[1] |
Casagli N, Catani F, Del Ventisette C, et al. Monitoring, prediction, and early warning using ground-based radar interferometry[J]. Landslides, 2010, 7(3): 291–301. DOI: 10.1007/s10346-010-0215-y
|
[2] |
Dzvonkovskaya A. HF surface wave radar for tsunami alerting: From system concept and simulations to integration into early warning systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(3): 48–58. DOI: 10.1109/MAES.2018.160267
|
[3] |
Baer G, Magen Y, Nof R N, et al. InSAR measurements and viscoelastic modeling of sinkhole precursory subsidence: Implications for sinkhole formation, early warning, and sediment properties[J]. Journal of Geophysical Research:Earth Surface, 2018, 123(4): 678–693. DOI: 10.1002/jgrf.v123.4
|
[4] |
Beasley J E, Howells H, and Sonander J. Improving short-term conflict alert via tabu search[J]. Journal of the Operational Research Society, 2002, 53(6): 593–602. DOI: 10.1057/palgrave.jors.2601358
|
[5] |
周游, 任伦, 李硕. 基于ADS_B的警戒搜索雷达空情过滤方法[J]. 火控雷达技术, 2018, 47(1): 21–23, 31Zhou You, Ren Lun, and Li Shuo. Method of warning search radar air situation filtering based on ADS_B[J]. Fire Control Radar Technology, 2018, 47(1): 21–23, 31
|
[6] |
Lorente P, Varela S P, Soto-Navarro J, et al. The high-frequency coastal radar network operated by puertos del estado (Spain): Roadmap to a fully operational implementation[J]. IEEE Journal of Oceanic Engineering, 2017, 42(1): 56–72.
|
[7] |
Borge J C N and Soares C G. Analysis of directional wave fields using X-band navigation radar[J]. Coastal Engineering, 2000, 40(4): 375–391. DOI: 10.1016/S0378-3839(00)00019-3
|
[8] |
Huang H and Wang W Q. FDA-OFDM for integrated navigation, sensing, and communication systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6): 34–42.
|
[9] |
Scannapieco A F, Renga A, Fasano G, et al. Experimental analysis of radar odometry by commercial ultralight radar sensor for miniaturized UAS[J]. Journal of Intelligent&Robotic Systems, 2018, 90(3/4): 485–503.
|
[10] |
Bao X H, Luo Y L, Sun J X, et al. Assimilating Doppler radar observations with an ensemble Kalman filter for convection-permitting prediction of convective development in a heavy rainfall event during the pre-summer rainy season of South China[J]. Science China Earth Sciences, 2017, 60(10): 1866–1885. DOI: 10.1007/s11430-017-9076-9
|
[11] |
Orzel K A and Frasier S J. Weather observation by an electronically scanned dual-polarization phase-tilt radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2722–2734. DOI: 10.1109/TGRS.2017.2782480
|
[12] |
Li N, Wang Z H, Sun K Y, et al. A quality control method of ground-based weather radar data based on statistics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2211–2219. DOI: 10.1109/TGRS.2017.2776562
|
[13] |
施岩龙, 黄柏圣, 晏靖靖, 等. 基于组网雷达的探测资源调配研究[J]. 现代雷达, 2017, 36(6): 12–15, 22. DOI: 10.16592/j.cnki.1004-7859.2017.06.003Shi Yan-long, Huang Bai-sheng, Yan Jing-jing, et al. A study on detection resource management based on radar network[J]. Modern Radar, 2017, 36(6): 12–15, 22. DOI: 10.16592/j.cnki.1004-7859.2017.06.003
|
[14] |
Maury S, Tiwari R K, and Balaji S. Joint application of satellite remote sensing, ground penetrating radar (GPR) and resistivity techniques for targeting ground water in fractured Ophiolites of South Andaman Island, India[J]. Environmental Earth Sciences, 2016, 75(3): 237. DOI: 10.1007/s12665-015-5007-1
|
[15] |
Dhakate R, Amarender B, Kumar V S, et al. Application of ground-penetrating radar for identification of groundwater resources in a coastal terrain[J]. Arabian Journal of Geosciences, 2015, 8(7): 4703–4715. DOI: 10.1007/s12517-014-1567-8
|
[16] |
Sulistioadi Y B, Tseng K H, Shum C K, et al. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia[J].Hydrology and Earth System Sciences Discussions, 2014, 11: 2825–2874. DOI: 10.5194/hessd-11-2825-2014
|
[17] |
Melo S, Maresca S, Pinna S, et al. Photonics-based dual-band radar for Landslides monitoring in presence of multiple scatterers[J]. Journal of Lightwave Technology, 2018, 36(12): 2337–2343. DOI: 10.1109/JLT.2018.2814638
|
[18] |
徐方. 环境监测对环境治理的促进性作用[J]. 环境与发展, 2018, 30(1): 133, 136Xu F. Environmental monitoring on the promotion of environmental governance role[J]. Environment and Development, 2018, 30(1): 133, 136
|
[19] |
Rosenkrantz A B, Verma S, Choyke P, et al. Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: A consensus statement by AUA and SAR[J]. Journal of Urology, 2016, 196(6): 1613–1618. DOI: 10.1016/j.juro.2016.06.079
|
[20] |
Confuorto P, Di Martire D, Centolanza G, et al. Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis[J]. Remote Sensing of Environment, 2017, 188: 51–72. DOI: 10.1016/j.rse.2016.11.002
|
[21] |
Zhang G S, Perrie W, Li X F, et al. A hurricane morphology and sea surface wind vector estimation model based on C-band cross-polarization SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1743–1751. DOI: 10.1109/TGRS.2016.2631663
|
[22] |
Deledalle C A, Denis L, Tupin F, et al. NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2021–2038. DOI: 10.1109/TGRS.2014.2352555
|
[23] |
Dellinger F, Delon J, Gousseau Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 453–466. DOI: 10.1109/TGRS.2014.2323552
|
[24] |
Krieger G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. DOI: 10.1109/TGRS.2013.2263934
|
[25] |
Wang C, Xia H Y, Liu Y P, et al. Spatial resolution enhancement of coherent Doppler wind lidar using joint time-frequency analysis[J]. Optics Communications, 2018, 424: 48–53. DOI: 10.1016/j.optcom.2018.04.042
|
[26] |
Ai X F, Wang L D, Wang M X, et al.. Bistatic high-range resolution profiles of wobbling targets[C]. Proceedings of IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4
|
[27] |
Berndt R J. Aircraft micro-Doppler feature extraction from high range resolution profiles[C]. Proceedings of 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 457–462
|
[28] |
Kim K T. Focusing of high range resolution profiles of moving targets using stepped frequency waveforms[J]. IET Radar,Sonar&Navigation, 2010, 4(4): 564–575.
|
[29] |
Du R, Fan Y Y, and Wang J S. Pedestrian and bicyclist identification through micro Doppler signature with different approaching aspect angles[J]. IEEE Sensors Journal, 2018, 18(9): 3827–3835. DOI: 10.1109/JSEN.2018.2816594
|
[30] |
Li G, Zhang R, Ritchie M, et al. Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 655–665. DOI: 10.1109/TAES.2017.2761229
|
[31] |
Ji J Z, Jiang J X, Al-Armaghany A, et al. Nutation and geometrical parameters estimation of cone-shaped target based on micro-Doppler effect[J]. Optik-International Journal for Light and Electron Optics, 2017, 150: 1–10. DOI: 10.1016/j.ijleo.2017.09.087
|
[32] |
Singh A K and Kim Y H. Automatic measurement of blade length and rotation rate of drone using W-band micro-Doppler radar[J]. IEEE Sensors Journal, 2018, 18(5): 1895–1902. DOI: 10.1109/JSEN.2017.2785335
|
[33] |
Quan Y H, Wu Y J, Li Y C, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar,Sonar&Navigation, 2018, 12(3): 348–352.
|
[34] |
Gui R H, Wang W Q, Pan Y, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. DOI: 10.1109/JSTSP.2018.2793761
|
[35] |
Kesaraju S, Mathews J D, Milla M, et al. Range-Doppler mapping of space-based targets using the JRO 50 MHz radar[J]. Earth,Moon,and Planets, 2017, 120(3): 169–188. DOI: 10.1007/s11038-017-9510-0
|
[36] |
Wang Y K, Xiao Z L, Wu L, et al. Jittered Chirp sequence waveform in combination with CS-based unambiguous Doppler processing for automotive frequency-modulated continuous wave radar[J]. IET Radar,Sonar&Navigation, 2017, 11(12): 1877–1885.
|
[37] |
Krizhevsky A, Sutskever I, and Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, 1: 1097–1105
|
[38] |
Tao C, Pan H B, Li Y S, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438–2442. DOI: 10.1109/LGRS.2015.2482520
|
[39] |
Hinton G E, Osindero S, and Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554. DOI: 10.1162/neco.2006.18.7.1527
|
[40] |
袁秋壮, 魏松杰, 罗娜. 基于深度学习神经网络的SAR星上目标识别系统研究[J]. 上海航天, 2017, 34(5): 46–53. DOI: 10.19328/j.cnki.1006-1630.2017.05.007Yuan Qiu-zhuang, Wei Song-jie, and Luo Na. Research on SAR satellite target recognition system based on deep learning neural network[J]. Aerospace Shanghai, 2017, 34(5): 46–53. DOI: 10.19328/j.cnki.1006-1630.2017.05.007
|
[41] |
Wang C, Zhang H, Wu F, et al.. Ship classification with deep learning using COSMO-SkyMed SAR data[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 2017: 558–561
|
[42] |
Ding J, Chen B, Liu H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368.
|
[43] |
朱同宇. 基于深度学习的合成孔径雷达地面目标识别技术研究[D]. [硕士论文], 哈尔滨工业大学, 2017Zhu Tong-yu. Research on ground target recognition techniques of synthetic aperture radar based on deep learning[D]. [Master dissertation], Harbin Institute of Technology, 2017
|
[44] |
Tang X X, Zhang X L, Shi J, et al.. SAR deception jamming target recognition based on the shadow feature[C]. Proceedings of the 25th European Signal Processing Conference, Kos, Greece, 2017: 2491–2495
|
[45] |
Scarpa G, Gargiulo M, Mazza A, et al. A CNN-based fusion method for feature extraction from sentinel data[J]. Remote Sensing, 2018, 10(2): 236. DOI: 10.3390/rs10020236
|
[46] |
Hughes L H, Schmitt M, Mou L C, et al. Identifying corresponding patches in SAR and optical images with a Pseudo-Siamese CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 784–788. DOI: 10.1109/LGRS.2018.2799232
|
[47] |
Bentes C, Velotto D, and Tings B. Ship classification in TerraSAR-X images with convolutional neural networks[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 258–266. DOI: 10.1109/JOE.2017.2767106
|
[48] |
Wang L, Scott K A, Xu L L, et al. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4524–4533. DOI: 10.1109/TGRS.2016.2543660
|
[49] |
Zhou Y, Wang H P, Xu F, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1935–1939. DOI: 10.1109/LGRS.2016.2618840
|
[50] |
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. DOI: 10.12000/JR16130Xu Feng, Wang Hai-peng, and Jin Ya-qiu. Deep learning as applied in SAR target recognition and Terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. DOI: 10.12000/JR16130
|
[51] |
Zhang Z M, Wang H P, Xu F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. DOI: 10.1109/TGRS.2017.2743222
|
[52] |
Hu W M, Hu R G, Xie N H, et al. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1513–1526. DOI: 10.1109/TIP.2014.2303639
|
[53] |
赵娟萍, 郭炜炜, 柳彬, 等. 基于概率转移卷积神经网络的含噪标记SAR图像分类[J]. 雷达学报, 2017, 6(5): 514–523. DOI: 10.12000/JR16140Zhao Juan-ping, Guo Wei-wei, Liu Bin, et al. Convolutional neural network-based SAR image classification with noisy labels[J]. Journal of Radars, 2017, 6(5): 514–523. DOI: 10.12000/JR16140
|
[54] |
Wang P Y, Zhang H, and Patel V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763–1767. DOI: 10.1109/LSP.2017.2758203
|
[55] |
Chierchia G, Cozzolino D, Poggi G, et al.. SAR image despeckling through convolutional neural networks[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 2017: 5438–5441
|
[56] |
Bai Y B, Gao C, Singh S, et al. A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 43–47. DOI: 10.1109/LGRS.2017.2772349
|
[57] |
Iandola F N, Han S, Moskewicz M W, et al.. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL]. http://arxiv.org/abs/1602.07360.2016
|
[58] |
Zagoruyko S and Komodakis N. Wide residual networks[EB/OL]. http://arxiv.org/abs/1605.07146.2017
|
[59] |
于文倩. 基于自适应频域信息和深度学习的SAR图像分割[D]. [硕士论文], 西安电子科技大学, 2014Yu Wen-qian. SAR image segmentation based on the adaptive frequency domain information and deep learning[D]. [Master dissertation], Xidian University, 2014
|
[60] |
高蓉. 面向极化SAR地物分类的稀疏深度网络[D]. [硕士论文], 西安电子科技大学, 2015Gao Rong. Sparse deep networks for polarimetric SAR Terrain classification[D]. [Master dissertation], Xidian University, 2015
|
[61] |
Hou B, Kou H D, and Jiao L C. Classification of polarimetric SAR images using multilayer autoencoders and superpixels[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3072–3081. DOI: 10.1109/JSTARS.2016.2553104
|
[62] |
石俊飞, 刘芳, 林耀海, 等. 基于深度学习和层次语义模型的极化SAR分类[J]. 自动化学报, 2017, 43(2): 215–226. DOI: 10.16383/j.aas.2017.c150660Shi Jun-fei, Liu Fang, Lin Yao-hai, et al. Polarimetric SAR image classification based on deep learning and hierarchical semantic model[J]. Acta Automatica Sinica, 2017, 43(2): 215–226. DOI: 10.16383/j.aas.2017.c150660
|
[63] |
康妙, 计科峰, 冷祥光, 等. 基于栈式自编码器特征融合的SAR图像车辆目标识别[J]. 雷达学报, 2017, 6(2): 167–176. DOI: 10.12000/JR16112Kang Miao, Ji Kengfeng, Leng Xiangguang, et al. SAR target recognition with feature fusion based on stacked autoencoder[J]. Journal of Radars, 2017, 6(2): 167–176. DOI: 10.12000/JR16112
|
[64] |
Chen G D, Li Y, Sun G M, et al. Application of deep networks to oil spill detection using polarimetric synthetic aperture radar images[J]. Applied Sciences, 2017, 7(10): 968. DOI: 10.3390/app7100968
|
[65] |
涂松. 高分辨率SAR图像目标快速提取算法研究[D]. [博士论文], 国防科学技术大学, 2016Tu Song. Fast and accurate target extraction for high-resolution SAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2016
|
[66] |
Kang M, Ji K F, Leng X G, et al. Synthetic aperture radar target recognition with feature fusion based on a stacked autoencoder[J]. Sensors, 2017, 17(1): 192.
|
[67] |
De S, Pirrone D, Bovolo F, et al.. A novel change detection framework based on deep learning for the analysis of multi-temporal polarimetric SAR images[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 2017: 5193–5196
|
[68] |
阮怀玉. 基于稀疏表示和深度学习的SAR图像目标识别研究[D]. [硕士论文], 中国科学技术大学, 2016Ruan Huai-yu. SAR image target recognition based on sparse representation and deep learning[D]. [Master dissertation], University of Science and Technology of China, 2016
|
[69] |
罗小欢. 基于深度置信网的极化SAR图像分类[D]. [硕士论文], 西安电子科技大学, 2014Luo Xiao-huan. Classification of polarimetric SAR images based on deep belief networks[D]. [Master dissertation], Xidian University, 2014
|
[70] |
Lv Q, Dou Y, Niu X, et al.. Classification of land cover based on deep belief networks using polarimetric RADARSAT-2 data[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 2014: 4679–4682
|
[71] |
赵昌锋. 基于深度学习的干涉SAR图像分类[D]. [硕士论文], 西安电子科技大学, 2015Zhao Chang-feng. InSAR image classification based on deep learning[D]. [Master dissertation], Xidian University, 2015
|
[72] |
Quan D, Wang S, Ning M D, et al.. Using deep neural networks for synthetic aperture radar image registration[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 2799–2802
|
[73] |
Lundén J and Koivunen V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2016: 1–6
|
[74] |
张欢. 基于射频隐身的机载雷达系统软件实现及HRRP目标识别研究[D]. [硕士论文], 南京航空航天大学, 2016Zhang Huan. RF stealth based airborne radar system simulation and HRRP target recognition research[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2016
|
[75] |
Zhao F X, Liu Y X, Huo K, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173.
|
[76] |
Feng B, Chen B, and Liu H W. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. DOI: 10.1016/j.patcog.2016.08.012
|
[77] |
Xia J Y, Li X, and Liu Y X. Application of a new restricted Boltzmann machine to radar target recognition[C]. Proceedings of 2016 Progress in Electromagnetic Research Symposium, Shanghai, China, 2016: 2195–2201
|
[78] |
Pan M, Jiang J, Kong Q P, et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1609–1613. DOI: 10.1109/LGRS.2017.2726098
|
[79] |
Jithesh V, Sagayaraj M J, and Srinivasa K G. LSTM recurrent neural networks for high resolution range profile based radar target classification[C]. Proceedings of the 2017 3rd International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 2017: 1–6
|
[80] |
Shao Y M, Guo S, Sun L, et al.. Human motion classification based on range information with deep convolutional neural network[C]. Proceedings of the 2017 4th International Conference on Information Science and Control Engineering, Changsha, China, 2017: 1519–1523
|
[81] |
Kim Y and Toomajian B. Hand gesture recognition using micro-Doppler signatures with convolutional neural network[J]. IEEE Access, 2016, 4: 7125–7130. DOI: 10.1109/ACCESS.2016.2617282
|
[82] |
Kim Y and Moon T. Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1): 8–12. DOI: 10.1109/LGRS.2015.2491329
|
[83] |
Trommel R P, Harmanny R I A, Cifola L, et al.. Multi-target human gait classification using deep convolutional neural networks on micro-Doppler spectrograms[C]. Proceedings of 2016 European Radar Conference, London, UK, 2016: 81–84
|
[84] |
Park J, Javier R J, Moon T, et al. Micro-Doppler based classification of human aquatic activities via transfer learning of convolutional neural networks[J]. Sensors, 2016, 16(12): 1990. DOI: 10.3390/s16121990
|
[85] |
Kim Y and Li Y. Human Activity classification with transmission and reflection coefficients of on-body antennas through deep convolutional neural networks[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2764–2768. DOI: 10.1109/TAP.2017.2677918
|
[86] |
Jokanovic B, Amin M, and Ahmad F. Radar fall motion detection using deep learning[C]. Proceedings of 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2016: 1–6
|
[87] |
Seyfioğlu M S, Gürbüz S Z, Özbayoğlu A M, et al.. Deep learning of micro-Doppler features for aided and unaided gait recognition[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, WA, USA, 2017: 1125–1130
|
[88] |
张国祥. 基于深度神经网络的人车分类算法[D]. [硕士论文], 西安电子科技大学, 2016Zhang Guo-xiang. Vehicle-pedestrian classification based on deep neural networks[D]. [Master dissertation], Xidian University, 2016
|
[89] |
Seyfioğlu M S and Gürbüz S Z. Deep neural network initialization methods for micro-Doppler classification with low training sample support[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2462–2466. DOI: 10.1109/LGRS.2017.2771405
|
[90] |
Wang S W, Song J, Lien J, et al.. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 2016: 851–860
|
[91] |
Jokanović B and Amin M. Fall detection using deep learning in range-Doppler radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 180–189. DOI: 10.1109/TAES.2017.2740098
|
[92] |
李腾飞, 秦永彬. 基于迭代深度学习的缺陷检测[J]. 计算机与数字工程, 2017, 45(6): 1133–1137. DOI: 10.3969/j.issn.1672-9722.2017.06.025Li Teng-fei and Qin Yong-bin. Feature detection base on iterative deep learning[J]. Computer and Digital Engineering, 2017, 45(6): 1133–1137. DOI: 10.3969/j.issn.1672-9722.2017.06.025
|
[93] |
郑晓飞, 郭创, 姚斌, 等. 基于深度学习的航空传感器故障诊断方法[J]. 计算机工程, 2017, 43(7): 281–287. DOI: 10.3969/j.issn.1000-3428.2017.07.047Zheng Xiao-fei, Guo Chuang, Yao Bin, et al. Fault diagnosis method for aerial sensor based on deep learning[J]. Computer Engineering, 2017, 43(7): 281–287. DOI: 10.3969/j.issn.1000-3428.2017.07.047
|
[94] |
孙志军, 薛磊, 许阳明. 基于深度学习的边际Fisher分析特征提取算法[J]. 电子与信息学报, 2013, 35(4): 805–811. DOI: 10.3724/SP.J.1146.2012.00949Sun Zhi-jun, Xue Lei, and Xu Yang-ming. Marginal fisher feature extraction algorithm based on deep learning[J]. Journal of Electronics&Information Technology, 2013, 35(4): 805–811. DOI: 10.3724/SP.J.1146.2012.00949
|
[95] |
Ashiquzzaman A, Tushar A K, Islam M R, et al.. Reduction of Overfitting in Diabetes Prediction Using Deep Learning Neural Network[M]. Kim K J, Kim H, and Baek N. IT Convergence and Security. Singapore: Springer, 2018: 35–43
|
[96] |
Feng X Y, Liang Y C, Shi X H, et al. Overfitting reduction of text classification based on AdaBELM[J]. Entropy, 2017, 19(7): 330. DOI: 10.3390/e19070330
|
[97] |
Yu Z, Tan E L, Ni D, et al. A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(3): 874–885. DOI: 10.1109/JBHI.2017.2705031
|
[98] |
熊红凯, 高星, 李邵辉, 等. 可解释化、结构化、多模态化的深度神经网络[J]. 模式识别与人工智能, 2018, 31(1): 1–11. DOI: 10.16451/j.cnki.issn1003-6059.201801001Xiong Hong-kai, Gao Xing, Li Shao-hui, et al. Interpretable structured multi-modal deep neural network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 1–11. DOI: 10.16451/j.cnki.issn1003-6059.201801001
|
[99] |
Zeiler M D, Krishnan D, Taylor G W, et al.. Deconvolutional networks[C]. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010: 2528–2535
|
[100] |
Zeiler M D, Taylor G W, and Fergus R. Adaptive deconvolutional networks for mid and high level feature learning[C]. Proceedings of 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2018–2025
|
[101] |
Dosovitskiy A and Brox T. Inverting visual representations with convolutional networks[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 4829–4837
|
[102] |
Zuallaert J, Kim M, Saeys Y, et al.. Interpretable convolutional neural networks for effective translation initiation site prediction[C]. Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, MO, USA, 2017: 1233–1237
|