Most Viewed Abstracts

1
Over the recent years, deep-learning technology has been widely used. However, in research based on Synthetic Aperture Radar (SAR) ship target detection, it is difficult to support the training of a deep-learning network model because of the difficulty in data acquisition and the small scale of the samples. This paper provides a SAR ship detection dataset with a high resolution and large-scale images. This dataset comprises 31 images from Gaofen-3 satellite SAR images, including harbors, islands, reefs, and the sea surface in different conditions. The backgrounds include various scenarios such as the near shore and open sea. We conducted experiments using both traditional detection algorithms and deep-learning algorithms and observed the densely connected end-to-end neural network to achieve the highest average precision of 88.1%. Based on the experiments and performance analysis, corresponding benchmarks are provided as a basis for further research on SAR ship detection using this dataset. Over the recent years, deep-learning technology has been widely used. However, in research based on Synthetic Aperture Radar (SAR) ship target detection, it is difficult to support the training of a deep-learning network model because of the difficulty in data acquisition and the small scale of the samples. This paper provides a SAR ship detection dataset with a high resolution and large-scale images. This dataset comprises 31 images from Gaofen-3 satellite SAR images, including harbors, islands, reefs, and the sea surface in different conditions. The backgrounds include various scenarios such as the near shore and open sea. We conducted experiments using both traditional detection algorithms and deep-learning algorithms and observed the densely connected end-to-end neural network to achieve the highest average precision of 88.1%. Based on the experiments and performance analysis, corresponding benchmarks are provided as a basis for further research on SAR ship detection using this dataset.
2
Knowledge of target polarization characteristics is valuable for radar target detection, classification, and identification.We conducted experimental research on an Unmanned Aerial Vehicle (UAV) with complex materials and structures to determine the differences in polarimetric scattering between the UAV and its perfect electric conductor model.To illustrate the coherence of the entire UAV and its components using polarimetric scattering, we measured and analyzed each part.The results reveal that the airframe and aerofoils directly influence the depolarization, and that the polarimetric scattering characteristics of the airframe represent the primary source for the whole UAV. Knowledge of target polarization characteristics is valuable for radar target detection, classification, and identification.We conducted experimental research on an Unmanned Aerial Vehicle (UAV) with complex materials and structures to determine the differences in polarimetric scattering between the UAV and its perfect electric conductor model.To illustrate the coherence of the entire UAV and its components using polarimetric scattering, we measured and analyzed each part.The results reveal that the airframe and aerofoils directly influence the depolarization, and that the polarimetric scattering characteristics of the airframe represent the primary source for the whole UAV.
3
To suppress airwave interference, a time-domain coded electromagnetic exploration method is proposed with Pseudo-Random Binary Sequences (PRBS) code as the source signal. Based on the PRBS code and receiving voltages, which are recorded simultaneously, the impulse response of the earth can be obtained by the time-domain deconvolution signal recovery method, and the target information is effectively contained in the impulse response. The selection methods of clock frequency and code length were analyzed and field experiments were carried out, which demonstrated that the signal quality of the EM data could be improved by decreasing the clock frequency, or increasing the code length. The proposed method could greatly suppress the airwave interference and effectively identify underground anomalies. To suppress airwave interference, a time-domain coded electromagnetic exploration method is proposed with Pseudo-Random Binary Sequences (PRBS) code as the source signal. Based on the PRBS code and receiving voltages, which are recorded simultaneously, the impulse response of the earth can be obtained by the time-domain deconvolution signal recovery method, and the target information is effectively contained in the impulse response. The selection methods of clock frequency and code length were analyzed and field experiments were carried out, which demonstrated that the signal quality of the EM data could be improved by decreasing the clock frequency, or increasing the code length. The proposed method could greatly suppress the airwave interference and effectively identify underground anomalies.
4
Synthetic Aperture Radar three-dimensional (SAR 3D) imaging technology can eliminate severe overlap in 2D images, and improve target recognition and 3D modeling capabilities, which have become an important trend in SAR development. After decades of development of SAR 3D imaging technology, many types of 3D imaging methods have been proposed. In this study, the history of SAR 3D imaging technology is systematically reviewed and the characteristics of existing SAR 3D imaging technology are analyzed. Given that the 3D information contained in SAR echo and images is not fully used by existing techniques, a new concept of SAR microwave vision 3D imaging has been proposed for the first time. This new concept is integrated with microwave scattering mechanism and image visual semantics to realize three-dimensional reconstruction, which form the theory and method of SAR microwave vision 3D imaging and can achieve high-efficiency and low-cost SAR 3D imaging. This study also analyzes the concept, goal and key scientific problems of SAR microwave vision 3D imaging and provides a preliminary solution, which will contribute in several ways to our understanding of SAR 3D imaging and provide the basis for further research. Synthetic Aperture Radar three-dimensional (SAR 3D) imaging technology can eliminate severe overlap in 2D images, and improve target recognition and 3D modeling capabilities, which have become an important trend in SAR development. After decades of development of SAR 3D imaging technology, many types of 3D imaging methods have been proposed. In this study, the history of SAR 3D imaging technology is systematically reviewed and the characteristics of existing SAR 3D imaging technology are analyzed. Given that the 3D information contained in SAR echo and images is not fully used by existing techniques, a new concept of SAR microwave vision 3D imaging has been proposed for the first time. This new concept is integrated with microwave scattering mechanism and image visual semantics to realize three-dimensional reconstruction, which form the theory and method of SAR microwave vision 3D imaging and can achieve high-efficiency and low-cost SAR 3D imaging. This study also analyzes the concept, goal and key scientific problems of SAR microwave vision 3D imaging and provides a preliminary solution, which will contribute in several ways to our understanding of SAR 3D imaging and provide the basis for further research.
5
Spaceborne Synthetic Aperture Radar (SAR), which can be mounted on space vehicles to collect information of the entire planet with all-day and all-weather imaging capacity, has been an indispensable device for earth observation. Currently, the technology of our spaceborne SAR has achieved a considerable technological improvement, including the resolution change from meter to submeter, the imaging mode from stripmap to azimuth beam steering like the sliding spotlight, the practical application of the multichannel approach and the conversion of single polarization into full polarization. With the development of SAR techniques, forthcoming SAR will make breakthroughs in SAR architectures, concepts, technologies and modes, for example, high-resolution wide-swath imaging, multistatic SAR, payload miniaturization and intelligence. All of these will extend the observation dimensions and obtain multidimensional data. This study focuses on the forthcoming development of spaceborne SAR. Spaceborne Synthetic Aperture Radar (SAR), which can be mounted on space vehicles to collect information of the entire planet with all-day and all-weather imaging capacity, has been an indispensable device for earth observation. Currently, the technology of our spaceborne SAR has achieved a considerable technological improvement, including the resolution change from meter to submeter, the imaging mode from stripmap to azimuth beam steering like the sliding spotlight, the practical application of the multichannel approach and the conversion of single polarization into full polarization. With the development of SAR techniques, forthcoming SAR will make breakthroughs in SAR architectures, concepts, technologies and modes, for example, high-resolution wide-swath imaging, multistatic SAR, payload miniaturization and intelligence. All of these will extend the observation dimensions and obtain multidimensional data. This study focuses on the forthcoming development of spaceborne SAR.
6
Spaceborne SAR, which is a kind of initiatively microwave imaging sensor, plays an important role in gathering information with its capability of all-day and all-weather imaging, and has become an indispensable sensor for observing the earth. With the development of SAR techniques, Spaceborne SAR has been provided with the ability of High-Resolution Wide-Swath, miniaturization with low cost, bistatic and multi-mode imaging, and Ground Moving Target Indicating (GMTI), so more accurate information about the culture could be obtained with lower cost. In the meantime, more technique problems with muliti-mode, new work system and complex environment are arising and needed to be solved. The main work of this paper is discussing the current situation and the future development of Spaceborne SAR. Spaceborne SAR, which is a kind of initiatively microwave imaging sensor, plays an important role in gathering information with its capability of all-day and all-weather imaging, and has become an indispensable sensor for observing the earth. With the development of SAR techniques, Spaceborne SAR has been provided with the ability of High-Resolution Wide-Swath, miniaturization with low cost, bistatic and multi-mode imaging, and Ground Moving Target Indicating (GMTI), so more accurate information about the culture could be obtained with lower cost. In the meantime, more technique problems with muliti-mode, new work system and complex environment are arising and needed to be solved. The main work of this paper is discussing the current situation and the future development of Spaceborne SAR.
7
Specific Emitter Identification (SEI) is a technique of extracting the radio frequency fingerprints of a received electromagnetic signal by only using external feature measurements to determine the specific emitter that transmits the signal. In recent years, the related theories and practical applications of SEI have been continuously improved, and the research on Radio Frequency Fingerprinting (RFF) feature extraction methods has made great progress. Based on domestic and foreign academic achievements, this paper systematically reviews the status quo of the fingerprint feature extraction method of SEI. In addition, a new feature classification framework is proposed based on the inherent logic of fingerprint feature extraction. The classification framework combines the description characteristics of different RFF features and the correlation between them. It divides the existing radio frequency features into two main categories, namely, direct measurement features and dimensionality reduction transform features, which have three levels. Finally, several potential research directions of fingerprint feature extraction are analyzed and explored, aiming to benefit the research and application of SEI. Specific Emitter Identification (SEI) is a technique of extracting the radio frequency fingerprints of a received electromagnetic signal by only using external feature measurements to determine the specific emitter that transmits the signal. In recent years, the related theories and practical applications of SEI have been continuously improved, and the research on Radio Frequency Fingerprinting (RFF) feature extraction methods has made great progress. Based on domestic and foreign academic achievements, this paper systematically reviews the status quo of the fingerprint feature extraction method of SEI. In addition, a new feature classification framework is proposed based on the inherent logic of fingerprint feature extraction. The classification framework combines the description characteristics of different RFF features and the correlation between them. It divides the existing radio frequency features into two main categories, namely, direct measurement features and dimensionality reduction transform features, which have three levels. Finally, several potential research directions of fingerprint feature extraction are analyzed and explored, aiming to benefit the research and application of SEI.
8
Video Synthetic Aperture Radar (SAR) provides dynamic information about an observation scene in a video to the human eye, which can be very useful for the real-time detection of the ground maneuvering targets. The focusing of video SAR data is demanding because of its high data rate. In this study, we discuss suitable focusing algorithms and presents the obtained simulation results. Further, the shadow formation mechanism is analyzed with respect to target detection. Finally, the machine learning algorithm used for detecting the shadows of the moving targets is compared with the classical image processing methods that use real datasets. Video Synthetic Aperture Radar (SAR) provides dynamic information about an observation scene in a video to the human eye, which can be very useful for the real-time detection of the ground maneuvering targets. The focusing of video SAR data is demanding because of its high data rate. In this study, we discuss suitable focusing algorithms and presents the obtained simulation results. Further, the shadow formation mechanism is analyzed with respect to target detection. Finally, the machine learning algorithm used for detecting the shadows of the moving targets is compared with the classical image processing methods that use real datasets.
9
Terahertz radar has unique advantages, including large bandwidth, high resolution, Doppler sensitivity, and anti-interference; it is a significant development in the field of target detection. Herein, the history of electronic and optical terahertz radar systems is introduced, and the current situation and latest progress pertaining to these systems are reviewed. The target characteristics of terahertz radar are summarized based on its mechanism, calculation, and measurement. Moreover, the current research status of terahertz SAR, ISAR, array, and aperture encoding imaging are discussed, and the applications of terahertz radar, such as early warning detection and security anti-terrorism systems, are briefly introduced. Finally, the development direction of terahertz radar technology is forecast. Terahertz radar has unique advantages, including large bandwidth, high resolution, Doppler sensitivity, and anti-interference; it is a significant development in the field of target detection. Herein, the history of electronic and optical terahertz radar systems is introduced, and the current situation and latest progress pertaining to these systems are reviewed. The target characteristics of terahertz radar are summarized based on its mechanism, calculation, and measurement. Moreover, the current research status of terahertz SAR, ISAR, array, and aperture encoding imaging are discussed, and the applications of terahertz radar, such as early warning detection and security anti-terrorism systems, are briefly introduced. Finally, the development direction of terahertz radar technology is forecast.
10
The vortex electromagnetic wave, which carries the Orbital Angular Momentum (OAM), reflects a new degree of freedom in addition to the traditional degrees of freedom such as intensity, phase, frequency, and polarization. Theoretically, vortex electromagnetic wave, at any frequency, has an infinite number of orthogonal modes that do not interfere with each other, and in recent years, they have shown important potential applications in the fields of radar imaging, wireless communication and so on. Therefore, they have attracted considerable attention from scholars worldwide owing to their high research value and application prospects. Here, this paper mainly introduces the recent research advances on the antenna technology of vortex electromagnetic wave, including single microstrip patch antenna, array antenna, traveling wave antenna, and metasurface antenna structure. The single microstrip patch antenna is widely used owing to its simple structure and low manufacturing cost. The traveling wave antenna can generate multi-OAM mode vortex electromagnetic waves in a wide-frequency range. The array antenna is easy to design and controllably generate high-gain OAM electromagnetic waves with different modes. The metasurface antennas do not require complex feeding networks, which has the advantage of a lower profile of the antenna. Finally, we summarize these four common vortex antennas and further look forward to their future developments. The vortex electromagnetic wave, which carries the Orbital Angular Momentum (OAM), reflects a new degree of freedom in addition to the traditional degrees of freedom such as intensity, phase, frequency, and polarization. Theoretically, vortex electromagnetic wave, at any frequency, has an infinite number of orthogonal modes that do not interfere with each other, and in recent years, they have shown important potential applications in the fields of radar imaging, wireless communication and so on. Therefore, they have attracted considerable attention from scholars worldwide owing to their high research value and application prospects. Here, this paper mainly introduces the recent research advances on the antenna technology of vortex electromagnetic wave, including single microstrip patch antenna, array antenna, traveling wave antenna, and metasurface antenna structure. The single microstrip patch antenna is widely used owing to its simple structure and low manufacturing cost. The traveling wave antenna can generate multi-OAM mode vortex electromagnetic waves in a wide-frequency range. The array antenna is easy to design and controllably generate high-gain OAM electromagnetic waves with different modes. The metasurface antennas do not require complex feeding networks, which has the advantage of a lower profile of the antenna. Finally, we summarize these four common vortex antennas and further look forward to their future developments.
11
Flying birds and Unmanned Aerial Vehicles (UAVs) are typical “low, slow, and small” targets with low observability. The need for effective monitoring and identification of these two targets has become urgent and must be solved to ensure the safety of air routes and urban areas. There are many types of flying birds and UAVs that are characterized by low flying heights, strong maneuverability, small radar cross-sectional areas, and complicated detection environments, which are posing great challenges in target detection worldwide. “Visible (high detection ability) and clear-cut (high recognition probability)” methods and technologies must be developed that can finely describe and recognize UAVs, flying birds, and “low-slow-small” targets. This paper reviews the recent progress in research on detection and recognition technologies for rotor UAVs and flying birds in complex scenes and discusses effective detection and recognition methods for the detection of birds and drones, including echo modeling and recognition of fretting characteristics, the enhancement and extraction of maneuvering features in ubiquitous observation mode, distributed multi-view features fusion, differences in motion trajectories, and intelligent classification via deep learning. Lastly, the problems of existing research approaches are summarized, and we consider the future development prospects of target detection and recognition technologies for flying birds and UAVs in complex scenarios. Flying birds and Unmanned Aerial Vehicles (UAVs) are typical “low, slow, and small” targets with low observability. The need for effective monitoring and identification of these two targets has become urgent and must be solved to ensure the safety of air routes and urban areas. There are many types of flying birds and UAVs that are characterized by low flying heights, strong maneuverability, small radar cross-sectional areas, and complicated detection environments, which are posing great challenges in target detection worldwide. “Visible (high detection ability) and clear-cut (high recognition probability)” methods and technologies must be developed that can finely describe and recognize UAVs, flying birds, and “low-slow-small” targets. This paper reviews the recent progress in research on detection and recognition technologies for rotor UAVs and flying birds in complex scenes and discusses effective detection and recognition methods for the detection of birds and drones, including echo modeling and recognition of fretting characteristics, the enhancement and extraction of maneuvering features in ubiquitous observation mode, distributed multi-view features fusion, differences in motion trajectories, and intelligent classification via deep learning. Lastly, the problems of existing research approaches are summarized, and we consider the future development prospects of target detection and recognition technologies for flying birds and UAVs in complex scenarios.
12
The technique of radar feature extraction, imaging, and recognition of target with micro-motions has become one of the most potential research directions in the field of radar target accurate recognition. In this paper, the concept of micro-motion is first introduced briefly. Subsequently, the achievements of echo modeling, feature extraction, imaging, and identification of micro-motion targets are summarized. Several typical frontier applications are then introduced. Finally, the future development trends of the research are discussed. The technique of radar feature extraction, imaging, and recognition of target with micro-motions has become one of the most potential research directions in the field of radar target accurate recognition. In this paper, the concept of micro-motion is first introduced briefly. Subsequently, the achievements of echo modeling, feature extraction, imaging, and identification of micro-motion targets are summarized. Several typical frontier applications are then introduced. Finally, the future development trends of the research are discussed.
13

Deep learning such as deep neural networks has revolutionized the computer vision area. Deep learning-based algorithms have surpassed conventional algorithms in terms of performance by a significant margin. This paper reviews our works in the application of deep convolutional neural networks to target recognition and terrain classification using the SAR image. A convolutional neural network is employed to automatically extract a hierarchic feature representation from the data, based on which the target recognition and terrain classification can be conducted. Experimental results on the MSTAR benchmark dataset reveal that deep convolutional network could achieve a state-of-the-art classification accuracy of 99% for the 10-class task. For a polarimetric SAR image classification, we propose complex-valued convolutional neural networks for complex SAR images. This algorithm achieved a state-of-the-art accuracy of 95% for the 15-class task on the Flevoland benchmark dataset.

Deep learning such as deep neural networks has revolutionized the computer vision area. Deep learning-based algorithms have surpassed conventional algorithms in terms of performance by a significant margin. This paper reviews our works in the application of deep convolutional neural networks to target recognition and terrain classification using the SAR image. A convolutional neural network is employed to automatically extract a hierarchic feature representation from the data, based on which the target recognition and terrain classification can be conducted. Experimental results on the MSTAR benchmark dataset reveal that deep convolutional network could achieve a state-of-the-art classification accuracy of 99% for the 10-class task. For a polarimetric SAR image classification, we propose complex-valued convolutional neural networks for complex SAR images. This algorithm achieved a state-of-the-art accuracy of 95% for the 15-class task on the Flevoland benchmark dataset.

14

Circular Synthetic Aperture Radar (CSAR) is a novel imaging mode, which has the advantages of all-directional observation, high spatial resolution, and three-dimensional imaging. With the development of airborne CSAR imaging techniques, it has become one of the effective methods for key point area observation. This paper introduces works on airborne CSAR imaging techniques performed by our research team in recent years, including airborne CSAR imaging mode, spatial resolution evaluation, two-dimensional CSAR imaging, three-dimensional target image reconstruction based on a single CSAR, and three-dimensional holographic SAR imaging. In this paper, experimental results based on raw data acquired using airborne CSAR systems with P and X bands are presented. The obtained research results prove the effectivity and practicability of the airborne CSAR imaging mode. The content of this paper is based on a keynote speech presented by the author at the Fifth Young Scientists Forum of Journal of Radars on August 15, 2019.

Circular Synthetic Aperture Radar (CSAR) is a novel imaging mode, which has the advantages of all-directional observation, high spatial resolution, and three-dimensional imaging. With the development of airborne CSAR imaging techniques, it has become one of the effective methods for key point area observation. This paper introduces works on airborne CSAR imaging techniques performed by our research team in recent years, including airborne CSAR imaging mode, spatial resolution evaluation, two-dimensional CSAR imaging, three-dimensional target image reconstruction based on a single CSAR, and three-dimensional holographic SAR imaging. In this paper, experimental results based on raw data acquired using airborne CSAR systems with P and X bands are presented. The obtained research results prove the effectivity and practicability of the airborne CSAR imaging mode. The content of this paper is based on a keynote speech presented by the author at the Fifth Young Scientists Forum of Journal of Radars on August 15, 2019.

15
For the fast detection of ships in large-scale remote sensing images, a cascade convolutional neural network is proposed, which is a cascade combination of two Fully Convolutional Neural networks (FCNs), the target FCN for Prescreening (P-FCN), and the target FCN for Detection (D-FCN). The P-FCN is a lightweight image classification network that is responsible for the rapid pre-screening of possible ship areas in large-scale images. The region proposals generated by the P-FCN have less redundancy, which can reduce the computational burden of the D-FCN. The D-FCN is an improved U-Net that can accurately detect arbitrary-oriented ships by adding target masks and ship orientation estimation layers to the traditional U-Net structure for multitask learning. In our experiment, TerraSAR-X remote sensing images and the optical remote sensing images obtained from the 91 satellite map software and the DOTA dataset were used to test the network. The results show that the detection accuracy of our method was 0.928 and 0.926 for synthetic aperture radar images and optical images, respectively, which were close to the performance of the traditional sliding window method. However, the running time of the proposed method was only about 1/3 of that of the sliding window method. Therefore, the cascade convolutional neural network can significantly improve the target detection efficiency while maintaining the detection accuracy and can realize the rapid detection of ship targets in large-scale remote sensing images. For the fast detection of ships in large-scale remote sensing images, a cascade convolutional neural network is proposed, which is a cascade combination of two Fully Convolutional Neural networks (FCNs), the target FCN for Prescreening (P-FCN), and the target FCN for Detection (D-FCN). The P-FCN is a lightweight image classification network that is responsible for the rapid pre-screening of possible ship areas in large-scale images. The region proposals generated by the P-FCN have less redundancy, which can reduce the computational burden of the D-FCN. The D-FCN is an improved U-Net that can accurately detect arbitrary-oriented ships by adding target masks and ship orientation estimation layers to the traditional U-Net structure for multitask learning. In our experiment, TerraSAR-X remote sensing images and the optical remote sensing images obtained from the 91 satellite map software and the DOTA dataset were used to test the network. The results show that the detection accuracy of our method was 0.928 and 0.926 for synthetic aperture radar images and optical images, respectively, which were close to the performance of the traditional sliding window method. However, the running time of the proposed method was only about 1/3 of that of the sliding window method. Therefore, the cascade convolutional neural network can significantly improve the target detection efficiency while maintaining the detection accuracy and can realize the rapid detection of ship targets in large-scale remote sensing images.
16
Cross-eye jamming is an effective angular deception jamming technique used for countering monopulse radars. With the need of countermeasure against active radar seekers, the research on cross-eye jamming becomes a hot research topic in electronic war. This study overviews the cross-eye jamming with regard to jamming theories, equipment, application problems, and current research trends to offer comprehensive knowledge and future research ideas. Cross-eye jamming is an effective angular deception jamming technique used for countering monopulse radars. With the need of countermeasure against active radar seekers, the research on cross-eye jamming becomes a hot research topic in electronic war. This study overviews the cross-eye jamming with regard to jamming theories, equipment, application problems, and current research trends to offer comprehensive knowledge and future research ideas.
17

Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction. This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.

Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) is one of the most powerful Earth observation techniques, especially useful for measuring highly detailed ground deformation over large ground areas. Much research has been carried out to apply MT-InSAR to monitor ground and infrastructure deformation in urban areas related to land reclamation, underground construction and groundwater extraction. This paper reviews the progress in the research and identifies challenges in applying the technology, including the inconsistency in coherent point identification when different approaches are used, the reliability issue in parameter estimation, difficulty in accurate geolocation of measured points, the one-dimensional line-of-sight nature of InSAR measurements, the inability of making complete measurements over an area due to geometric distortions, especially the shadowing effects, the challenges in processing large SAR datasets, the decrease of the number of coherent points with the increase of the length of SAR time series, and the difficulty in quality control of MT-InSAR results.

18
Electromagnetic waves are transmitted by radars and reflected by different objects, and radar signal processing is highly significant as its analyses can lead to the acquisition of important information such as the situation and radial movement speed. Moreover, deep learning has gained much attention in several fields, and it can be utilized to implement radar signal processing. Compared with the traditional methods, deep learning can realize automatic feature extraction and yield highly accurate results; hence, in this paper, the application of deep learning algorithm in radar signal processing is studied. In addition, the study directions in radar signal processing are summarized into overfitting and interpretation. Thus, these two issues are being considered. Electromagnetic waves are transmitted by radars and reflected by different objects, and radar signal processing is highly significant as its analyses can lead to the acquisition of important information such as the situation and radial movement speed. Moreover, deep learning has gained much attention in several fields, and it can be utilized to implement radar signal processing. Compared with the traditional methods, deep learning can realize automatic feature extraction and yield highly accurate results; hence, in this paper, the application of deep learning algorithm in radar signal processing is studied. In addition, the study directions in radar signal processing are summarized into overfitting and interpretation. Thus, these two issues are being considered.
19
Multi-aspect SAR is a new SAR mode that has two advantages, i.e., long-term observations and a large synthetic-aperture azimuth angle. Previous studies have reported that these unique advantages enable even single-channel systems to have a relatively strong capability for detecting moving targets, i.e., multi-aspect SAR expands and improves the moving-target-related capabilities of the earlier SAR satellite system without increasing its complexity. As such, multi-aspect SAR-GMTI has become a trending topic for research. After reviewing the recent progress and research basis of multi-aspect SAR-GMTI, in this paper, we present our research on the Gaofen-3 SAR, which includes: moving-target detection methods that use the staring spotlight mode, dual-channels GMTI mode, and the dual-channel spotlight GMTI mode. With the results obtained by this research, we hope to establish a basis for the engineering implementation of current and future spaceborne single-channel SAR-GMTI modes and the design of a future spaceborne multi-aspect SAR mode capable of retrieving time-series and dynamic scene information. Multi-aspect SAR is a new SAR mode that has two advantages, i.e., long-term observations and a large synthetic-aperture azimuth angle. Previous studies have reported that these unique advantages enable even single-channel systems to have a relatively strong capability for detecting moving targets, i.e., multi-aspect SAR expands and improves the moving-target-related capabilities of the earlier SAR satellite system without increasing its complexity. As such, multi-aspect SAR-GMTI has become a trending topic for research. After reviewing the recent progress and research basis of multi-aspect SAR-GMTI, in this paper, we present our research on the Gaofen-3 SAR, which includes: moving-target detection methods that use the staring spotlight mode, dual-channels GMTI mode, and the dual-channel spotlight GMTI mode. With the results obtained by this research, we hope to establish a basis for the engineering implementation of current and future spaceborne single-channel SAR-GMTI modes and the design of a future spaceborne multi-aspect SAR mode capable of retrieving time-series and dynamic scene information.
20
Starting from the detection principle and characteristics of passive radar, this paper describes the development of passive radar based on the low frequency band (HF/VHF/UHF) digital broadcasting and TV signal. Based on the radio coverage ratio and technical features of digital broadcasting and TV signals, the research status in abroad, especially in Europe, is introduced at first, on experimental systems, technical parameters, and comparative experiments. Then the latest development of passive radars, in different frequency bands in China, both theory and experimental study are presented. Followed is the commentary on the key techniques and problems of Digital Broadcasting-based Passive Radar (DBPR), including the waveforms properties and its modification, reference signal extraction, multipath clutter rejection, target detection, tracking, and fusion as well as real-time signal processing. Finally, the prospects of development and application of this kind of passive radar are discussed. Starting from the detection principle and characteristics of passive radar, this paper describes the development of passive radar based on the low frequency band (HF/VHF/UHF) digital broadcasting and TV signal. Based on the radio coverage ratio and technical features of digital broadcasting and TV signals, the research status in abroad, especially in Europe, is introduced at first, on experimental systems, technical parameters, and comparative experiments. Then the latest development of passive radars, in different frequency bands in China, both theory and experimental study are presented. Followed is the commentary on the key techniques and problems of Digital Broadcasting-based Passive Radar (DBPR), including the waveforms properties and its modification, reference signal extraction, multipath clutter rejection, target detection, tracking, and fusion as well as real-time signal processing. Finally, the prospects of development and application of this kind of passive radar are discussed.
  • First
  • Prev
  • 1
  • 2
  • 3
  • 4
  • 5
  • Last
  • Total:5
  • To
  • Go