Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
WANG Xinshuo, LU Jingyue, MENG Zhichao, et al. Forward-looking multi-channel synthetic aperture radar imaging and array attitude error compensation[J]. Journal of Radars, 2023, 12(6): 1155–1165. doi: 10.12000/JR23073
Citation: Wang Hongqiang, Deng Bin, Qin Yuliang. Review of Terahertz Radar Technology[J]. Journal of Radars, 2018, 7(1): 1-21. doi: 10.12000/JR17107

Review of Terahertz Radar Technology

DOI: 10.12000/JR17107 CSTR: 32380.14.JR17107
Funds:  The National Ministries Foundation
  • Received Date: 2017-11-20
  • Rev Recd Date: 2017-12-29
  • Available Online: 2018-01-18
  • Publish Date: 2018-02-28
  • Terahertz radar has unique advantages, including large bandwidth, high resolution, Doppler sensitivity, and anti-interference; it is a significant development in the field of target detection. Herein, the history of electronic and optical terahertz radar systems is introduced, and the current situation and latest progress pertaining to these systems are reviewed. The target characteristics of terahertz radar are summarized based on its mechanism, calculation, and measurement. Moreover, the current research status of terahertz SAR, ISAR, array, and aperture encoding imaging are discussed, and the applications of terahertz radar, such as early warning detection and security anti-terrorism systems, are briefly introduced. Finally, the development direction of terahertz radar technology is forecast.

     

  • High resolution radar imaging has been widely used in target scattering diagnostics and recognition. As we all know, high resolution in range dimension is derived from the bandwidth of the transmitting signal and in the cross range dimension from synthetic aperture of multiple spatial positions. Under the fixed bandwidth and the synthetic aperture, traditional Matched Filter (MF) based methods for radar imaging suffer from low resolution and high sidelobes limited by the synthetic aperture[1].

    In order to improve the resolution and suppress the sidelobes, many high resolution methods have been applied to radar imaging. For example, the recently introduced theory of Compressed Sensing (CS) provides an idea to improve the resolution and reduce the amounts of measurement data under the constraint of sparsely distributed target prior, which has been widely explored for applications of radar imaging[24]. However, conventional CS methods are confronted with a range of problems in practical scenarios, such as complexity in calculation, high Signal-to-Noise Ratio (SNR) requirement, model mismatch caused by off grid problem[5], phase mismatch[6], frequency error[7] and position error[8]. To avoid the off grid problem of CS, modern spectral estimation methods like MUltiple SIgnal Classification (MUSIC), matrix pencil and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) have been used in radar imaging for resolution improvement[9]. However, most those methods suffer from performance degradation when there is little prior knowledge of the exact numbers of the scatters or under low SNR condition. Recently, the atomic norm minimization algorithm[10] based on continuous compressed sensing is introduced to enhance the SNR of the received echo and using Vandermonde decomposition to eliminate the grid mismatch. Nevertheless, this method can only be tailored to a specific model and brings huge computational cost.

    Consideration the aforementioned fact while combining the sparsity low rank matrix recovery technology and deconvolution algorithm, we introduce a high resolution radar imaging method based on the MF result. Firstly we establish the convolution model of target’s backscatter coefficients and the Point Spread Function (PSF), and then we want to use the deconvolution method like Wiener filter to improve the radar imaging resolution. However, the performance improvements of those methods depend on high SNR, and their super resolution performance is visibly affected by the low pass character of the PSF[11]. Although the MF result has enhanced the SNR, we can further improve the echo SNR by the sparsity and low rank matrix recovery. Low rank matrix recovery has been applied in many signal processing applications to estimate a low rank matrix from its noisy observation[12, 13]. Combinng the sparsity of the echo matrix, we modify the low rank matrix recovery and introduce it to radar echo denoising, which can improve the performance of the two-Dimensional (2D) deconvolution. Finally, some experimental results are conducted to verify the effectiveness of the proposed method.

    Notation: (·)T, (·)H and (·)* denote the transpose, the conjugate transpose and the conjugate operation, respectively. ,﹡, and ☉ indicate the inner product, the convolution and the Hadamard product. F, 1, are the Frobenius norm, sum of the absolute values and the nuclear norm.

    Considering a typical arrangement for radar imaging in which an object with scattering reflectivity σxy rotated by a scan angle θm (as shown in Fig. 1), we defined the positions of the transmitting and receiving antenna shown in a Cartesian coordinate as (W/2, –R, H) and (–W/2, –R,H), where W, R, H represent the antenna spacing, distance from antenna to XZ plane and XY plane, respectively.

    Figure  1.  Radar imaging geometry

    Transmitting a stepped-frequency signal with frequency fn and under Born approximation, the received scattered echo with Gauss noise Wmn is given by:

    Ymn=Sσxyej2πfnR(x,y;θm)/cdxdy+Wmn (1)

    In this equation: fn=f0+nΔf,n=0,1···,N1, f0 and Δf represent the start frequency and frequency step, θm=mΔθ,m=0,1,···,M, Δθ represents the rotating angle step, respectively. The range R(x,y;θm) from the transmitting antenna to echo scattering center and to the receiving antenna can be calculated as Eq. (2):

    R(x,y;θm)=(xcosθmysinθm+W2)2+(xsinθm+ycosθm+R)2+H2+(xcosθmysinθmW2)2+(xsinθm+ycosθm+R)2+H2 (2)

    In far-field and small rotation angle case, R(x,y;θm) can be approximated by first order Taylor-series expansion as:

    R(x,y;θm)2(R0+(x+mΔθy)R/R0) (3)

    where R0=R2+(W/2)2+H2.

    Then the received echo can be written as follow under some approximated conditions:

    ˜Ymn=S˜σxyej4πRΔθλR0mxej4πRΔfR0cnydxdy+Wmn (4)

    where ˜σxy=σxyej4πRy/λR0, ˜Ymn=Ymnej4πfnR0/c, λc/f0.

    After discrete imaging region with P×Q grids, the received echo in Eq. (4) can be described as the following 2D linear signal model:

    ˜Y=Ax˜ΣATy+W (5)

    where ˜Y=[  ˜Ymn]M×N is the echo matrix, ˜Σ=[˜σpq]P×Q is the observation matrix: Ax=[ej4πmxpRΔθ/λR0]M×P, Ay=[ej4πnyqRΔf/R0c]N×Q.

    Considering the targets present sparse point scattering characteristic under high frequency scattering in most practical application scenarios, we present our method to improve the resolution of radar imaging under sparse target constraint using 2D deconvolution algorithm with low rank sparsity echo matrix denoising.

    As we all know, the MF algorithm which is based on the maximum signal to noise ratio is the most stable and commonly used radar imaging method. However, due to limitation of the synthetic aperture and bandwidth, the standard MF method suffers from relatively low resolution and high sidelobes, especially under the requirements of high resolution. The received echo after MF from Eq. (5) can be obtained by:

    YMF=AHx  ˜YAy (6)

    From the result of Eq. (6), the echo of the surface target after MF can be described as the sum of all the wave scattered at the points on the surface grid, i.e.,

    YMF(x,y)=xy˜σ(x,y)Psf(xx,yy) (7)

    where we define the PSF as:

    Psf(xx,yy)=ax(x),ax(x)ay(y),ay(y) (8)

    here, ax(x) and ay(y) represent the column of matrix Ax and Ay at the grid (x, y).

    We can find that Eq. (6) can be seen as the 2D convolution of the PSF and target backscatter coefficients:

    YMF(x,y)=˜σ(x,y)Psf(x,y)+WMF(x,y) (9)

    Inspired by this, we can recovery the backscatter coefficients using deconvolution algorithm to improve the imaging quality. Firstly, we should analyze the characteristic of the PSF and its influence on the deconvolution result.

    The PSF can be evaluated as:

    Psf(x,y)ej2π[(M1)RΔθλR0x+(N1)RΔfR0cy]sinc(2MRΔθλR0x)sinc(2NRΔfR0cy)

    (10)

    We can calculate the 2D mainlobe width which represents the radar imaging resolution as follows:

    ρx=λR02MRΔθ,ρy=R0c2NRΔf (11)

    Eq. (9) indicates that the MF result can be seen as the convolution result of backscatter coefficients and Psf(x,y). The PSF is characterized by synthetic aperture and bandwidth, which has strong low pass characteristic with low resolution and high sidelobes as shown in Eq. (10) and Eq. (11). For an isolated target scatter, imaging result after the MF output will be proportional to the PSF, therefore the resolution of MF result is limited and accompanied by low resolution and high sidelobes. Inspired by above, we can restore the high resolution backscatter coefficients information by deconvolution to remove the effect of low pass characteristic of PSF.

    As we have get 2D convolution form as Eq. (9), here we consider to use the direct deconvolution algorithm to recovery target backscatter coefficients. Firstly, we transform Eq. (9) into the spatial frequency domain using 2D Fourier transform as:

    Yω=ΣωHωω+Wω (12)

    where, Yω=F{YMF},Σω=F{˜Σ},Hω=F{Psf},Wω=F{WMF}.

    Theoretically, the target scattering information could be restored by deconvolution as:

    Σω=Yω/Hω (13)

    However, 1/Hω will be very large in practice at the outside of the mainlobe of PSF since the low pass characteristic of the PSF, which results in tremendous amplification of noise and obtains valueless results. So the deconvolution processing becomes an ill-posed inverse problem.

    In order to alleviate the ill-posed problem, we use Winner filtering algorithm and sparse low rank matrix recovery to improve the quality of imaging result.

    The result after Winner filter algorithm can be written as[14]:

    ˜Σω=YωHωHω2+ΨWW(ω)/ΨΣΣ(ω) (14)

    where ΨWW(ω) and ΨΣΣ(ω) is the power spectral density of W and Σ. Eq. (14) will approach Eq. (13) when the SNR is relatively high. What’s more, Eq. (14) will attenuate the high frequencies noise to alleviate the ill-posed problem under low SNR. In experimental data processing, the ΨWW(ω)/ΨΣΣ(ω) is generally set according to the experience value. We can get the scattering reflectivity ˜Σ by 2D Inverse Fourier transform according to Eq. (14).

    We can prove that the echo matrix after MF is sparse and low rank in Appendix A and by using this characteristic, the echo SNR can be improved. Consider the problem of estimating a sparse low rank matrix X from its noisy observation Y:

    Y=X+W (15)

    Define the sparse low rank matrix recovery problem as:

    min (16)

    where \gamma is the regularization parameter used to balance the relative contribution between nuclear norm and the 1-norm, which can control the denoising performance. In general, the denoising threshold of \gamma can be set as the 5%~10% of the maximum singular value of Y.

    By applying Augmented Lagrangian Method (ALM), we can get the optimization problem:

    \begin{align} F\left( {{{\text{X}}},{{\text{D}}},{{{\text{Y}}}_{\!1}},{{{\text{Y}}}_{\!2}},\mu } \right) \!=\! & \gamma {\left\| {{\text{X}}} \right\|_*} + \left\langle {{{{\text{Y}}}_{\!1}},{{\text{Y}}} - {{\text{X}}}} \right\rangle \\ &+\! \frac{\mu }{2}\left\| {{{\text{Y}}} \!-\! {{\text{X}}}} \right\|_F^2 \!+\! \left( {1 \!-\!\! \gamma } \right){\left\| {{\text{D}}} \right\|_1} \\ &+\! \left\langle {{{{\text{Y}}}_2},{{\text{D}}} - {{\text{X}}}} \right\rangle \!\!+\!\! \frac{\mu }{2}\left\| {{{\text{D}}} \!\!-\!\! {{\text{X}}}} \right\|_F^2 \end{align}

    (17)

    And the update rules for solving this problem are as follows:

    {{{\text{X}}}^{\left( {k + 1} \right)}} = \mathcal{S}\left( {\frac{{{{\text{Y}}} \!\!+\!\! {{{\text{D}}}^{\left( k \right)}}}}{2} \!+\! \frac{{{{\text{Y}}}_1^{\left( k \right)} \!+\! {{\text{Y}}}_2^{\left( k \right)}}}{{2{\mu ^{\left( k \right)}}}},\frac{\gamma }{{2{\mu ^{\left( k \right)}}}}} \right) (18)
    {{{\text{D}}}^{\left( {k + 1} \right)}} = {\rm{soft}}\left( {\frac{1}{{{\mu ^{\left( k \right)}}}}{{\text{Y}}}_2^{\left( k \right)} - {{{\text{X}}}^{\left( {k + 1} \right)}},\frac{{1 - \gamma }}{{{\mu ^{\left( k \right)}}}}} \right)\quad (19)
    \!\!\!\!\!\!\!\!\!\!\left. \begin{align} {{\text{Y}}}_1^{\left( {k + 1} \right)} =& {{\text{Y}}}_1^{\left( k \right)} + {\mu ^{\left( k \right)}}\left( {{{\text{Y}}} - {{{\text{X}}}^{\left( {k + 1} \right)}}} \right) \\ {{\text{Y}}}_2^{\left( {k + 1} \right)} =& {{\text{Y}}}_2^{\left( k \right)} + {\mu ^{\left( k \right)}}\left( {{{{\text{D}}}^{\left( {k + 1} \right)}} - {{{\text{X}}}^{\left( {k + 1} \right)}}} \right) \quad\; \\ {\mu ^{\left( {k + 1} \right)}} =& \beta {\mu ^{\left( k \right)}},\,\,\, \beta > 1 \end{align}\!\!\!\!\!\!\right\} (20)

    where, \mathcal{S}\left( { \cdot , \cdot } \right) is the singular value thresholding function defined as:

    \mathcal{S}\left( {{{\text{X}}},\gamma } \right){\rm{ = }}{{\text{U}}}{\rm{soft}}\left( {{\text{Σ}},\gamma } \right){{{\text{V}}}^{\rm T}} (21)

    where, {{\text{X}}} = {{\text{U}}}{\text{Σ}}{{{\text{V}}}^{\rm T}\,} is the Singular Value Decomposition (SVD) of {{\text{X}}}, {\rm{soft}}\left( \cdot \right) is the soft thresholding function defined as:

    {\rm{soft}}\left( {x,\gamma } \right) = {\rm{sign}}\left( x \right) \cdot \max \left\{ {\left| x \right| - \gamma ,0} \right\} (22)

    See Appendix B for the detailed derivation of Eq. (18) and Eq. (19).

    The flowchart of the proposed method is shown in Fig. 2 by combining the sparse low rank matrix recovery with the 2D deconvolution.

    Figure  2.  The flowchart of the proposed method

    The parameters in the simulation are given in Tab. 1. In this experiment, we set four-point targets, the imaging results are shown in Fig. 3.

    Table  1.  Simulation parameters
    ParameterValueParameterValue
    {{M}}256R1 m
    {{N}}500H0.7 m
    \Delta f10 MHzW0.04 m
    \Delta \theta 0.009°SNR–15 dB
     | Show Table
    DownLoad: CSV
    Figure  3.  Imaging results

    As shown in Fig. 3(a), due to the limitation of synthetic aperture and bandwidth, the MF method suffers from relatively low resolution and high sidelobes which make it difficult to distinguish between four-point targets even there is no noise. Fig. 3(b)Fig. 3(d) show the imaging results reconstructed by MF and proposed method including the intermediate denoising results when SNR = –15 dB. It can be clearly seen that the effect of denoising compared Fig. 3(c) with Fig. 3(a) and Fig. 3(b), the echo SNR is further improved by the sparsity and low rank matrix recovery during the proposed intermediate denoising procedure. The final imaging result is shown in Fig. 3(d), from which we can see that the proposed method has a better reconstruction precision with higher resolution imaging of four distinguishable point targets.

    The experimental scene is shown in Fig. 4(a), which is the same with the model in Fig. 1. The radar system consists of a pair of horn antennas, a turntable whose rotation angle can be precisely controlled by the computer, and an Agilent VNA N5224A which is used for transmitting and receiving the stepped-frequency signal with bandwidth of 10 GHz from 28 GHz to 38 GHz and number of frequencies N equals to 256 (Frequency interval \Delta f is 40 MHz). Two kind of targets including three 5-mm-diameter mental spheres and a pair of scissors placed on a rotatory platform are used here as shown in Fig. 4(b).

    Figure  4.  Experimental scene VNA

    As we know, image entropy can be considered as a metric for measuring the smoothness of the probability density function of image intensities[15]. The imaging entropy is defined as:

    E\left( I \right) = - \sum\limits_{p = 1}^P {\sum\limits_{q = 1}^Q {\left| {\frac{{{I^2}\left( {p,q} \right)}}{{s\left( I \right)}}} \right| \ln \left| {\frac{{{I^2}\left( {p,q} \right)}}{{s\left( I \right)}}} \right|} } (23)

    where s\left( I \right) = \displaystyle\sum\nolimits_{p = 1}^P {\sum\nolimits_{q = 1}^Q {{{\left| {I\left( {p,q} \right)} \right|}^2}} } .

    In this experiment, we set R \!=\! 1\;{\rm m},\ H \!=\! 0.7\;{\rm m},W = 0.04\;{\rm m} and the total rotating angle is {5^ \circ } with an angle interval \Delta \theta = {0.01^ \circ } (M = 500).

    Fig. 5 shows the results of the MF and our proposed method for the mental spheres. The one-dimensional x and y domain cross-section of the target with red-dashed circle shown in Fig. 5 are presented in Fig. 6, in which the red-dashed line and blue line represent the result of MF and proposed method. Clearly, the reconstruction result of proposed method has a narrower main-lobe and lower side-lobe than MF and the sharpening ratio almost reach 5.8 and 3.0 in x and y domain, respectively.

    Figure  5.  Imaging results of mental spheres
    Figure  6.  One-dimensional cut through the target with red dashed circle in Fig. 5

    The parameters for this experiment are set as follows, R = 0.876\;{\rm m}, W = 0.04\;{\rm m}. The total rotating angle is {360^ \circ } with M equals to {720^ \circ }. Taking into account the scintillation characteristics of the target under large rotating angle, we divide the rotating angle into 72 segments and each of the part is with rotating angle from {0^ \circ } to {5^ \circ }. The proposed method is used to process the data for each segment and the image fusion method is used to merge the results of all segments.

    Fig. 7 shows the imaging results of the scissors reconstructed by MF and proposed method. It can be seen from the results that the proposed method has a high reconstruction precision with a shaper shape of scissors.

    Figure  7.  Imaging results of scissors

    The entropies of the imaging results by MF and our proposed method are given in Tab. 2 to quantitatively assess the performance. The proposed method has a low entropy which means the proposed method can improve the resolution and verifies its superiority.

    Table  2.  Entropies of imaging results
    TargetMFOur proposed method
    Mental spheres8.72824.8429
    Scissors8.94337.0454
     | Show Table
    DownLoad: CSV

    We introduce a robust deconvolution method with enhancing SNR technology to realize high resolution radar imaging. Compared to other high resolution methods, our proposed method is simple and robust. Although the signal model and experiments are performed for turntable radar situation with SF waveform, the method can be directly generalized to other practical radar systems based on other types of signals.

    Appendix A Proof of the sparsity and low rank characteristic

    To prove the echo matrix after MF is sparse and low rank, the following lemma is needed.

    Lemma 1[16]: For matrix A and B, the ranks of the product of A and B satisfy the inequality below:

    {\rm{rank}}\left( {{{\text{AB}}}} \right) \le \min \left\{ {{\rm{rank}}\left( {{\text{A}}} \right),{\rm{rank}}\left( {{\text{B}}} \right)} \right\} (A-1)

    From Eq. (5) and Eq. (6), we can see that the echo matrix after MF can be written as:

    {{{\text{Y}}}_{\!\!{\rm {MF}}}} \ = {{\text{A}}}_x^{\rm H}{{{\text{A}}}_x}\tilde{{\text{Σ}} }{{\text{A}}}_y^{\rm T}{{\text{A}}}_y^* (A-2)

    We have supposed that the target has sparse distribution, so the target backscatter coefficients matrix \tilde{{\text{Σ}} } is sparse and low rank. Thus, matrix {{{\text{Y}}}_{{\!\rm{MF}}}} is also low rank according to lemma 1. The sparsity of matrix {{{\text{Y}}}_{{\rm{\!\!MF}}}} can be proved by Eq. (9) obviously.

    Appendix B Derivation of Eq. (18) and Eq. (19)

    For Eq. (18), the optimization problem can be described as Eq. (B-1), and it has a closed-form solution just as Eq. (18) according to Ref. [13].

    \begin{align} {{{\text{X}}}^{\left( {k + 1} \right)}}\!\!\!\!\!\!\!\!\!\!\! & \\ & =\!\! \arg \mathop {\min }\limits_{{\text{X}}} F\left( {{{\text{X}}},{{{\text{D}}}^{\left( k \right)}},{{\text{Y}}}_1^{\left( k \right)},{{\text{Y}}}_2^{\left( k \right)},{\mu ^{\left( k \right)}}} \right) \\ & =\!\! \arg \mathop {\min }\limits_{{\text{X}}} \frac{1}{2}\left\| {{\text{X}}} \!- \! \frac{1}{2}\left( {{{\text{Y}}} \!+\! {{{\text{D}}}^{\left( k \right)}} \!+\! \frac{{\text{Y}}_1^{\left( k \right)}\!+\!\! {{\text{Y}}}_2^{\left( k \right)}}{{{\mu ^{\left( k \right)}}}}} \right) \right\|_F^2 \\ &\quad + \frac{\gamma }{{2{\mu ^{\left( k \right)}}}}{\left\| {{\text{X}}} \right\|_*} \end{align} (B-1)

    For Eq. (19), it is the same with Eq. (18), which can written as

    \begin{align} {{{\text{D}}}^{\left( {k + 1} \right)}} = & \arg \mathop {\min }\limits_{{\text{D}}} F\left( {{{{\text{X}}}^{\left( {k + 1} \right)}},{{\text{D}}},{{\text{Y}}}_1^{\left( k \right)},{{\text{Y}}}_2^{\left( k \right)},{\mu ^{\left( k \right)}}} \right) \\ = & \arg \mathop {\min }\limits_{{\text{D}}} \frac{1}{2}\left\| {{{\text{D}}} - \left( {\frac{{{{\text{Y}}}_2^{\left( k \right)}}}{{{\mu ^{\left( k \right)}}}} - {{{\text{X}}}^{\left( {k + 1} \right)}}} \right)} \right\|_F^2 \\ &+ \frac{{1 - \gamma }}{{{\mu ^{\left( k \right)}}}}{\left\| {{\text{D}}} \right\|_1} \end{align} (B-2)

    It also has a closed-form solution as Eq. (19) according to Ref. [17].

  • [1]
    Nichols E F and Tear J D. Joining the infrared and electric wave spectra[J]. Astrophysics Journal, 1925, 61: 17–37. DOI: 10.1086/142871
    [2]
    Wiltse J C. History of millimeter and submillimeter waves[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32(9): 1118–1127. DOI: 10.1109/TMTT.1984.1132823
    [3]
    Mcintosh R E, Narayanan R M, Mead J B, et al. Design and performance of a 215 GHz pulsed radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 1988, 36(6): 994–1001. DOI: 10.1109/22.3624
    [4]
    Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928. DOI: 10.1109/22.989974
    [5]
    Horiuchi N. Terahertz technology: Endless applications[J]. Nature Photonics, 2010, 4(3): 140. DOI: 10.1038/nphoton.2010.16
    [6]
    Albrecht J D. THz electronics: Transistors, TMICs, and high power amplifiers[C]. Proceedings of 2011 International Conference on Compound Semiconductor Manufacturing Technology, California, USA, 2011.
    [7]
    Wallace H B. Video synthetic aperture radar (ViSAR)[R]. Arlington: DARPA, 2012.
    [8]
    Advanced scanning technology for imaging radars (ASTIR)[R]. Arlington: DARPA, 2014.
    [9]
    Alexander N E, Alderman B, Allona F, et al.. Terascreen: Multi-frequency multi-mode terahertz screening for border checks[C]. Proceedings of the SPIE 9078, Passive and Active Millimeter-Wave Imaging XVII SPIE, Baltimore, Maryland, United States, 2014: 907802.
    [10]
    Appleby R and Wallace H B. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2944–2956. DOI: 10.1109/TAP.2007.908543
    [11]
    Di Carlo A, Paoloni C, Brunetti F, et al.. The European project OPTHER for the development of a THz tube amplifier[C]. Proceedings of IEEE International Vacuum Electronics Conference, Rome, 2009: 100–101.
    [12]
    Nagatsuma T. Exploring sub-terahertz waves for future wireless communications[C]. Proceedings of the Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Shanghai, 2006: 4.
    [13]
    Crowe T W, Hesler J L, Bishop W L, et al.. Integrated GaAs diode technology for millimeter and submillimeter-wave components and systems[C]. MRS Spring Meeting, San Francisco, 2000: 631.
    [14]
    Crowe T W, Bishop W L, Porterfield D W, et al. Opening the terahertz window with integrated diode circuits[J]. IEEE Journal of Solid-State Circuits, 2005, 40(10): 2104–2110. DOI: 10.1109/JSSC.2005.854599
    [15]
    Cooper K B, Dengler R J, Chattopadhyay G, et al. A high-resolution imaging radar at 580 GHz[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(1): 64–66. DOI: 10.1109/LMWC.2007.912049
    [16]
    Essen H, Hagelen M, Johannes W, et al.. High resolution millimetre wave measurement radars for ground based SAR and ISAR imaging[C]. Proceedings of IEEE Radar Conference, Rome, 2008: 1–5.
    [17]
    Essen H, Wahlen A, Sommer R, et al. High-bandwidth 220 GHz experimental radar[J]. Electronics Letters, 2007, 43(20): 1114–1116. DOI: 10.1049/el:20071865
    [18]
    Stanko S, Palm S, Sommer R, et al.. Millimeter resolution SAR imaging of infrastructure in the lower THz region using MIRANDA-300[C]. Proceedings of the 2016 46th European Microwave Conference, London, 2016: 1505–1508. DOI: 10.1109/EuMC.2016.7824641.
    [19]
    Dahlbäck R, Rubaek T, Bryllert T, et al.. A 340 GHz CW non-linear imaging system[C]. Proceedings of the 35th International Conference on Infrared Millimeter and Terahertz Waves, Rome, 2010: 1–2.
    [20]
    Cheng B B, Jiang G, Wang C, et al. Real-time imaging with a 140 GHz inverse synthetic aperture radar[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 594–605. DOI: 10.1109/TTHZ.2013.2268317
    [21]
    成彬彬, 江舸, 陈鹏, 等. 0.67 THz高分辨力成像雷达[J]. 太赫兹科学与电子信息学报, 2013, 11(1): 7–11

    Cheng Bin-bin, Jiang Ge, Chen Peng, et al. 0.67 THz high resolution imaging radar[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1): 7–11
    [22]
    Gu S M, Li C, Gao X, et al. Three-dimensional image reconstruction of targets under the illumination of terahertz Gaussian beam-theory and experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2241–2249. DOI: 10.1109/TGRS.2012.2209892
    [23]
    Cooper K B. Performance of a 340 GHz radar transceiver array for standoff security imaging[C]. Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, AZ, 2014. DOI: 10.1109/IRMMW-THz.2014.6956020.
    [24]
    Friederich F, von Spiegel W, Bauer M, et al.. THz Active Imaging Systems with Real-Time Capabilities[M]//Corsi C and Sizov F. THz and Security Applications. Dordrecht, Netherlands: Springer, 2014: 183–200.
    [25]
    Moll J, Schops P, and Krozer V. Towards three-dimensional millimeter-wave radar with the bistatic fast-factorized back-projection algorithm-potential and limitations[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(4): 432–440. DOI: 10.1109/TTHZ.2012.2199113
    [26]
    Keil A, Hoyer T, Peuser J, et al.. All-electronic 3D THz synthetic reconstruction imaging system[C]. Proceedings of the 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves, Houston, TX, 2011: 1–2.
    [27]
    Mcmillan R W, Trussell C W, Bohlander R A, et al. An experimental 225 GHz pulsed coherent radar[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(3): 555–562. DOI: 10.1109/22.75300
    [28]
    Chattopadhayay G, Lee C, Jung C, et al.. Integrated arrays on silicon at terahertz frequencies[C]. Proceedings of 2011 IEEE International Symposium on Antennas and Propagation, Spokane, WA, 2011: 3007–3010.
    [29]
    Cooper K B, Dengler R J, Llombart N, et al. Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771–2778. DOI: 10.1109/TMTT.2008.2007081
    [30]
    Cooper K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169–182. DOI: 10.1109/TTHZ.2011.2159556
    [31]
    Llombart N, Cooper K B, Dengler R J, et al. Time-delay multiplexing of two beams in a terahertz imaging radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1999–2007. DOI: 10.1109/TMTT.2010.2050106
    [32]
    Furqan M, Ahmed F, Feger R, et al.. A 120-GHz wideband FMCW radar demonstrator based on a fully-integrated sige transceiver with antenna-in-package[C]. Proceedings of 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility, San Diego, CA, 2016: 1–4.
    [33]
    Jahn M, Hamidipour A, Tong Z, et al.. A 120-GHz FMCW radar frontend demonstrator based on a SiGe chipset[C]. Proceedings of the 2011 41st European Microwave Conference, Manchester, 2011: 309–315.
    [34]
    Göttel B, Pauli M, Gulan H, et al.. Miniaturized 122 GHz short range radar sensor with antenna-in-package (AiP) and dielectric lens[C]. Proceedings of the 2014 8th European Conference on Antennas and Propagation, The Hague, 2014: 709–713.
    [35]
    Yuan S and Schumacher H. 110–140-GHz single-chip reconfigurable radar frontend with on-chip antenna[C]. Proceedings of 2015 IEEE Bipolar/BiCMOS Circuits and Technology Meeting-BCTM, Boston, MA, 2015: 48–51.
    [36]
    Jaeschke T, Bredendiek C, and Pohl N. A 240 GHz ultra-wideband FMCW radar system with on-chip antennas for high resolution radar imaging[C]. Proceedings of 2013 IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, 2014: 1–4.
    [37]
    Statnikov K, Sarmah N, Grzyb J, et al.. A 240 GHz circular polarized FMCW radar based on a sige transceiver with a lens-integrated on-chip antenna[C]. Proceedings of the 2014 11th European Radar Conference, Rome, 2014: 447–450.
    [38]
    Goyette T M, Dickinson J C, Waldman J, et al.. 1.56-THz compact radar range for w-band imagery of scale-model tactical targets[C]. Proceedings of the SPIE 4053, Algorithms for Synthetic Aperture Radar Imagery VII, Orlando, FL, United States, 2000: 615–622.
    [39]
    Coulombe M J, Horgan T, Waldman J, et al.. A 160 GHz polarimetric compact range for scale model RCS measurements[C]. Proceedings of Antenna Measurements and Techniques Association Proceedings, Seattle, WA, 2007.
    [40]
    DeMartinis G B, Coulombe M J, Horgan T M, et al.. A 240 GHz polarimetric compact range for scale model RCS measurements[J]. Japanese Journal of Clinical Medicine, 2010, 28.
    [41]
    Coulombe M J, Ferdinand T, Horgan T, et al.. A 585 GHz compact range for scale model RCS measurements[C]. Proceedings of Antenna Measurements and Techniques Association, Dallas, TX, 1993.
    [42]
    Goyette T M, Dickinson J C, Gorveatt J W, et al.. X-band ISAR imagery of scale-model tactical targets using a wide-bandwidth 350-GHz compact range[C]. Proceedings of the SPIE 5427, Algorithms for Synthetic Aperture Radar Imagery XI, Orlando, Florida, United States, 2004: 227–236.
    [43]
    梁达川, 魏明贵, 谷建强, 等. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究[J]. 物理学报, 2014, 63(21): 85–94. DOI: 10.7498/aps.63.214102

    Liang Da-chuan, Wei Ming-gui, Gu Jian-qiang, et al. Broad-band time domain terahertz radar cross-section research in scale models[J]. Acta Physica Sinica, 2014, 63(21): 85–94. DOI: 10.7498/aps.63.214102
    [44]
    Danylov A A, Goyette T M, Waldman J, et al.. Coherent imaging at 2.4 THz with a CW quantum cascade laser transmitter[C]. Proceedings of the SPIE 7601, Terahertz Technology and Applications III, San Francisco, California, United States, 2010, 7601: 760105.
    [45]
    Danylov A A, Goyette T M, Waldman J, et al. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter[J]. Optics Express, 2010, 18(15): 16264–16272. DOI: 10.1364/OE.18.016264
    [46]
    Lloyd-Hughes J and Jeon T I. A review of the terahertz conductivity of bulk and nano-materials[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(9): 871–925. DOI: 10.1007/s10762-012-9905-y
    [47]
    Grosso G and Parravicini G P. Solid State Physics[M]. Second Edition, New York: Academic Press, 2014.
    [48]
    Li L S and Yin H C. Fano-like resonance in cylinders including nonlocal effects[J]. Chinese Physics Letters, 2014, 31(8): 087302. DOI: 10.1088/0256-307X/31/8/087302
    [49]
    Andersh D J, Hazlett M, Lee S W, et al. Xpatch: A high frequency electromagnetic-scattering prediction code and environment for complex 3D objects[J]. Science, 1994, 286(5448): 2249–2250.
    [50]
    Goyette T M, Dickinson J C, Waldman J, et al.. Fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1.56-THz compact range[C]. Proceedings of the SPIE 4382, Algorithms for Synthetic Aperture Radar Imagery VIII, Orlando, FL, United States, 2001: 229–240.
    [51]
    Jagannathan A, Gatesman A J, and Giles R H. Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra[J]. Optics Letters, 2009, 34(13): 1927–1929. DOI: 10.1364/OL.34.001927
    [52]
    Zurk L M, Orlowski B, Sundberg G, et al.. Electromagnetic scattering calculations for terahertz sensing[C]. Proceedings of the PSIE 6472, Terahertz and Gigahertz Electronics and Photonics VI, San Jose, California, United States, 2007: 64720A.
    [53]
    Jansen C, Priebe S, Moller C, et al. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462–472. DOI: 10.1109/TTHZ.2011.2153610
    [54]
    Pätzold M, Kahl M, Klinkert T, et al. Simulation and data-processing framework for hybrid synthetic aperture THz systems including THz-scattering[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 625–634. DOI: 10.1109/TTHZ.2013.2274698
    [55]
    Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39–50. DOI: 10.1109/MAP.2009.4939018
    [56]
    Wang R J, Wang H Q, Deng B, et al. High-resolution terahertz radar imaging based on electromagnetic calculation data[J]. Journal of Infrared and Millimeter Waves, 2014, 33(6): 577–583.
    [57]
    Li C C, Deng B, Qin Y L, et al.. RCS prediction of planar slotted waveguide array antenna in terahertz regime[C]. Proceedings of the 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Wollongong, NSW, 2012: 1–2.
    [58]
    李纯纯, 邓彬, 王宏强, 等. 抛物面天线目标太赫兹雷达散射特性[J]. 激光与红外, 2013, 43(6): 671–677. DOI: 10.3969/j.issn.1001-5078.2013.06.017

    Li Chun-chun, Deng Bin, Wang Hong-qiang, et al. Radar scattering characteristics of parabolic reflector antenna targets in the terahertz regime[J]. Laser&Infrared, 2013, 43(6): 671–677. DOI: 10.3969/j.issn.1001-5078.2013.06.017
    [59]
    高敬坤, 王瑞君, 邓彬, 等. THz频段粗糙导体圆锥的极化成像特性[J]. 太赫兹科学与电子信息学报, 2015, 13(3): 401–408. DOI: 10.11805/TKYDA20150310.401

    Gao Jing-kun, Wang Rui-jun, Deng Bin, et al. Characteristics of polarized imaging of a conducting cone with surface roughness at Terahertz frequencies[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(3): 401–408. DOI: 10.11805/TKYDA20150310.401
    [60]
    王瑞君, 邓彬, 王宏强, 等. 不同表面结构特征圆柱导体的太赫兹散射特性[J]. 强激光与粒子束, 2013, 25(6): 1549–1554. DOI: 10.3788/HPLPB20132506.1549

    Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al. Scattering characteristics for cylindrical conductor with different surface micro-structure in terahertz regime[J]. High Power Laser and Particle Beams, 2013, 25(6): 1549–1554. DOI: 10.3788/HPLPB20132506.1549
    [61]
    Gao J K, Wang R J, Deng B, et al. Electromagnetic scattering characteristics of rough PEC targets in the terahertz regime[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 975–978.
    [62]
    王瑞君, 邓彬, 王宏强, 等. 太赫兹与远红外频段下铝质目标电磁特性与计算[J]. 物理学报, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102

    Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region[J]. Acta Physica Sinica, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102
    [63]
    Wang H Q, Wang R J, Deng B, et al. Compressed sensing of terahertz radar azimuth-elevation imaging[J]. Journal of Electronic Imaging, 2015, 24(1): 13035. DOI: 10.1117/1.JEI.24.1.013035
    [64]
    Li H Y, Li Q, Xia Z W, et al. Influence of Gaussian beam on terahertz radar cross section of a conducting sphere[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2013, 34(1): 88–96. DOI: 10.1007/s10762-012-9950-6
    [65]
    Li H Y, Li Q, She J Y, et al. Radar cross section of a semicircular bossresearch into influence of Gaussian beam on terahertz radar cross section of a semicircular boss[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2013, 34(7/8): 480–487.
    [66]
    Li H Y, Li Q, Xue K, et al. Research into influence of Gaussian beam on terahertz radar cross section of a conducting cylinder[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2013, 34(3/4): 289–298.
    [67]
    Liu H B, Zhong H, Karpowicz N, et al. Terahertz spectroscopy and imaging for defense and security applications[J]. Proceedings of the IEEE, 2007, 95(8): 1514–1527. DOI: 10.1109/JPROC.2007.898903
    [68]
    Henry S C, Schecklman S, Kniffin G P, et al.. Measurement and modeling of rough surface effects on terahertz spectroscopy[C]. Proceedings of the SPIE 7601, Terahertz Technology and Applications III, San Francisco, California, United States, 2010: 760108.
    [69]
    Arbab M H, Winebrenner D P, Thorsos E I, et al. Retrieval of terahertz spectroscopic signatures in the presence of rough surface scattering using wavelet methods[J]. Applied Physics Letters, 2010, 97(18): 181903. DOI: 10.1063/1.3507384
    [70]
    Caris M, Stanko S, Palm S, et al.. 300 GHz radar for high resolution SAR and ISAR applications[C]. Proceedings of the 2015 16th International Radar Symposium, Dresden, 2015: 577–580.
    [71]
    Palm S, Sommer R, Caris M, et al.. Ultra-high resolution SAR in lower terahertz domain for applications in mobile mapping[C]. Proceedings of 2016 German Microwave Conference, Bochum, 2016: 205–208.
    [72]
    Zhang B, Pi Y M, and Li J. Terahertz imaging radar with inverse aperture synthesis techniques: System structure, signal processing, and experiment results[J]. IEEE Sensors Journal, 2015, 15(1): 290–299. DOI: 10.1109/JSEN.2014.2342495
    [73]
    Demartinis G B, Goyette T M, Coulombe M J, et al.. A 1.56 THz spot scanning radar range for fully polarimetric w-band scale model measurements[R]. University of Massachusetts Lowell, 1999.
    [74]
    Wang R J, Deng B, Qin Y L, et al. Bistatic terahertz radar azimuth-elevation imaging based on compressed sensing[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 6(4): 702–713.
    [75]
    Yang Q, Deng B, Wang H Q, et al. Experimental research on imaging of precession targets with THz radar[J]. Electronics Letters, 2016, 52(25): 2059–2061. DOI: 10.1049/el.2016.3494
    [76]
    Yang Q, Deng B, Wang H Q, et al.. Research on imaging of precession targets based on range-instantaneous Doppler in the terahertz band[C]. Proceedings of 2017 International Workshop on Electromagnetics: Applications and Student Innovation Competition, London UK, 2017: 14–15.
    [77]
    李晋, 皮亦鸣, 杨晓波. 基于回旋管的星载太赫兹成像雷达设计与仿真[J]. 电子测量与仪器学报, 2010, 24(10): 892–898. DOI: 10.3724/SP.J.1187.2010.00892

    Li Jin, Pi Yi-ming, and Yang Xiao-bo. Spaceborne imaging radar system based on gyrotron in terahertz band design and simulation[J]. Journal of Electronic Measurement and Instrument, 2010, 24(10): 892–898. DOI: 10.3724/SP.J.1187.2010.00892
    [78]
    李晋. 太赫兹雷达系统总体与信号处理方法研究[D]. [博士论文], 电子科技大学, 2010.

    Li Jin. Research on terahertz radar system and its signal processing[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2010.
    [79]
    林华. 无人机载太赫兹合成孔径雷达成像分析与仿真[J]. 信息与电子工程, 2010, 8(4): 373–377, 382. DOI: 10.3969/j.issn.1672-2892.2010.04.001

    Lin Hua. Analysis and simulation of UAV terahertz wave synthetic aperture radar imaging[J]. Information and Electronic Engineering, 2010, 8(4): 373–377, 382. DOI: 10.3969/j.issn.1672-2892.2010.04.001
    [80]
    Darpa’s ViSAR radar completes testing[EB/OL]. http://www.abovetopsecret.com/forum/thread/1186879/pg1?from=singlemessage#lastPost, 2017.
    [81]
    沈斌. THz频段SAR成像及微多普勒目标检测与分离技术研究[D]. [硕士论文], 电子科技大学, 2008.

    Shen Bin. THz wave SAR imaging and micro-Doppler target recognization[D]. [Master dissertation], University of Electronic Science and Technology of China, 2008.
    [82]
    李晋, 皮亦鸣, 杨晓波. 太赫兹频段目标微多普勒信号特征分析[J]. 电子测量与仪器学报, 2009, 23(10): 25–30

    Li Jin, Pi Yi-ming, and Yang Xiao-bo. Analysis of micro-Doppler effect in Terahertz band[J]. Journal of Electronic Measurement and Instrument, 2009, 23(10): 25–30
    [83]
    李晋, 皮亦鸣, 杨晓波. 基于微动特征提取的太赫兹雷达目标检测算法研究[J]. 电子测量与仪器学报, 2010, 24(9): 803–807. DOI: 10.3724/SP.J.1187.2010.00803

    Li Jin, Pi Yi-ming, and Yang Xiao-bo. Research on terahertz radar target detection algorithm based on the extraction of micro motion feature[J]. Journal of Electronic Measurement and Instrument, 2010, 24(9): 803–807. DOI: 10.3724/SP.J.1187.2010.00803
    [84]
    王照法. THz频段SAR成像算法研究[D]. [硕士论文], 哈尔滨工业大学, 2015.

    Wang Zhao-fa. Study of imaging algorithm of synthetic aperture radar in THz band[D]. [Master dissertation], Harbin Institute of Technology, 2015.
    [85]
    Yang Q, Qin Y L, Zhang K, et al. Experimental research on vehicle-borne SAR imaging with THz radar[J]. Microwave and Optical Technology Letters, 2017, 59(8): 2048–2052. DOI: 10.1002/mop.v59.8
    [86]
    Gu S M, Li C, Gao X, et al. Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3877–3885. DOI: 10.1109/TMTT.2012.2221738
    [87]
    Liu W, Li C, Sun Z Y, et al. Three-dimensional sparse image reconstruction for terahertz surface layer holography with random step frequency[J]. Optics Letters, 2015, 40(14): 3384–3387. DOI: 10.1364/OL.40.003384
    [88]
    Sun Z Y, Li C, Gao X, et al. Minimum-entropy-based adaptive focusing algorithm for image reconstruction of terahertz single-frequency holography with improved depth of focus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 519–526. DOI: 10.1109/TGRS.2014.2325057
    [89]
    崔振茂, 高敬坤, 陆彬, 等. 340 GHz稀疏MIMO阵列实时3-D成像系统[J]. 红外与毫米波学报, 2017, 36(1): 102–106. DOI: 10.11972/j.issn.1001-9014.2017.01.018

    Cui Zhen-mao, Gao Jing-kun, Lu Bin, et al. Real time 3D imaging system based on sparse MIMO array at 340 GHz[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 102–106. DOI: 10.11972/j.issn.1001-9014.2017.01.018
    [90]
    Li D Z, Li X, Qin Y L, et al. Radar coincidence imaging: An instantaneous imaging technique with stochastic signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2261–2277. DOI: 10.1109/TGRS.2013.2258929
    [91]
    Shams M I B, Jiang Z, Qayyum J, et al. Characterization of terahertz antennas using photoinduced coded-aperture imaging[J]. Microwave and Optical Technology Letters, 2015, 57(5): 1180–1184. DOI: 10.1002/mop.29051
    [92]
    Kannegulla A, Jiang Z, Rahman S M, et al. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(3): 321–327. DOI: 10.1109/TTHZ.2014.2307163
    [93]
    Duan P, Wang Y Y, Xu D G, et al. Single pixel imaging with tunable terahertz parametric oscillator[J]. Applied Optics, 2016, 55(13): 3670–3675. DOI: 10.1364/AO.55.003670
    [94]
    Chen S, Luo C G, Deng B, et al. Study on coding strategies for radar coded-aperture imaging in terahertz band[J]. Journal of Electronic Imaging, 2017, 26(5): 053022.
    [95]
    姜兴, 刘耀山, 孙逢圆. 24 GHz车载防撞雷达射频前端设计[J]. 微波学报, 2012, 38(S1): 179–182

    Jiang Xing, Liu Yao-shan, and Sun Feng-yuan. 24 GHz RF front-end design of automotive collision avoidance radar[J]. Journal of Microwaves, 2012, 38(S1): 179–182
    [96]
    李健. 24 GHz调频连续波雷达信号处理技术研究[D]. [硕士论文], 南京理工大学, 2017.

    Li Jian. Research on signal processing of 24 GHz continuous wave radar[D]. [Master dissertation], Nanjing University of Science and Technology, 2017.
    [97]
    张慧, 余英瑞, 徐俊, 等. 77 GHz车载毫米波中远距雷达天线阵列设计[J]. 强激光与粒子束, 2017, 29(10): 48–51. DOI: 10.11884/HPLPB201729.170275

    Zhang Hui, Yu Ying-rui, Xu Jun, et al. Design of 77 GHz vehicle millimeter long-and medium-range radar antenna array[J]. High Power Laser and Particle Beams, 2017, 29(10): 48–51. DOI: 10.11884/HPLPB201729.170275
    [98]
    黄源水. 基于毫米波雷达的前向防撞报警系统[J]. 机电技术, 2017(1): 80–82. DOI: 10.19508/j.cnki.1672-4801.2017.01.024

    Huang Yuan-shui. Forward collision warning system based on millimeter wave radar[J]. Mechanical&Electrical Technology, 2017(1): 80–82. DOI: 10.19508/j.cnki.1672-4801.2017.01.024
    [99]
    鲍迎. 小型化24 GHz FMCW汽车防撞雷达[D]. [硕士论文], 浙江大学, 2011.

    Bao Ying. Compact 24 GHz FMCW automotive anti-collision radar[D]. [Master dissertation], Zhejiang University, 2011.
    [100]
    王泓然. 太赫兹频段云粒子散射建模及雷达系统分析[D]. [硕士论文], 北京理工大学, 2015.

    Wang Hong-ran. The scattering modeling of cloud particles and the system analysis of a radar in terahertz band[D]. [Master dissertation], Beijing Institute of Technology, 2015.
  • Relative Articles

    [1]LIN Yuqing, QIU Xiaolan, PENG Lingxiao, LI Hang, DING Chibiao. Non-line-of-sight Target Relocation by Multipath Model in SAR 3D Urban Area Imaging[J]. Journal of Radars, 2024, 13(4): 777-790. doi: 10.12000/JR24057
    [2]REN Yexian, XU Feng. Comparative Experiments on Separation Performance of Overlapping Scatterers with Several Tomography Imaging Methods[J]. Journal of Radars, 2022, 11(1): 71-82. doi: 10.12000/JR21139
    [3]QIU Xiaolan, JIAO Zekun, PENG Lingxiao, CHEN Jiankun, GUO Jiayi, ZHOU Liangjiang, CHEN Longyong, DING Chibiao, XU Feng, DONG Qiulei, LYU Shouye. SARMV3D-1.0: Synthetic Aperture Radar Microwave Vision 3D Imaging Dataset[J]. Journal of Radars, 2021, 10(4): 485-498. doi: 10.12000/JR21112
    [4]PAN Jie, WANG Shuai, LI Daojing, LU Xiaochun. High-resolution Wide-swath SAR Moving Target Imaging Technology Based on Distributed Compressed Sensing[J]. Journal of Radars, 2020, 9(1): 166-173. doi: 10.12000/JR19060
    [5]Zhou Chaowei, Li Zhenfang, Wang Yuekun, Xie Jinwei. Space-borne SAR Three-dimensional Imaging by Joint Multiple Azimuth Angle Doppler Frequency Rate Estimation[J]. Journal of Radars, 2018, 7(6): 696-704. doi: 10.12000/JR18094
    [6]Kuang Hui, Yang Wei, Wang Pengbo, Chen Jie. Three-dimensional Imaging Algorithm for Multi-azimuth-angle Multi-baseline Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2018, 7(6): 685-695. doi: 10.12000/JR18073
    [7]Ming Jing, Zhang Xiaoling, Pu Ling, Shi Jun. PSF Analysis and Ground Test Results of a Novel Circular Array 3-D SAR System[J]. Journal of Radars, 2018, 7(6): 770-776. doi: 10.12000/JR18068
    [8]Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102
    [9]Bu Yuncheng, Wang Yu, Zhang Fubo, Ji Guangyu, Chen Longyong, Liang Xingdong. Antenna Phase Center Calibration for Array InSAR System Based on Orthogonal Subspace[J]. Journal of Radars, 2018, 7(3): 335-345. doi: 10.12000/JR18007
    [10]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [11]Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [12]Wang Song, Zhang Fubo, Chen Longyong, Liang Xingdong. Array-interferometric Synthetic Aperture Radar Point Cloud Filtering Based on Spatial Clustering Seed Growth Algorithm[J]. Journal of Radars, 2018, 7(3): 355-363. doi: 10.12000/JR18006
    [13]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [14]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [15]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [16]Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [17]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [18]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [19]Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [20]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
  • Cited by

    Periodical cited type(2)

    1. 吴强,邓佩佩,陈仁爱,张强辉,安健飞,黄昆,周人,成彬彬. 一种基于太赫兹成像的复杂地形自适应定高方法. 太赫兹科学与电子信息学报. 2024(06): 617-626 .
    2. 张宇,金潇. 一种前视SAR二维空变误差校正方法. 现代雷达. 2024(10): 1-7 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.5 %FULLTEXT: 21.5 %META: 69.5 %META: 69.5 %PDF: 9.1 %PDF: 9.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.9 %其他: 10.9 %其他: 0.4 %其他: 0.4 %Baden: 0.1 %Baden: 0.1 %China: 0.7 %China: 0.7 %France: 0.3 %France: 0.3 %Germany: 0.1 %Germany: 0.1 %Grove City: 0.1 %Grove City: 0.1 %India: 0.0 %India: 0.0 %Matawan: 0.0 %Matawan: 0.0 %Rochester: 0.0 %Rochester: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.8 %[]: 0.8 %上海: 0.9 %上海: 0.9 %东京: 0.1 %东京: 0.1 %东营: 0.1 %东营: 0.1 %丹东: 0.0 %丹东: 0.0 %云浮: 0.1 %云浮: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %六安: 0.0 %六安: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.1 %兰辛: 0.1 %包头: 0.0 %包头: 0.0 %北京: 10.5 %北京: 10.5 %十堰: 0.0 %十堰: 0.0 %南京: 1.7 %南京: 1.7 %南昌: 0.0 %南昌: 0.0 %南通: 0.1 %南通: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.0 %大庆: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.1 %安顺: 0.1 %宝鸡: 0.3 %宝鸡: 0.3 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %巴黎: 0.7 %巴黎: 0.7 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.5 %广州: 0.5 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %成都: 1.5 %成都: 1.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.2 %扬州: 0.2 %斯特灵: 0.0 %斯特灵: 0.0 %无锡: 0.0 %无锡: 0.0 %日照: 0.1 %日照: 0.1 %昆明: 0.2 %昆明: 0.2 %杭州: 1.9 %杭州: 1.9 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.1 %桂林: 0.1 %武汉: 0.7 %武汉: 0.7 %汉中: 0.1 %汉中: 0.1 %汉中市: 0.1 %汉中市: 0.1 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮南: 0.0 %淮南: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.1 %温州: 0.1 %温州市: 0.0 %温州市: 0.0 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.1 %湘潭: 0.1 %滁州: 0.0 %滁州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.1 %烟台: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.2 %石家庄: 0.2 %石家庄市: 0.1 %石家庄市: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.0 %纽约: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 24.7 %芒廷维尤: 24.7 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.3 %莫斯科: 0.3 %菏泽: 0.1 %菏泽: 0.1 %蒙特利尔: 0.1 %蒙特利尔: 0.1 %衡水: 0.0 %衡水: 0.0 %衢州: 0.1 %衢州: 0.1 %西宁: 30.6 %西宁: 30.6 %西安: 1.8 %西安: 1.8 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.2 %赣州: 0.2 %辽源: 0.0 %辽源: 0.0 %达州: 0.1 %达州: 0.1 %运城: 0.3 %运城: 0.3 %郑州: 0.6 %郑州: 0.6 %重庆: 0.4 %重庆: 0.4 %镇江: 0.1 %镇江: 0.1 %长沙: 0.4 %长沙: 0.4 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.1 %青岛: 0.1 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他BadenChinaFranceGermanyGrove CityIndiaMatawanRochesterTaiwan, ChinaUnited States[]上海东京东营丹东云浮佛山保定六安兰州兰辛包头北京十堰南京南昌南通台北台州合肥周口呼和浩特哈尔滨哥伦布嘉兴大庆大连天津太原安康安顺宝鸡宣城宿州巴黎常州常德平顶山广州张家口张家口市成都成都市新都区扬州斯特灵无锡日照昆明杭州格兰特县桂林武汉汉中汉中市沈阳洛阳济南淮南深圳温州温州市湖州湘潭滁州漯河潍坊烟台白城石家庄石家庄市福州秦皇岛纽约美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科菏泽蒙特利尔衡水衢州西宁西安贵阳赣州辽源达州运城郑州重庆镇江长沙雷德蒙德青岛香港香港特别行政区齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(1)

    Article views(10787) PDF downloads(2514) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    • Table  1.  Simulation parameters
      ParameterValueParameterValue
      {{M}}256R1 m
      {{N}}500H0.7 m
      \Delta f10 MHzW0.04 m
      \Delta \theta 0.009°SNR–15 dB
       | Show Table
      DownLoad: CSV
    • Table  2.  Entropies of imaging results
      TargetMFOur proposed method
      Mental spheres8.72824.8429
      Scissors8.94337.0454
       | Show Table
      DownLoad: CSV