Most Downloaded

1
This study proposes a Synthetic Aperture Radar (SAR) aircraft detection and recognition method combined with scattering perception to address the problem of target discreteness and false alarms caused by strong background interference in SAR images. The global information is enhanced through a context-guided feature pyramid module, which suppresses strong disturbances in complex images and improves the accuracy of detection and recognition. Additionally, scatter key points are used to locate targets, and a scatter-aware detection module is designed to realize the fine correction of the regression boxes to improve target localization accuracy. This study generates and presents a high-resolution SAR-AIRcraft-1.0 dataset to verify the effectiveness of the proposed method and promote the research on SAR aircraft detection and recognition. The images in this dataset are obtained from the satellite Gaofen-3, which contains 4,368 images and 16,463 aircraft instances, covering seven aircraft categories, namely A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and other. We apply the proposed method and common deep learning algorithms to the constructed dataset. The experimental results demonstrate the excellent effectiveness of our method combined with scattering perception. Furthermore, we establish benchmarks for the performance indicators of the dataset in different tasks such as SAR aircraft detection, recognition, and integrated detection and recognition. This study proposes a Synthetic Aperture Radar (SAR) aircraft detection and recognition method combined with scattering perception to address the problem of target discreteness and false alarms caused by strong background interference in SAR images. The global information is enhanced through a context-guided feature pyramid module, which suppresses strong disturbances in complex images and improves the accuracy of detection and recognition. Additionally, scatter key points are used to locate targets, and a scatter-aware detection module is designed to realize the fine correction of the regression boxes to improve target localization accuracy. This study generates and presents a high-resolution SAR-AIRcraft-1.0 dataset to verify the effectiveness of the proposed method and promote the research on SAR aircraft detection and recognition. The images in this dataset are obtained from the satellite Gaofen-3, which contains 4,368 images and 16,463 aircraft instances, covering seven aircraft categories, namely A220, A320/321, A330, ARJ21, Boeing737, Boeing787, and other. We apply the proposed method and common deep learning algorithms to the constructed dataset. The experimental results demonstrate the excellent effectiveness of our method combined with scattering perception. Furthermore, we establish benchmarks for the performance indicators of the dataset in different tasks such as SAR aircraft detection, recognition, and integrated detection and recognition.
2
Three-Dimensional (3D) Synthetic Aperture Radar (SAR) holds great potential for applications in fields such as mapping and disaster management, making it an important research focus in SAR technology. To advance the application and development of 3D SAR, especially by reducing the number of observations or antenna array elements, the Aerospace Information Research Institute, Chinese Academy of Sciences, (AIRCAS) has pioneered the development of the full-polarimetric Microwave Vision 3D SAR (MV3DSAR) experimental system. This system is designed to serve as an experimental platform and a source of data for microwave vision SAR 3D imaging studies. This study introduces the MV3DSAR experimental system along with its full-polarimetric SAR data set. It also proposes a set of full-polarimetric data processing scheme that covers essential steps such as polarization correction, polarization coherent enhancement, microwave vision 3D imaging, and 3D fusion visualization. The results from the 3D imaging data set confirm the full-polarimetric capabilities of the MV3DSAR experimental system and validate the effectiveness of the proposed processing method. The full-polarimetric unmanned aerial vehicle -borne array interferometric SAR data set, released through this study, offers enhanced data resources for advancing 3D SAR imaging research. Three-Dimensional (3D) Synthetic Aperture Radar (SAR) holds great potential for applications in fields such as mapping and disaster management, making it an important research focus in SAR technology. To advance the application and development of 3D SAR, especially by reducing the number of observations or antenna array elements, the Aerospace Information Research Institute, Chinese Academy of Sciences, (AIRCAS) has pioneered the development of the full-polarimetric Microwave Vision 3D SAR (MV3DSAR) experimental system. This system is designed to serve as an experimental platform and a source of data for microwave vision SAR 3D imaging studies. This study introduces the MV3DSAR experimental system along with its full-polarimetric SAR data set. It also proposes a set of full-polarimetric data processing scheme that covers essential steps such as polarization correction, polarization coherent enhancement, microwave vision 3D imaging, and 3D fusion visualization. The results from the 3D imaging data set confirm the full-polarimetric capabilities of the MV3DSAR experimental system and validate the effectiveness of the proposed processing method. The full-polarimetric unmanned aerial vehicle -borne array interferometric SAR data set, released through this study, offers enhanced data resources for advancing 3D SAR imaging research.
3
Detection of small, slow-moving targets, such as drones using Unmanned Aerial Vehicles (UAVs) poses considerable challenges to radar target detection and recognition technology. There is an urgent need to establish relevant datasets to support the development and application of techniques for detecting small, slow-moving targets. This paper presents a dataset for detecting low-speed and small-size targets using a multiband Frequency Modulated Continuous Wave (FMCW) radar. The dataset utilizes Ku-band and L-band FMCW radar to collect echo data from six UAV types and exhibits diverse temporal and frequency domain resolutions and measurement capabilities by modulating radar cycles and bandwidth, generating an LSS-FMCWR-1.0 dataset (Low Slow Small, LSS). To further enhance the capability for extracting micro-Doppler features from UAVs, this paper proposes a method for UAV micro-Doppler extraction and parameter estimation based on the local maximum synchroextracting transform. Based on the Short Time Fourier Transform (STFT), this method extracts values at the maximum energy point in the time-frequency domain to retain useful signals and refine the time-frequency energy representation. Validation and analysis using the LSS-FMCWR-1.0 dataset demonstrate that this approach reduces entropy on an average by 5.3 dB and decreases estimation errors in rotor blade length by 27.7% compared with traditional time-frequency methods. Moreover, the proposed method provides the foundation for subsequent target recognition efforts because it balances high time-frequency resolution and parameter estimation capabilities. Detection of small, slow-moving targets, such as drones using Unmanned Aerial Vehicles (UAVs) poses considerable challenges to radar target detection and recognition technology. There is an urgent need to establish relevant datasets to support the development and application of techniques for detecting small, slow-moving targets. This paper presents a dataset for detecting low-speed and small-size targets using a multiband Frequency Modulated Continuous Wave (FMCW) radar. The dataset utilizes Ku-band and L-band FMCW radar to collect echo data from six UAV types and exhibits diverse temporal and frequency domain resolutions and measurement capabilities by modulating radar cycles and bandwidth, generating an LSS-FMCWR-1.0 dataset (Low Slow Small, LSS). To further enhance the capability for extracting micro-Doppler features from UAVs, this paper proposes a method for UAV micro-Doppler extraction and parameter estimation based on the local maximum synchroextracting transform. Based on the Short Time Fourier Transform (STFT), this method extracts values at the maximum energy point in the time-frequency domain to retain useful signals and refine the time-frequency energy representation. Validation and analysis using the LSS-FMCWR-1.0 dataset demonstrate that this approach reduces entropy on an average by 5.3 dB and decreases estimation errors in rotor blade length by 27.7% compared with traditional time-frequency methods. Moreover, the proposed method provides the foundation for subsequent target recognition efforts because it balances high time-frequency resolution and parameter estimation capabilities.
4
Flying birds and Unmanned Aerial Vehicles (UAVs) are typical “low, slow, and small” targets with low observability. The need for effective monitoring and identification of these two targets has become urgent and must be solved to ensure the safety of air routes and urban areas. There are many types of flying birds and UAVs that are characterized by low flying heights, strong maneuverability, small radar cross-sectional areas, and complicated detection environments, which are posing great challenges in target detection worldwide. “Visible (high detection ability) and clear-cut (high recognition probability)” methods and technologies must be developed that can finely describe and recognize UAVs, flying birds, and “low-slow-small” targets. This paper reviews the recent progress in research on detection and recognition technologies for rotor UAVs and flying birds in complex scenes and discusses effective detection and recognition methods for the detection of birds and drones, including echo modeling and recognition of fretting characteristics, the enhancement and extraction of maneuvering features in ubiquitous observation mode, distributed multi-view features fusion, differences in motion trajectories, and intelligent classification via deep learning. Lastly, the problems of existing research approaches are summarized, and we consider the future development prospects of target detection and recognition technologies for flying birds and UAVs in complex scenarios. Flying birds and Unmanned Aerial Vehicles (UAVs) are typical “low, slow, and small” targets with low observability. The need for effective monitoring and identification of these two targets has become urgent and must be solved to ensure the safety of air routes and urban areas. There are many types of flying birds and UAVs that are characterized by low flying heights, strong maneuverability, small radar cross-sectional areas, and complicated detection environments, which are posing great challenges in target detection worldwide. “Visible (high detection ability) and clear-cut (high recognition probability)” methods and technologies must be developed that can finely describe and recognize UAVs, flying birds, and “low-slow-small” targets. This paper reviews the recent progress in research on detection and recognition technologies for rotor UAVs and flying birds in complex scenes and discusses effective detection and recognition methods for the detection of birds and drones, including echo modeling and recognition of fretting characteristics, the enhancement and extraction of maneuvering features in ubiquitous observation mode, distributed multi-view features fusion, differences in motion trajectories, and intelligent classification via deep learning. Lastly, the problems of existing research approaches are summarized, and we consider the future development prospects of target detection and recognition technologies for flying birds and UAVs in complex scenarios.
5
As the electromagnetic spectrum becomes a key operational domain in modern warfare, radars will face a more complex, dexterous, and smarter electromagnetic interference environment in future military operations. Cognitive Intelligent Radar (CIR) has become one of the key development directions in the field of radar technology because it has the capabilities of active environmental perception, arbitrary transmit and receive design, intelligent signal processing, and resource scheduling, therefore, can adapt to the complex and changeable battlefield electromagnetic confrontation environment. In this study, the CIR is decomposed into four functional modules: cognitive transmitting, cognitive receiving, intelligent signal processing, and intelligent resource scheduling. Then, the antijamming principle of each link (i.e., interference perception, transmit design, receive design, signal processing, and resource scheduling) of CIR is elucidated. Finally, we summarize the representative literature in recent years and analyze the technological development trend in this field to provide the necessary reference and basis for future technological research. As the electromagnetic spectrum becomes a key operational domain in modern warfare, radars will face a more complex, dexterous, and smarter electromagnetic interference environment in future military operations. Cognitive Intelligent Radar (CIR) has become one of the key development directions in the field of radar technology because it has the capabilities of active environmental perception, arbitrary transmit and receive design, intelligent signal processing, and resource scheduling, therefore, can adapt to the complex and changeable battlefield electromagnetic confrontation environment. In this study, the CIR is decomposed into four functional modules: cognitive transmitting, cognitive receiving, intelligent signal processing, and intelligent resource scheduling. Then, the antijamming principle of each link (i.e., interference perception, transmit design, receive design, signal processing, and resource scheduling) of CIR is elucidated. Finally, we summarize the representative literature in recent years and analyze the technological development trend in this field to provide the necessary reference and basis for future technological research.
6
Synthetic Aperture Radar (SAR), with its coherent imaging mechanism, has the unique advantage of all-day and all-weather imaging. As a typical and important topic, aircraft detection and recognition have been widely studied in the field of SAR image interpretation. With the introduction of deep learning, the performance of aircraft detection and recognition, which is based on SAR imagery, has considerably improved. This paper combines the expertise gathered by our research team on the theory, algorithms, and applications of SAR image-based target detection and recognition, particularly aircraft. Additionally, this paper presents a comprehensive review of deep learning-powered aircraft detection and recognition based on SAR imagery. This review includes a detailed analysis of the aircraft target characteristics and current challenges associated with SAR image-based detection and recognition. Furthermore, the review summarizes the latest research advancements, characteristics, and application scenarios of various technologies and collates public datasets and performance evaluation metrics. Finally, several challenges and potential research prospects are discussed. Synthetic Aperture Radar (SAR), with its coherent imaging mechanism, has the unique advantage of all-day and all-weather imaging. As a typical and important topic, aircraft detection and recognition have been widely studied in the field of SAR image interpretation. With the introduction of deep learning, the performance of aircraft detection and recognition, which is based on SAR imagery, has considerably improved. This paper combines the expertise gathered by our research team on the theory, algorithms, and applications of SAR image-based target detection and recognition, particularly aircraft. Additionally, this paper presents a comprehensive review of deep learning-powered aircraft detection and recognition based on SAR imagery. This review includes a detailed analysis of the aircraft target characteristics and current challenges associated with SAR image-based detection and recognition. Furthermore, the review summarizes the latest research advancements, characteristics, and application scenarios of various technologies and collates public datasets and performance evaluation metrics. Finally, several challenges and potential research prospects are discussed.
7
Considering the problem of radar target detection in the sea clutter environment, this paper proposes a deep learning-based marine target detector. The proposed detector increases the differences between the target and clutter by fusing multiple complementary features extracted from different data sources, thereby improving the detection performance for marine targets. Specifically, the detector uses two feature extraction branches to extract multiple levels of fast-time and range features from the range profiles and the range-Doppler (RD) spectrum, respectively. Subsequently, the local-global feature extraction structure is developed to extract the sequence relations from the slow time or Doppler dimension of the features. Furthermore, the feature fusion block is proposed based on adaptive convolution weight learning to efficiently fuse slow-fast time and RD features. Finally, the detection results are obtained through upsampling and nonlinear mapping to the fused multiple levels of features. Experiments on two public radar databases validated the detection performance of the proposed detector. Considering the problem of radar target detection in the sea clutter environment, this paper proposes a deep learning-based marine target detector. The proposed detector increases the differences between the target and clutter by fusing multiple complementary features extracted from different data sources, thereby improving the detection performance for marine targets. Specifically, the detector uses two feature extraction branches to extract multiple levels of fast-time and range features from the range profiles and the range-Doppler (RD) spectrum, respectively. Subsequently, the local-global feature extraction structure is developed to extract the sequence relations from the slow time or Doppler dimension of the features. Furthermore, the feature fusion block is proposed based on adaptive convolution weight learning to efficiently fuse slow-fast time and RD features. Finally, the detection results are obtained through upsampling and nonlinear mapping to the fused multiple levels of features. Experiments on two public radar databases validated the detection performance of the proposed detector.
8
Weak target signal processing is the cornerstone and prerequisite for radar to achieve excellent detection performance. In complex practical applications, due to strong clutter interference, weak target signals, unclear image features, and difficult effective feature extraction, weak target detection and recognition have always been challenging in the field of radar processing. Conventional model-based processing methods do not accurately match the actual working background and target characteristics, leading to weak universality. Recently, deep learning has made significant progress in the field of radar intelligent information processing. By building deep neural networks, deep learning algorithms can automatically learn feature representations from a large amount of radar data, improving the performance of target detection and recognition. This article systematically reviews and summarizes recent research progress in the intelligent processing of weak radar targets in terms of signal processing, image processing, feature extraction, target classification, and target recognition. This article discusses noise and clutter suppression, target signal enhancement, low- and high-resolution radar image and feature processing, feature extraction, and fusion. In response to the limited generalization ability, single feature expression, and insufficient interpretability of existing intelligent processing applications for weak targets, this article underscores future developments from the aspects of small sample object detection (based on transfer learning and reinforcement learning), multidimensional and multifeature fusion, network model interpretability, and joint knowledge- and data-driven processing. Weak target signal processing is the cornerstone and prerequisite for radar to achieve excellent detection performance. In complex practical applications, due to strong clutter interference, weak target signals, unclear image features, and difficult effective feature extraction, weak target detection and recognition have always been challenging in the field of radar processing. Conventional model-based processing methods do not accurately match the actual working background and target characteristics, leading to weak universality. Recently, deep learning has made significant progress in the field of radar intelligent information processing. By building deep neural networks, deep learning algorithms can automatically learn feature representations from a large amount of radar data, improving the performance of target detection and recognition. This article systematically reviews and summarizes recent research progress in the intelligent processing of weak radar targets in terms of signal processing, image processing, feature extraction, target classification, and target recognition. This article discusses noise and clutter suppression, target signal enhancement, low- and high-resolution radar image and feature processing, feature extraction, and fusion. In response to the limited generalization ability, single feature expression, and insufficient interpretability of existing intelligent processing applications for weak targets, this article underscores future developments from the aspects of small sample object detection (based on transfer learning and reinforcement learning), multidimensional and multifeature fusion, network model interpretability, and joint knowledge- and data-driven processing.
9
Achieving robust joint utilization of multidomain characteristics and deep-network features while maintaining a high jamming-recognition accuracy with limited samples is challenging. To address this issue, this paper proposes a multidomain characteristic-guided multimodal contrastive recognition method for active radar jamming. This method involves first thoroughly extracting the multidomain characteristics of active jamming and then designing an optimization unit to automatically select effective characteristics and generate a text modality imbued with implicit expert knowledge. The text modality and involved time-frequency transformation image are separately fed into text and image encoders to construct multimodal-feature pairs and map them to a high-dimensional space for modal alignment. The text features are used as anchors and a guide to time-frequency image features for aggregation around the anchors through contrastive learning, optimizing the image encoder’s representation capability, achieving tight intraclass and separated interclass distributions of active jamming. Experiments show that compared to existing methods, which involve directly combining multidomain characteristics and deep-network features, the proposed guided-joint method can achieve differential feature processing, thereby enhancing the discriminative and generalization capabilities of recognition features. Moreover, under extremely small-sample conditions (2~3 training samples for each type of jamming), the accuracy of our method is 9.84% higher than those of comparative methods, proving the effectiveness and robustness of the proposed method. Achieving robust joint utilization of multidomain characteristics and deep-network features while maintaining a high jamming-recognition accuracy with limited samples is challenging. To address this issue, this paper proposes a multidomain characteristic-guided multimodal contrastive recognition method for active radar jamming. This method involves first thoroughly extracting the multidomain characteristics of active jamming and then designing an optimization unit to automatically select effective characteristics and generate a text modality imbued with implicit expert knowledge. The text modality and involved time-frequency transformation image are separately fed into text and image encoders to construct multimodal-feature pairs and map them to a high-dimensional space for modal alignment. The text features are used as anchors and a guide to time-frequency image features for aggregation around the anchors through contrastive learning, optimizing the image encoder’s representation capability, achieving tight intraclass and separated interclass distributions of active jamming. Experiments show that compared to existing methods, which involve directly combining multidomain characteristics and deep-network features, the proposed guided-joint method can achieve differential feature processing, thereby enhancing the discriminative and generalization capabilities of recognition features. Moreover, under extremely small-sample conditions (2~3 training samples for each type of jamming), the accuracy of our method is 9.84% higher than those of comparative methods, proving the effectiveness and robustness of the proposed method.
10
Electromagnetic waves are transmitted by radars and reflected by different objects, and radar signal processing is highly significant as its analyses can lead to the acquisition of important information such as the situation and radial movement speed. Moreover, deep learning has gained much attention in several fields, and it can be utilized to implement radar signal processing. Compared with the traditional methods, deep learning can realize automatic feature extraction and yield highly accurate results; hence, in this paper, the application of deep learning algorithm in radar signal processing is studied. In addition, the study directions in radar signal processing are summarized into overfitting and interpretation. Thus, these two issues are being considered. Electromagnetic waves are transmitted by radars and reflected by different objects, and radar signal processing is highly significant as its analyses can lead to the acquisition of important information such as the situation and radial movement speed. Moreover, deep learning has gained much attention in several fields, and it can be utilized to implement radar signal processing. Compared with the traditional methods, deep learning can realize automatic feature extraction and yield highly accurate results; hence, in this paper, the application of deep learning algorithm in radar signal processing is studied. In addition, the study directions in radar signal processing are summarized into overfitting and interpretation. Thus, these two issues are being considered.
11
Spaceborne Synthetic Aperture Radar (SAR), which can be mounted on space vehicles to collect information of the entire planet with all-day and all-weather imaging capacity, has been an indispensable device for earth observation. Currently, the technology of our spaceborne SAR has achieved a considerable technological improvement, including the resolution change from meter to submeter, the imaging mode from stripmap to azimuth beam steering like the sliding spotlight, the practical application of the multichannel approach and the conversion of single polarization into full polarization. With the development of SAR techniques, forthcoming SAR will make breakthroughs in SAR architectures, concepts, technologies and modes, for example, high-resolution wide-swath imaging, multistatic SAR, payload miniaturization and intelligence. All of these will extend the observation dimensions and obtain multidimensional data. This study focuses on the forthcoming development of spaceborne SAR. Spaceborne Synthetic Aperture Radar (SAR), which can be mounted on space vehicles to collect information of the entire planet with all-day and all-weather imaging capacity, has been an indispensable device for earth observation. Currently, the technology of our spaceborne SAR has achieved a considerable technological improvement, including the resolution change from meter to submeter, the imaging mode from stripmap to azimuth beam steering like the sliding spotlight, the practical application of the multichannel approach and the conversion of single polarization into full polarization. With the development of SAR techniques, forthcoming SAR will make breakthroughs in SAR architectures, concepts, technologies and modes, for example, high-resolution wide-swath imaging, multistatic SAR, payload miniaturization and intelligence. All of these will extend the observation dimensions and obtain multidimensional data. This study focuses on the forthcoming development of spaceborne SAR.
12
Due to the short wavelength of millimeter-wave, active electrical scanning millimeter-wave imaging system requires large imaging scenarios and high resolutions in practical applications. These requirements lead to a large uniform array size and high complexity of the feed network that satisfies the Nyquist sampling theorem. Accordingly, the system faces contradictions among imaging accuracy, imaging speed, and system cost. To this end, a novel, Credible Bayesian Inference of near-field Sparse Array Synthesis (CBI-SAS) algorithm is proposed under the framework of sparse Bayesian learning. The algorithm optimizes the complex-valued excitation weights based on Bayesian inference in a sparse manner. Therefore, it obtains the full statistical posterior Probability Density Function (PDF) of these weights. This enables the algorithm to utilize higher-order statistical information to obtain the optimal values, confidence intervals, and confidence levels of the excitation weights. In Bayesian inference, to achieve a small number of array elements to synthesize the desired beam orientation pattern, a heavy-tailed Laplace sparse prior is introduced to the excitation weights. However, considering that the prior probability model is not conjugated with the reference pattern data probability, the prior model is encoded in a hierarchical Bayesian manner so that the full posterior distribution can be represented in closed-form solutions. To avoid the high-dimensional integral in the full posterior distribution, a variational Bayesian expectation maximization method is employed to calculate the posterior PDF of the excitation weights, enabling reliable Bayesian inference. Simulation results show that compared with conventional sparse array synthesis algorithms, the proposed algorithm achieves lower element sparsity, a smaller normalized mean square error, and higher accuracy for matching the desired directional pattern. In addition, based on the measured raw data from near-field 1D electrical scanning and 2D plane electrical scanning, an improved 3D time domain algorithm is applied for 3D image reconstruction. Results verify that the proposed CBI-SAS algorithm can guarantee imaging results and reduce the complexity of the system. Due to the short wavelength of millimeter-wave, active electrical scanning millimeter-wave imaging system requires large imaging scenarios and high resolutions in practical applications. These requirements lead to a large uniform array size and high complexity of the feed network that satisfies the Nyquist sampling theorem. Accordingly, the system faces contradictions among imaging accuracy, imaging speed, and system cost. To this end, a novel, Credible Bayesian Inference of near-field Sparse Array Synthesis (CBI-SAS) algorithm is proposed under the framework of sparse Bayesian learning. The algorithm optimizes the complex-valued excitation weights based on Bayesian inference in a sparse manner. Therefore, it obtains the full statistical posterior Probability Density Function (PDF) of these weights. This enables the algorithm to utilize higher-order statistical information to obtain the optimal values, confidence intervals, and confidence levels of the excitation weights. In Bayesian inference, to achieve a small number of array elements to synthesize the desired beam orientation pattern, a heavy-tailed Laplace sparse prior is introduced to the excitation weights. However, considering that the prior probability model is not conjugated with the reference pattern data probability, the prior model is encoded in a hierarchical Bayesian manner so that the full posterior distribution can be represented in closed-form solutions. To avoid the high-dimensional integral in the full posterior distribution, a variational Bayesian expectation maximization method is employed to calculate the posterior PDF of the excitation weights, enabling reliable Bayesian inference. Simulation results show that compared with conventional sparse array synthesis algorithms, the proposed algorithm achieves lower element sparsity, a smaller normalized mean square error, and higher accuracy for matching the desired directional pattern. In addition, based on the measured raw data from near-field 1D electrical scanning and 2D plane electrical scanning, an improved 3D time domain algorithm is applied for 3D image reconstruction. Results verify that the proposed CBI-SAS algorithm can guarantee imaging results and reduce the complexity of the system.
13
Range Cell Migration Correction (RCMC) represents an important advancement in the estimation of moving target parameters and imaging of targets in high-resolution Synthetic Aperture Radar (SAR) systems. When the motion of a target or platform becomes complex, the traditional low-order RCMC method may no longer be suitable. Meanwhile, the existing high-order RCMC method based on parameterization is susceptible to issues such as model mismatch and high computational complexity. Additionally, its performance may decrease significantly under a low Signal-to-Noise Ratio (SNR). This research utilizes Extended Kalman Filter (EKF) to track the phase responsible for RCM and develop a phase compensation function to achieve RCMC. The proposed approach is model-independent and can track high-order components in the phase, thereby enabling high-order RCMC of moving targets in SAR. In addition, EKF can filter signals during phase tracking to effectively lower the SNR threshold of the proposed method. Thus, this method offers broad applicability, moderate computational complexity, and the ability to correct non-negligible high-order residual range cell migrations, thereby distinguishing it from traditional methods. This study thoroughly explains the principles and mathematical model behind the proposed method, demonstrating its effectiveness and superiority through multiple sets of simulations and measured data processing. Range Cell Migration Correction (RCMC) represents an important advancement in the estimation of moving target parameters and imaging of targets in high-resolution Synthetic Aperture Radar (SAR) systems. When the motion of a target or platform becomes complex, the traditional low-order RCMC method may no longer be suitable. Meanwhile, the existing high-order RCMC method based on parameterization is susceptible to issues such as model mismatch and high computational complexity. Additionally, its performance may decrease significantly under a low Signal-to-Noise Ratio (SNR). This research utilizes Extended Kalman Filter (EKF) to track the phase responsible for RCM and develop a phase compensation function to achieve RCMC. The proposed approach is model-independent and can track high-order components in the phase, thereby enabling high-order RCMC of moving targets in SAR. In addition, EKF can filter signals during phase tracking to effectively lower the SNR threshold of the proposed method. Thus, this method offers broad applicability, moderate computational complexity, and the ability to correct non-negligible high-order residual range cell migrations, thereby distinguishing it from traditional methods. This study thoroughly explains the principles and mathematical model behind the proposed method, demonstrating its effectiveness and superiority through multiple sets of simulations and measured data processing.
14
As one of the core components of Advanced Driver Assistance Systems (ADAS), automotive millimeter-wave radar has become the focus of scholars and manufacturers at home and abroad because it has the advantages of all-day and all-weather operation, miniaturization, high integration, and key sensing capabilities. The core performance indicators of the automotive millimeter-wave radar are distance, speed, angular resolution, and field of view. Accuracy, cost, real-time and detection performance, and volume are the key issues to be considered. The increasing performance requirements pose several challenges for the signal processing of millimeter-wave radar systems. Radar signal processing technology is crucial for improving radar performance to meet more stringent requirements. Obtaining dense radar point clouds, generating accurate radar imaging results, and mitigating mutual interference among multiple radar systems are the key points and the foundation for subsequent tracking, recognition, and other applications. Therefore, this paper discusses the practical application of the automotive millimeter-wave radar system based on the key technologies of signal processing, summarizes relevant research results, and mainly discusses the topics of point cloud imaging processing, synthetic aperture radar imaging processing, and interference suppression. Finally, herein, we summarize the research status at home and abroad. Moreover, future development trends for automotive millimeter-wave radar systems are forecast with the hope of enlightening readers in related fields. As one of the core components of Advanced Driver Assistance Systems (ADAS), automotive millimeter-wave radar has become the focus of scholars and manufacturers at home and abroad because it has the advantages of all-day and all-weather operation, miniaturization, high integration, and key sensing capabilities. The core performance indicators of the automotive millimeter-wave radar are distance, speed, angular resolution, and field of view. Accuracy, cost, real-time and detection performance, and volume are the key issues to be considered. The increasing performance requirements pose several challenges for the signal processing of millimeter-wave radar systems. Radar signal processing technology is crucial for improving radar performance to meet more stringent requirements. Obtaining dense radar point clouds, generating accurate radar imaging results, and mitigating mutual interference among multiple radar systems are the key points and the foundation for subsequent tracking, recognition, and other applications. Therefore, this paper discusses the practical application of the automotive millimeter-wave radar system based on the key technologies of signal processing, summarizes relevant research results, and mainly discusses the topics of point cloud imaging processing, synthetic aperture radar imaging processing, and interference suppression. Finally, herein, we summarize the research status at home and abroad. Moreover, future development trends for automotive millimeter-wave radar systems are forecast with the hope of enlightening readers in related fields.
15
Multi-sensor multi-target tracking is a popular topic in the field of information fusion. It improves the accuracy and stability of target tracking by fusing multiple local sensor information. By the fusion system, the multi-sensor multi-target tracking is grouped into distributed fusion, centralized fusion, and hybrid fusion. Distributed fusion is widely applied in the military and civilian fields with the advantages of strong reliability, high stability, and low requirements on network communication bandwidth. Key techniques of distributed multi-sensor multi-target tracking include multi-target tracking, sensor registration, track-to-track association, and data fusion. This paper reviews the theoretical basis and applicable conditions of these key techniques, highlights the incomplete measurement spatial registration algorithm and track association algorithm, and provides the simulation results. Finally, the weaknesses of the key techniques of distributed multi-sensor multi-target tracking are summarized, and the future development trends of these key techniques are surveyed. Multi-sensor multi-target tracking is a popular topic in the field of information fusion. It improves the accuracy and stability of target tracking by fusing multiple local sensor information. By the fusion system, the multi-sensor multi-target tracking is grouped into distributed fusion, centralized fusion, and hybrid fusion. Distributed fusion is widely applied in the military and civilian fields with the advantages of strong reliability, high stability, and low requirements on network communication bandwidth. Key techniques of distributed multi-sensor multi-target tracking include multi-target tracking, sensor registration, track-to-track association, and data fusion. This paper reviews the theoretical basis and applicable conditions of these key techniques, highlights the incomplete measurement spatial registration algorithm and track association algorithm, and provides the simulation results. Finally, the weaknesses of the key techniques of distributed multi-sensor multi-target tracking are summarized, and the future development trends of these key techniques are surveyed.
16
With the growing demand for radar target detection, Sparse Recovery (SR) technology based on the Compressive Sensing (CS) model has been widely used in radar signal processing. This paper first outlines the fundamental theory of SR and then introduces the sparse characteristics in radar signal processing from the perspectives of scene sparsity and observation sparsity. Subsequently, it explores these sparse properties to provide an overview of CS applications in radar signal processing, including spatial domain processing, pulse compression, coherent processing, radar imaging, and target detection. Finally, the paper summarizes the applications of CS in radar signal processing. With the growing demand for radar target detection, Sparse Recovery (SR) technology based on the Compressive Sensing (CS) model has been widely used in radar signal processing. This paper first outlines the fundamental theory of SR and then introduces the sparse characteristics in radar signal processing from the perspectives of scene sparsity and observation sparsity. Subsequently, it explores these sparse properties to provide an overview of CS applications in radar signal processing, including spatial domain processing, pulse compression, coherent processing, radar imaging, and target detection. Finally, the paper summarizes the applications of CS in radar signal processing.
17
The Multipath Exploitation Radar (MER) target detection technology is primarily based on the Non-Line-Of-Sight (NLOS) multipath propagation characteristics of electromagnetic waves, such as reflection and diffraction on the surface of the medium, enabling the effective detection of targets hidden in the “visually” blind area, such as urban street corners and vehicle occlusion. Thus, the technology can be feasible for various applications, including urban combat and intelligent driving. Further, it has significant practical and research implications. This paper summarizes the domestic and foreign literature in this field since the beginning of the 21st century to keep abreast of developments in this field and predict future development trends. The literature review revealed that according to the different types of detection platforms, MER target detection technology primarily consists of multipath detection technologies based on air and ground platforms. Both these technologies have achieved certain produced research results of practical significance. For air platforms, the following aspects are discussed: feasibility verification, analysis of influencing factors, architectural environment perception, and NLOS target detection. Further, for ground platforms, these four aspects are covered: target detection and recognition, two-dimensional target positioning, three-dimensional target information acquisition, and new detection methods. Finally, the prospects of MER target detection technology are summarized, and the potential issues and challenges in the current practical application of this technology are highlighted. These results show that MER target detection technology is evolving toward diversification and intelligence. The Multipath Exploitation Radar (MER) target detection technology is primarily based on the Non-Line-Of-Sight (NLOS) multipath propagation characteristics of electromagnetic waves, such as reflection and diffraction on the surface of the medium, enabling the effective detection of targets hidden in the “visually” blind area, such as urban street corners and vehicle occlusion. Thus, the technology can be feasible for various applications, including urban combat and intelligent driving. Further, it has significant practical and research implications. This paper summarizes the domestic and foreign literature in this field since the beginning of the 21st century to keep abreast of developments in this field and predict future development trends. The literature review revealed that according to the different types of detection platforms, MER target detection technology primarily consists of multipath detection technologies based on air and ground platforms. Both these technologies have achieved certain produced research results of practical significance. For air platforms, the following aspects are discussed: feasibility verification, analysis of influencing factors, architectural environment perception, and NLOS target detection. Further, for ground platforms, these four aspects are covered: target detection and recognition, two-dimensional target positioning, three-dimensional target information acquisition, and new detection methods. Finally, the prospects of MER target detection technology are summarized, and the potential issues and challenges in the current practical application of this technology are highlighted. These results show that MER target detection technology is evolving toward diversification and intelligence.
18
To improve the accuracy of Direction Of Arrival (DOA) estimation in Multiple Input Multiple Output (MIMO) radar systems under unknown mutual coupling, we propose a mutual coupling calibration and DOA estimation algorithm based on Sparse Learning via Iterative Minimization (SLIM). The proposed algorithm utilizes the spatial sparsity of target signals and estimates the spatial pseudo-spectra and the mutual coupling matrices of MIMO arrays through cyclic optimization. Moreover, it is hyperparameter-free and guarantees convergence. Numerical examples demonstrate that for MIMO radar systems under unknown mutual coupling conditions, the proposed algorithm can accurately estimate the DOA of targets with small angle separations and relatively high Signal-to-Noise Ratios (SNRs), even with a limited number of samples. In addition, low DOA estimation errors are achieved for targets with large angle separations and small sample sizes, even under low-SNR conditions. To improve the accuracy of Direction Of Arrival (DOA) estimation in Multiple Input Multiple Output (MIMO) radar systems under unknown mutual coupling, we propose a mutual coupling calibration and DOA estimation algorithm based on Sparse Learning via Iterative Minimization (SLIM). The proposed algorithm utilizes the spatial sparsity of target signals and estimates the spatial pseudo-spectra and the mutual coupling matrices of MIMO arrays through cyclic optimization. Moreover, it is hyperparameter-free and guarantees convergence. Numerical examples demonstrate that for MIMO radar systems under unknown mutual coupling conditions, the proposed algorithm can accurately estimate the DOA of targets with small angle separations and relatively high Signal-to-Noise Ratios (SNRs), even with a limited number of samples. In addition, low DOA estimation errors are achieved for targets with large angle separations and small sample sizes, even under low-SNR conditions.
19

Over the recent years, deep-learning technology has been widely used. However, in research based on Synthetic Aperture Radar (SAR) ship target detection, it is difficult to support the training of a deep-learning network model because of the difficulty in data acquisition and the small scale of the samples. This paper provides a SAR ship detection dataset with a high resolution and large-scale images. This dataset comprises 31 images from Gaofen-3 satellite SAR images, including harbors, islands, reefs, and the sea surface in different conditions. The backgrounds include various scenarios such as the near shore and open sea. We conducted experiments using both traditional detection algorithms and deep-learning algorithms and observed the densely connected end-to-end neural network to achieve the highest average precision of 88.1%. Based on the experiments and performance analysis, corresponding benchmarks are provided as a basis for further research on SAR ship detection using this dataset.

Over the recent years, deep-learning technology has been widely used. However, in research based on Synthetic Aperture Radar (SAR) ship target detection, it is difficult to support the training of a deep-learning network model because of the difficulty in data acquisition and the small scale of the samples. This paper provides a SAR ship detection dataset with a high resolution and large-scale images. This dataset comprises 31 images from Gaofen-3 satellite SAR images, including harbors, islands, reefs, and the sea surface in different conditions. The backgrounds include various scenarios such as the near shore and open sea. We conducted experiments using both traditional detection algorithms and deep-learning algorithms and observed the densely connected end-to-end neural network to achieve the highest average precision of 88.1%. Based on the experiments and performance analysis, corresponding benchmarks are provided as a basis for further research on SAR ship detection using this dataset.

20
Interrupted Sampling Repeater Jamming (ISRJ) is a type of intrapulse coherent jamming that can form multiple realistic false targets that lead or lag behind the actual target, severely affecting radar detection. It is one of the hotspots of current research on electronic counter-countermeasures. To address this problem, an anti-ISRJ method based on an intrapulse frequency-coded joint Frequency Modulation (FM) slope agile waveform is proposed in this paper. In this method, the radar first transmits an intrapulse frequency-coded joint FM slope agile signal to improve the mutual coverability of subpulses by manipulating subpulse center frequency and FM slope agility. Next, the echo signal is divided into several slices according to the subpulse timing of the transmitted signal. Then, the Fuzzy C-Means (FCM) algorithm is used to classify the echo slices. Finally, the interference is suppressed via fractional-domain joint time domain filtering. Simulation results show that the FCM-based method can identify 100% of the interfered echo slices in a jammer synchronous sampling scenario when the Signal-to-Noise Ratio (SNR) is greater than −2.5 dB, and the Jamming-to-Signal Ratio (JSR) is greater than 5 dB. For high JSRs and low SNRs, the proposed method can effectively reduce the target energy loss and suppress the range sidelobes generated via residual interference. Moreover, the target detection probability after interference suppression exceeds 90% when JSR = 50 dB. Interrupted Sampling Repeater Jamming (ISRJ) is a type of intrapulse coherent jamming that can form multiple realistic false targets that lead or lag behind the actual target, severely affecting radar detection. It is one of the hotspots of current research on electronic counter-countermeasures. To address this problem, an anti-ISRJ method based on an intrapulse frequency-coded joint Frequency Modulation (FM) slope agile waveform is proposed in this paper. In this method, the radar first transmits an intrapulse frequency-coded joint FM slope agile signal to improve the mutual coverability of subpulses by manipulating subpulse center frequency and FM slope agility. Next, the echo signal is divided into several slices according to the subpulse timing of the transmitted signal. Then, the Fuzzy C-Means (FCM) algorithm is used to classify the echo slices. Finally, the interference is suppressed via fractional-domain joint time domain filtering. Simulation results show that the FCM-based method can identify 100% of the interfered echo slices in a jammer synchronous sampling scenario when the Signal-to-Noise Ratio (SNR) is greater than −2.5 dB, and the Jamming-to-Signal Ratio (JSR) is greater than 5 dB. For high JSRs and low SNRs, the proposed method can effectively reduce the target energy loss and suppress the range sidelobes generated via residual interference. Moreover, the target detection probability after interference suppression exceeds 90% when JSR = 50 dB.
  • First
  • Prev
  • 1
  • 2
  • 3
  • 4
  • 5
  • Last
  • Total:5
  • To
  • Go