波达方向估计和自适应波束成形这两个阵列信号处理领域的基本问题出发,介绍了互质阵列信号处理方向的研究进展。在互质阵列波达方向估计方面,该文总结了互质子阵分解方法和虚拟阵列信号处理方法等两类典型技术路线,并以此为基础介绍了压缩感知和无网格化技术在低复杂度和超分辨估计等方面的最新研究工作。在互质阵列波束成形方面,该文剖析了其与互质阵列波达方向估计问题的区别与联系,并介绍了面向互质阵列的高效鲁棒自适应波束成形设计方法。该文旨在通过对互质阵列信号处理研究前沿的分类归纳和总结,探讨各类方法的优势和未来的研究方向,为其在雷达等领域的产业需求和实际应用提供理论和技术参考。 阵列信号处理是雷达领域各类应用的核心技术之一。近年来,互质阵列的提出打破了传统方法受限于奈奎斯特采样速率这一瓶颈,其稀疏布设的阵列结构和互质欠采样的信号处理方式大幅降低了系统所需的软硬件开销,为当前不断提升的实际应用需求提供了理论基础和技术前提。鉴于其在自由度、分辨率及计算复杂度等方面的性能优势,互质阵列信号处理的理论和技术研究受到了国内外学者的广泛关注。该文分别从波达方向估计和自适应波束成形这两个阵列信号处理领域的基本问题出发,介绍了互质阵列信号处理方向的研究进展。在互质阵列波达方向估计方面,该文总结了互质子阵分解方法和虚拟阵列信号处理方法等两类典型技术路线,并以此为基础介绍了压缩感知和无网格化技术在低复杂度和超分辨估计等方面的最新研究工作。在互质阵列波束成形方面,该文剖析了其与互质阵列波达方向估计问题的区别与联系,并介绍了面向互质阵列的高效鲁棒自适应波束成形设计方法。该文旨在通过对互质阵列信号处理研究前沿的分类归纳和总结,探讨各类方法的优势和未来的研究方向,为其在雷达等领域的产业需求和实际应用提供理论和技术参考。