可重构电磁超表面及其应用研究进展

杨欢欢 曹祥玉 高军 李桐 李思佳 丛丽丽 赵霞

杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137
引用本文: 杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137
YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
Citation: YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137

可重构电磁超表面及其应用研究进展

doi: 10.12000/JR20137
基金项目: 国家自然科学基金(61671464, 61701523, 61801508),陕西省自然科学基础研究计划(2019JQ-103, 2020JM-350),陕西省青年人才托举计划(20200108),博士后创新人才支持计划(BX20180375),中国博士后科学基金面上项目(2019M653960)
详细信息
    作者简介:

    杨欢欢(1989–),男,河南驻马店人,博士后,副教授、硕士生导师。空军工程大学与清华大学联合培养博士生,2016年获博士学位,现担任空军工程大学信息与导航学院副教授。主要研究方向为相控阵天线、新型天线设计、人工电磁结构等,目前已发表论文50多篇。E-mail: jianye8901@126.com

    曹祥玉(1964–),女,河南南阳人,教授、博士生导师。1999年在空军工程大学获博士学位,现担任空军工程大学信息与导航学院教授。主要研究方向为天线与电磁兼容、人工电磁材料、计算电磁学等,目前已发表论文300多篇。E-mail: xiangyucaokdy@163.com

    高 军(1962–),男,青海西宁人,教授、硕士生导师。1987年在空军工程大学获硕士学位,现担任空军工程大学信息与导航学院教授。主要研究方向为电磁超材料及其应用、高增益天线等,目前已发表论文100多篇。E-mail: gjgj9694@sina.com

    李 桐(1988–),女,陕西西安人,博士后,副教授。2015年获西安电子科技大学博士学位,现担任空军工程大学信息与导航学院副教授。主要研究方向为可重构天线、可重构超表面、天线RCS减缩技术等。E-mail: tongli8811@sina.com

    李思佳(1987–),男,陕西西安人,博士后,副教授、硕士生导师。2015年获空军工程大学博士学位,现担任空军工程大学信息与导航学院副教授。主要研究方向为人工电磁结构、天线RCS减缩技术等。E-mail: lsj051@126.com

    丛丽丽(1991–),女,山东文登人,博士,讲师。2015年获空军工程大学博士学位,现担任空军工程大学信息与导航学院讲师。主要研究方向为天线RCS减缩技术、新型电磁超表面等

    通讯作者:

    杨欢欢 jianye8901@126.com

    曹祥玉 xiangyucaokdy@163.com

  • 责任主编:李廉林 Corresponding Editor: LI Lianlin
  • 中图分类号: TN82

Recent Advances in Reconfigurable Metasurfaces and Their Applications

Funds: The National Natural Science Foundation of China (61671464, 61701523, 61801508), The Natural Science Basic Research Program of Shaanxi Province (2019JQ-103, 2020JM-350), Young Talents Support Program of Shaanxi Province (20200108), Postdoctoral Innovative Talents Support Program of China (BX20180375), Postdoctoral Science Foundation of China (2019M653960)
More Information
  • 摘要: 可重构电磁超表面是电磁超表面领域广受关注的热点方向。将可控器件/材料引入超表面设计,可重构超表面的电磁调控性能可以实时灵活动态控制。这极大丰富了超表面的功能,有力推动了超表面由理论设计向工程应用突破。近年来该团队持续关注电磁超表面的最新发展,围绕微波频段的可重构超表面,从理论、技术与应用3个层面开展探索研究。该文首先梳理了国内外在该领域的研究历程,然后从可重构超表面对电磁波的幅度、相位和极化特性调控及其应用等方面着手,综述了该团队在该领域的研究成果,并给出对未来工作的展望。

     

  • 图  1  反射型超表面单元可重构的主要方式

    Figure  1.  Reconfigurable methods of reflective metasurfaces

    图  2  电可控Hilbert吸波可重构超表面

    Figure  2.  Electronic controllable Hilbert metasurface absorber

    图  3  电可控Hilbert吸波可重构超表面反射系数

    Figure  3.  Reflectivity of the reconfigurable Hilbert metasurface absorber

    图  4  电可控宽带吸波可重构超表面[54]

    Figure  4.  Electronic controllable broadband reconfigurable absorber[54]

    图  5  电可控宽带吸波可重构超表面反射系数

    Figure  5.  Reflectivity of the reconfigurable absorber

    图  6  1比特相位可重构超表面

    Figure  6.  1-bit phase-reconfigurable metasurface

    图  7  低损耗相位可重构超表面

    Figure  7.  Phase reconfigurable metasurface with low loss

    图  8  超宽带低损耗相位可重构超表面结构

    Figure  8.  Ultra-wideband and low-loss phase reconfigurable metasurface

    图  9  低损耗紧凑型1比特可重构超表面

    Figure  9.  Compact 1 bit reconfigurable metasurface with low loss

    图  10  全空间相位可重构超表面

    Figure  10.  Entire-space phase reconfigurable metasurface

    图  11  X频段超表面编码状态与极化可重构性能

    Figure  11.  Coding matrix and polarization reconfigurable properties of the X-band metasurface

    图  12  宽带线-线极化可重构超表面及其功能

    Figure  12.  Wideband linear-to-linear polarization reconfigurable metasurface and its properties

    图  13  宽带多极化可重构超表面及其功能

    Figure  13.  Wideband multi-polarization reconfigurable metasurface and its properties

    图  14  超宽带多极化可重构超表面单元

    Figure  14.  Ultra-wideband multi-polarization reconfigurable metasurface unit cell

    图  15  超宽带紧凑型多极化可重构超表面单元

    Figure  15.  Ultra-wideband multi- polarization compact reconfigurable metasurface unit cell

    图  16  10×10电控反射阵列天线

    Figure  16.  Electronic controllable 10×10 reflectarray antenna

    图  17  40×40双频电控阵列天线

    Figure  17.  Electronic controllable dual-frequency 40×40 array

    图  18  动态隐身超表面天线

    Figure  18.  Dynamic stealth metasurface antenna

    图  19  低频动态隐身超表面天线

    Figure  19.  Dynamic stealth metasurface antenna at low frequency

    图  20  16×16可重构超表面及产生的涡旋场

    Figure  20.  16×16 reconfigurable metasurface and the generated vortex field

    表  1  电控可重构实现技术

    Table  1.   Technologies for the implementation of electronic control reconfigurability

    参数集总元件功能材料
    PIN二极管压控/变容二极管射频MEMS液晶石墨烯砷化镓
    技术成熟度++00
    偏置复杂度+0+
    控制数字(1 V)模拟(0~30 V)数字(60 V)模拟模拟模拟
    成本++000
    损耗(微波)+
    功耗++0+
    速度+(ns)+(ns)0(ms)+
    线性度0+0
    可用度商用商用多数需定制特殊设备
    注:+:好;0:中;–:差。
    下载: 导出CSV
  • [1] 孙树林, 何琼, 周磊. 电磁超表面[J]. 物理, 2015, 44(6): 366–376. doi: 10.7693/wl20150603

    SUN Shulin, HE Qiong, and ZHOU Lei. Electromagnetic metasurfaces[J]. Physics, 2015, 44(6): 366–376. doi: 10.7693/wl20150603
    [2] 汪国平. 超材料与超表面介绍[J]. 光学与光电技术, 2020, 18(5): 5–9. doi: 10.19519/j.cnki.1672-3392.2020.05.002

    WANG Guoping. Introduction to metamaterials and metasurfaces[J]. Optics &Optoelectronic Technology, 2020, 18(5): 5–9. doi: 10.19519/j.cnki.1672-3392.2020.05.002
    [3] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [4] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.
    [5] GIOVAMPAOLA C D and ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 13(12): 1115–1121. doi: 10.1038/nmat4082
    [6] 崔铁军. 电磁超材料—从等效媒质到现场可编程系统[J]. 中国科学: 信息科学, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123

    CUI Tiejun. Electromagnetic metamaterials—from effective media to field programmable systems[J]. Scientia Sinica Informationis, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123
    [7] XU Wenhua, HE Yun, KONG Peng, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics, 2015, 118(18): 184903. doi: 10.1063/1.4934683
    [8] ZHU Bo O, ZHAO Junming, and FENG Yijun. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3: 3059. doi: 10.1038/srep03059
    [9] CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [10] MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212
    [11] HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485
    [12] XU Hexiu, MA Shaojie, LUO Weijie, et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces[J]. Applied Physics Letters, 2016, 109(19): 193506. doi: 10.1063/1.4967438
    [13] WANG Jiayun, YANG Rongcao, MA Runbo, et al. Reconfigurable multifunctional metasurface for broadband polarization conversion and perfect absorption[J]. IEEE Access, 2020, 8: 105815–105823. doi: 10.1109/ACCESS.2020.3000042
    [14] COSTA F, MONORCHIO A, and VASTANTE G P. Tunable high-impedance surface with a reduced number of varactors[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 11–13. doi: 10.1109/LAWP.2011.2107723
    [15] BRAY M G, BAYRAKTAR Z, and WERNER D H. GA optimized ultra-thin tunable EBG AMC surfaces[C]. 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, USA, 2006: 3–8.
    [16] 杨欢欢, 杨帆, 许慎恒, 等. Ku波段编码式电控超薄周期单元设计与验证[J]. 物理学报, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102

    YANG Huanhuan, YANG Fan, XU Shenheng, et al. Design and verification of an electronically controllable ultrathin coding periodic element in Ku band[J]. Acta Physica Sinica, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102
    [17] CHEN Weiting, YANG Kuangyu, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225–230. doi: 10.1021/nl403811d
    [18] 周仕浩, 房欣宇, 李猛猛, 等. S/X双频带吸波实时可调的吸波器[J]. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606

    ZHOU Shihao, FANG Xinyu, LI Mengmeng, et al. S/X dual-band real-time modulated frequency selective surface based absorber[J]. Acta Physica Sinica, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [19] DING Yuxuan, LI Mengyao, SU Jianxun, et al. Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch[J]. IEEE Transactions on Antennas and Propagation, 2020, . doi: 10.1109/TAP.2020.3026889
    [20] LI You, LI Huangyan, WANG Yunwen, et al. A novel switchable absorber/linear converter based on active metasurface and its application[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7688–7693. doi: 10.1109/TAP.2020.2980301
    [21] YANG Huanhuan, YANG Fan, XU Shenheng, et al. A 1-bit multi-polarization reflectarray element for reconfigurable large-aperture antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 581–584. doi: 10.1109/LAWP.2016.2590478
    [22] SIEVENPIPER D F, SCHAFFNER J H, SONG H J, et al. Two-dimensional beam steering using an electrically tunable impedance surface[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722. doi: 10.1109/TAP.2003.817558
    [23] HU W, ISMAIL M Y, CAHILL R, et al. Electronically reconfigurable monopulse reflectarray antenna with liquid crystal substrate[C]. The 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007.
    [24] LUO Xinyao, GUO Wenlong, CHEN Ke, et al. Active cylindrical metasurface with spatial reconfigurability for tunable backward scattering reduction[J]. IEEE Transactions on Antennas and Propagation, 2020, in press. doi: 10.1109/TAP.2020.3037728
    [25] 杨帆, 许慎恒, 刘骁, 等. 基于界面电磁学的新型相控阵天线[J]. 电波科学学报, 2018, 33(3): 256–265. doi: 10.13443/j.cjors.2018052401

    YANG Fan, XU Shenheng, LIU Xiao, et al. Novel phased array antennas based on surface electromagnetics[J]. Chinese Journal of Radio Science, 2018, 33(3): 256–265. doi: 10.13443/j.cjors.2018052401
    [26] YANG Xue, XU Shenheng, YANG Fan, et al. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959–3966. doi: 10.1109/TAP.2017.2708079
    [27] YANG Xue, XU Shenheng, YANG Fan, et al. A mechanically reconfigurable reflectarray with slotted patches of tunable height[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 555–558. doi: 10.1109/LAWP.2018.2802701
    [28] YANG Huanhuan, YANG Fan, XU Shenheng, et al. A 1-bit 10×10 reconfigurable reflectarray antenna: Design, optimization, and experiment[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2246–2254. doi: 10.1109/TAP.2016.2550178
    [29] LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8: 97.
    [30] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8: 197. doi: 10.1038/s41467-017-00164-9
    [31] WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712.
    [32] YANG Huanhuan, CAO Xiangyu, YANG Fan, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports, 2016, 6: 35692. doi: 10.1038/srep35692
    [33] CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5: e16172.
    [34] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9: 4334. doi: 10.1038/s41467-018-06802-0
    [35] LUO Zhangjie, WANG Qiang, ZHANG Xinge, et al. Intensity‐dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials, 2019, 7(19): 1900792. doi: 10.1002/adom.201900792
    [36] WAN Xiang, ZHANG Qian, CHEN Tianyi, et al. Multichannel direct transmissions of near-field information[J]. Light: Science & Applications, 2019, 8: 60.
    [37] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044
    [38] MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98.
    [39] DÍAZ-RUBIO A, TORRENT D, CARBONELL J, et al. Extraordinary absorption by a thin dielectric slab backed with a metasurface[J]. Physical Review B, 2014, 89(24): 245123. doi: 10.1103/PhysRevB.89.245123
    [40] 杨欢欢. 新型电磁表面及其可重构阵列天线应用研究[D]. [博士论文], 空军工程大学, 2016.

    YANG Huanhuan. Research on novel electromagnetic surface and reconfigurable reflectarrays[D]. [Ph.D. dissertation], Air Force Engineering University, 2016.
    [41] HUM S V and PERRUISSEAU-CARRIER J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183–198. doi: 10.1109/TAP.2013.2287296
    [42] AL-NUAIMI M K T, HE Yejun, and HONG Wei. Design of 1-bit coding engineered reflectors for EM-wave shaping and RCS modifications[J]. IEEE Access, 2018, 6: 75422–75428. doi: 10.1109/ACCESS.2018.2883721
    [43] VENNERI F, COSTANZO S, and DI MASSA G. Design and validation of a reconfigurable single varactor-tuned reflectarray[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2): 635–645. doi: 10.1109/TAP.2012.2226229
    [44] 范小龙. 基于MEMS开关的有源可重构频率选择表面的研究与设计[D]. [硕士论文], 南京理工大学, 2014.

    FAN Xiaolong. Reseach and design of active reconfigurable frequency selective surface based on MEMS switches[D]. [Master dissertation], Nanjing University of Science and Technology, 2014.
    [45] OLOUMI D, MOGHADAS H, and MOUSAVI P. Dual-band orthogonally-polarized slotted-Lozenge reflective unit cell tuned by MEMS varactor[C]. The 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, 2012.
    [46] HUANG Xianjun, ZHANG Xiao, HU Zhirun, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 307–312. doi: 10.1049/iet-map.2014.0152
    [47] TORABI E S, FALLAHI A, and YAHAGHI A. Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1464–1467. doi: 10.1109/TAP.2016.2647580
    [48] ZENG Chao, LIU Xueming, and WANG Guoxi. Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics[J]. Scientific Reports, 2014, 4: 5763.
    [49] SAVO S, SHREKENHAMER D, and PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2014, 2(3): 275–279. doi: 10.1002/adom.201300384
    [50] VASIĆ B, ISIĆ G, BECCHERELLI R, et al. Tunable beam steering at terahertz frequencies using reconfigurable metasurfaces coupled with liquid crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 7701609.
    [51] 杨欢欢, 曹祥玉, 高军, 等. 基于电磁谐振分离的宽带低雷达截面超材料吸波体[J]. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation[J]. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [52] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [53] 马嘉俊. 基于分形人工电磁材料吸波特性的阵列天线隐身技术研究[D]. 空军工程大学, 2014.

    MA Jiajun. Radar cross section reduction of antenna array based on the absorption of fractal metamaterial[D]. Air Force Engineering University, 2014.
    [54] ZHANG Guowen, GAO Jun, CAO Xiangyu, et al. An ultra-thin low-frequency tunable metamaterial absorber based on lumped element[J]. Radioengineering, 2019, 28(3): 579–584.
    [55] CARRASCO E, BARBA M, and ENCINAR J A. X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5700–5708. doi: 10.1109/TAP.2012.2208612
    [56] MONTORI S, CACCIAMANI F, GATTI R V, et al. A transportable reflectarray antenna for satellite Ku-band emergency communications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1393–1407. doi: 10.1109/TAP.2015.2398128
    [57] YANG Huanhuan, YANG Fan, CAO Xiangyu, et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3024–3032. doi: 10.1109/TAP.2017.2694703
    [58] TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. Design of a low loss and broadband active element of reconfigurable reflectarray antennas[J]. Optical Materials Express, 2019, 9(10): 4104–4114. doi: 10.1364/OME.9.004104
    [59] 田江浩. 基于可重构技术的反射型多功能超表面特性研究[D]. [硕士论文], 空军工程大学, 2019.

    TIAN Jianghao. Research on reflective multi-functional metasurface based on reconfigurable technology[D]. [Master dissertation], Air Force Engineering University, 2019.
    [60] LI Tong, YANG Huanhuan, LI Qi, et al. Dual-polarised and ultra-thin broadband AAMCs for both P and L bands applications[J]. IET Microwaves, Antennas & Propagation, 2019, 13(2): 185–189. doi: 10.1049/iet-map.2018.5151
    [61] 吕世奇. 基于数字电磁超表面涡旋电磁波的优化技术研究[D]. [硕士论文], 空军工程大学, 2019.

    LÜ Shiqi. Research on optimization of vortex electromagnetic waves based on digital electromagnetic metasurface[D]. [Master dissertation], Air Force Engineering University, 2019.
    [62] ZHANG Chen, GAO Jun, CAO Xiangyu, et al. Multifunction tunable metasurface for entire-space electromagnetic wave manipulation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3301–3306. doi: 10.1109/TAP.2019.2929438
    [63] CAI Tong, WANG Guangming, TANG Shiwei, et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied, 2017, 8(3): 034033. doi: 10.1103/PhysRevApplied.8.034033
    [64] 于惠存, 曹祥玉, 高军, 等. 一种宽带可重构反射型极化旋转表面[J]. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041

    YU Huicun, CAO Xiangyu, GAO Jun, et al. Broadband reconfigurable reflective polarization convertor[J]. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [65] YU Huicun, CAO Xiangyu, GAO Jun, et al. Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express, 2018, 8(11): 3373–3381. doi: 10.1364/OME.8.003373
    [66] TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics, 2019, 125(13): 135105. doi: 10.1063/1.5067383
    [67] GUO Zexu, CAO Xiangyu, GAO Jun, et al. A novel reconfigurable metasurface with coincident and ultra- wideband LTL and LTC polarization conversion functions[J]. Radio Engineering, 2019, 28(4): 696–702.
    [68] LI Tong, YANG Huanhuan, LI Qi, et al. Active metasurface for broadband radiation and integrated low radar cross section[J]. Optical Materials Express, 2019, 9(3): 1161–1172. doi: 10.1364/OME.9.001161
    [69] 韩江枫. 电磁超表面幅相特性调控及应用研究[D]. [博士论文], 空军工程大学, 2020.

    HAN Jiangfeng. Research on amplitude and phase characteristics of metasurfaces and its aoolications[D]. [Ph. D. dissertation], Air Force Engineering University, 2020.
    [70] ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Multiple OAM vortex beams generation using 1-bit metasurface[J]. Optics Express, 2018, 26(19): 24804–24815. doi: 10.1364/OE.26.024804
    [71] ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Radiation performance synthesis for OAM vortex wave generated by reflective metasurface[J]. IEEE Access, 2018, 6: 28691–28701. doi: 10.1109/ACCESS.2018.2839099
    [72] ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface[J]. Chinese Physics B, 2019, 28(3): 034204. doi: 10.1088/1674-1056/28/3/034204
    [73] 张迪. 新型数字电磁表面技术及其在涡旋电磁场中的应用研究[D]. [博士论文], 空军工程大学, 2019.

    ZHANG Di. Research on novel digital electromagnetic metasurface and its application in vortex electromagnetic field[D]. [Ph. D. dissertation], Air Force Engineering University, 2019.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  6740
  • HTML全文浏览量:  3064
  • PDF下载量:  1028
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-01
  • 修回日期:  2021-01-19
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回