Volume 1 Issue 1
Feb.  2012
Turn off MathJax
Article Contents
Deng Yun-kai, Zhao Feng-jun, Wang Yu. Brief Analysis on the Development and Application of Spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015
Citation: Deng Yun-kai, Zhao Feng-jun, Wang Yu. Brief Analysis on the Development and Application of Spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1-10. doi: 10.3724/SP.J.1300.2012.20015

Brief Analysis on the Development and Application of Spaceborne SAR

doi: 10.3724/SP.J.1300.2012.20015
  • Received Date: 2012-03-22
  • Rev Recd Date: 2012-03-27
  • Available Online: 2012-04-19
  • Publish Date: 2012-03-01
  • Spaceborne SAR, which is a kind of initiatively microwave imaging sensor, plays an important role in gathering information with its capability of all-day and all-weather imaging, and has become an indispensable sensor for observing the earth. With the development of SAR techniques, Spaceborne SAR has been provided with the ability of High-Resolution Wide-Swath, miniaturization with low cost, bistatic and multi-mode imaging, and Ground Moving Target Indicating (GMTI), so more accurate information about the culture could be obtained with lower cost. In the meantime, more technique problems with muliti-mode, new work system and complex environment are arising and needed to be solved. The main work of this paper is discussing the current situation and the future development of Spaceborne SAR.

     

  • loading
  • [1]
    Curlander J C and Robert N McDonough. SyntheticAperture Radar Systems and Signal Processing[M]. John Wiley & Sons 1991, Chapter 1.
    [2]
    Krieger G and Moreira A. Spaceborne bi- and multistatic SAR: potential and challenges[J]. IEE Radar, Sonar & Navigation, 2006, 153(3): 184-198.
    [3]
    Krieger G, Moreira A, Fiedler H, et al.. TanDEM-X: a satellite formation for high-resolution SAR interferometry[J]. IEEE Transanctions on Geoscience Remote Sensing, 2007, 45(11): 3317-3341.
    [4]
    Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: techniques and optimization strategies for high-resolution and wide-swath SAR imaging[J]. IEEE Transanctions on Aerospace Electronic Systems, 2009, 45(2): 564-592.
    [5]
    Younis M, Huber S, Patyuchenko A, et al.. Performance comparison of fefelctor-and planar-antenna based digital beam-forming SAR[J]. International Journal of Antenna and Propagation (Special Issue on Active Antennas for Space Applications), 2009: 1-13.
    [6]
    Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transanctions on Geoscience Remote Sensing, 2008, 46(1): 31-46.
    [7]
    Rincon R F, Vega M A, Buenfil M, et al.. NASA’s L-band digital beamforming synthetic aperture radar[J]. IEEE Transanctions on Geoscience Remote Sensing, 2011, 49(10): 3622-3628.
    [8]
    Ender J H G, Gierull C H, and Cerutti-Maori D. Improved space-based moving target indication via alternate transmission and receiver switching[J]. IEEE Transanctions on Geoscience Remote Sensing, 2008, 46(12): 3960-3974.
    [9]
    Cerutti-Maori D, Ender J H G, and Gierull C H. Experimental verification of SAR-GMTI improvement through antenna switching[J]. IEEE Transanctions on Geoscience Remote Sensing, 2010, 48(4): 2066-2075.
    [10]
    Cumming I G and Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA: Artech House, 2005, Chapter 1.
    [11]
    Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic Aperture Radar Signal Processing Algorithms[M]. Boston, MA: Artech House, 1995, Chapter 1.
    [12]
    Franceschetti G and Lanari R. Synthetic Aperture Radar Processing[M]. CRC Press: Boca Raton, 1999, Chapters 1 and 2.
    [13]
    Younis M, Bordoni F, Gebert N, et al.. Smart multi-aperture radar techniques for spaceborne remote sensing[C].Proceeding of the IEEE International Geoscience and Remote Sensing Symposium 2008 (IGARSS’08), Boston, MA, USA, July 2008. [CD-ROM]
    [14]
    Wang R, Deng Y K, Loffeld O, et al.. Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on 2D principle of stationary phase[J]. IEEE Transanctions on Geoscience Remote Sensing, 2011, 49(10): 3504-3520.
    [15]
    Wang R, Loffeld O, Nies H, et al.. Frequency-domain Bistatic SAR processing for spaceborne/airborne configuration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1329-1345.
    [16]
    Walterscheid I, Espeter T, Brenner AR, et al.. Bistatic SAR experiments with PAMIR and TerraSAR-X-setup, processing, and image results[J]. IEEE Transanctions on Geoscience Remote Sensing, 2010, 48(8): 3268-3279.
    [17]
    Suess M, Grafmueller B, and Zahn R. A novel high resolution, wide swath SAR system[C]. Proceeding of the IEEE International Geoscience and Remote Sensing Symposium 2001 (IGARSS’01), Sydeny Australia, July 2001: 1013-1015.
    [18]
    Fornaro G, Lombardini F, and Serafino F. Three- dimensional multipass SAR focusing: experiments with long-term spaceborne data[J]. IEEE Transanctions on Geoscience Remote Sensing, 2005, 43(4): 702-714.
    [19]
    Fornaro G, Serafino F, and Soldovieri F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transanctions on Geoscience Remote Sensing, 2003, 41(3): 507-517.
    [20]
    Fornaro G, Reale D and Serafino F. Four-dimensional SAR imaging for height estimation and monitoring of single and double scatters[J]. IEEE Transanctions on Geoscience Remote Sensing, 2009, 47(1): 224-237.
    [21]
    Zhu X and Bamler R. Very high resolution SAR tomography via compressive sensing[C]. Proceeding ESA FRINGE Workshop Advanced Science Applation SAR Interferometry, Frascati, Italy, 2009.
    [22]
    Wang R, Loffeld O, Nies H, et al.. Focus FMCW SAR data using wavenumber domain algorithm[J]. IEEE Transanctions on Geoscience Remote Sensing, 2010, 48(4): 2109-2118.
    [23]
    Liu Y, Deng Y K, and Wang R. CARMSAR-a compact and reconfigurable miniature SAR system for high resolution remote sensing[C]. The 9th European Conference on Synthetic Aperture Radar (EUSAR 2012), Germany, April 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (7092) PDF downloads(19799) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint