Most Downloaded
Flying birds and Unmanned Aerial Vehicles (UAVs) are typical “low, slow, and small” targets with low observability. The need for effective monitoring and identification of these two targets has become urgent and must be solved to ensure the safety of air routes and urban areas. There are many types of flying birds and UAVs that are characterized by low flying heights, strong maneuverability, small radar cross-sectional areas, and complicated detection environments, which are posing great challenges in target detection worldwide. “Visible (high detection ability) and clear-cut (high recognition probability)” methods and technologies must be developed that can finely describe and recognize UAVs, flying birds, and “low-slow-small” targets. This paper reviews the recent progress in research on detection and recognition technologies for rotor UAVs and flying birds in complex scenes and discusses effective detection and recognition methods for the detection of birds and drones, including echo modeling and recognition of fretting characteristics, the enhancement and extraction of maneuvering features in ubiquitous observation mode, distributed multi-view features fusion, differences in motion trajectories, and intelligent classification via deep learning. Lastly, the problems of existing research approaches are summarized, and we consider the future development prospects of target detection and recognition technologies for flying birds and UAVs in complex scenarios.
Flying birds and Unmanned Aerial Vehicles (UAVs) are typical “low, slow, and small” targets with low observability. The need for effective monitoring and identification of these two targets has become urgent and must be solved to ensure the safety of air routes and urban areas. There are many types of flying birds and UAVs that are characterized by low flying heights, strong maneuverability, small radar cross-sectional areas, and complicated detection environments, which are posing great challenges in target detection worldwide. “Visible (high detection ability) and clear-cut (high recognition probability)” methods and technologies must be developed that can finely describe and recognize UAVs, flying birds, and “low-slow-small” targets. This paper reviews the recent progress in research on detection and recognition technologies for rotor UAVs and flying birds in complex scenes and discusses effective detection and recognition methods for the detection of birds and drones, including echo modeling and recognition of fretting characteristics, the enhancement and extraction of maneuvering features in ubiquitous observation mode, distributed multi-view features fusion, differences in motion trajectories, and intelligent classification via deep learning. Lastly, the problems of existing research approaches are summarized, and we consider the future development prospects of target detection and recognition technologies for flying birds and UAVs in complex scenarios.
As one of the core components of Advanced Driver Assistance Systems (ADAS), automotive millimeter-wave radar has become the focus of scholars and manufacturers at home and abroad because it has the advantages of all-day and all-weather operation, miniaturization, high integration, and key sensing capabilities. The core performance indicators of the automotive millimeter-wave radar are distance, speed, angular resolution, and field of view. Accuracy, cost, real-time and detection performance, and volume are the key issues to be considered. The increasing performance requirements pose several challenges for the signal processing of millimeter-wave radar systems. Radar signal processing technology is crucial for improving radar performance to meet more stringent requirements. Obtaining dense radar point clouds, generating accurate radar imaging results, and mitigating mutual interference among multiple radar systems are the key points and the foundation for subsequent tracking, recognition, and other applications. Therefore, this paper discusses the practical application of the automotive millimeter-wave radar system based on the key technologies of signal processing, summarizes relevant research results, and mainly discusses the topics of point cloud imaging processing, synthetic aperture radar imaging processing, and interference suppression. Finally, herein, we summarize the research status at home and abroad. Moreover, future development trends for automotive millimeter-wave radar systems are forecast with the hope of enlightening readers in related fields.
As one of the core components of Advanced Driver Assistance Systems (ADAS), automotive millimeter-wave radar has become the focus of scholars and manufacturers at home and abroad because it has the advantages of all-day and all-weather operation, miniaturization, high integration, and key sensing capabilities. The core performance indicators of the automotive millimeter-wave radar are distance, speed, angular resolution, and field of view. Accuracy, cost, real-time and detection performance, and volume are the key issues to be considered. The increasing performance requirements pose several challenges for the signal processing of millimeter-wave radar systems. Radar signal processing technology is crucial for improving radar performance to meet more stringent requirements. Obtaining dense radar point clouds, generating accurate radar imaging results, and mitigating mutual interference among multiple radar systems are the key points and the foundation for subsequent tracking, recognition, and other applications. Therefore, this paper discusses the practical application of the automotive millimeter-wave radar system based on the key technologies of signal processing, summarizes relevant research results, and mainly discusses the topics of point cloud imaging processing, synthetic aperture radar imaging processing, and interference suppression. Finally, herein, we summarize the research status at home and abroad. Moreover, future development trends for automotive millimeter-wave radar systems are forecast with the hope of enlightening readers in related fields.
- First
- Prev
- 1
- 2
- 3
- 4
- 5
- Next
- Last
- Total:5
- To
- Go
Submit Manuscript
Peer Review
Editor Work
Abstract
5239KB
微信 | 公众平台 