Volume 13 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
DU Huagui, SONG Yongping, SUN Xiaoying, et al. A new approach to high-order range cell migration correction for SAR ground moving targets based on phase tracking[J]. Journal of Radars, 2024, 13(5): 955–973. doi: 10.12000/JR24122
Citation: DU Huagui, SONG Yongping, SUN Xiaoying, et al. A new approach to high-order range cell migration correction for SAR ground moving targets based on phase tracking[J]. Journal of Radars, 2024, 13(5): 955–973. doi: 10.12000/JR24122

A New Approach to High-order Range Cell Migration Correction for SAR Ground Moving Targets Based on Phase Tracking

DOI: 10.12000/JR24122 CSTR: 32380.14.JR24122
Funds:  The National Natural Science Foundation of China (62101566)
More Information
  • Corresponding author: SONG Yongping, sypopqjkl@163.com
  • Received Date: 2024-06-13
  • Rev Recd Date: 2024-07-25
  • Available Online: 2024-08-05
  • Publish Date: 2024-08-23
  • Range Cell Migration Correction (RCMC) represents an important advancement in the estimation of moving target parameters and imaging of targets in high-resolution Synthetic Aperture Radar (SAR) systems. When the motion of a target or platform becomes complex, the traditional low-order RCMC method may no longer be suitable. Meanwhile, the existing high-order RCMC method based on parameterization is susceptible to issues such as model mismatch and high computational complexity. Additionally, its performance may decrease significantly under a low Signal-to-Noise Ratio (SNR). This research utilizes Extended Kalman Filter (EKF) to track the phase responsible for RCM and develop a phase compensation function to achieve RCMC. The proposed approach is model-independent and can track high-order components in the phase, thereby enabling high-order RCMC of moving targets in SAR. In addition, EKF can filter signals during phase tracking to effectively lower the SNR threshold of the proposed method. Thus, this method offers broad applicability, moderate computational complexity, and the ability to correct non-negligible high-order residual range cell migrations, thereby distinguishing it from traditional methods. This study thoroughly explains the principles and mathematical model behind the proposed method, demonstrating its effectiveness and superiority through multiple sets of simulations and measured data processing.

     

  • loading
  • [1]
    YANG Jian, LIU Chang, and WANG Yanfei. Detection and imaging of ground moving targets with real SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 920–932. doi: 10.1109/TGRS.2014.2330456.
    [2]
    DU Huagui, SONG Yongping, JIANG Nan, et al. A novel SAR ground maneuvering target imaging method based on adaptive phase tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5211916. doi: 10.1109/TGRS.2023.3294252.
    [3]
    PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691.
    [4]
    ZHOU Feng, WU Renbiao, XING Mengdao, et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 59–66. doi: 10.1049/iet-rsn:20060040.
    [5]
    TIAN Jing, CUI Wei, and WU Shuang. A novel method for parameter estimation of space moving targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 389–393. doi: 10.1109/LGRS.2013.2263332.
    [6]
    SUN Yan and WILLETT P. Hough transform for long chirp detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 553–569. doi: 10.1109/TAES.2002.1008986.
    [7]
    CARRETERO-MOYA J, GISMERO-MEN J, ASENSIO-LÓPEZ A, et al. Application of the radon transform to detect small-targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 155–166. doi: 10.1049/iet-rsn:20080123.
    [8]
    XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection, (I:) Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251.
    [9]
    XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645.
    [10]
    QIAN Lichang, XU Jia, SUN Wenfeng, et al. CLEAN based blind speed side lobe (BSSL) suppression in the Radon Fourier Transform (RFT) for multi-target detection[C]. IEEE 12th International Conference on Computer and Information Technology, Chengdu, China, 2012: 490–495. doi: 10.1109/CIT.2012.108.
    [11]
    CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682.
    [12]
    RAO Xuan, TAO Haihong, SU Jia, et al. Axis rotation MTD algorithm for weak target detection[J]. Digital Signal Processing, 2014, 26: 81–86. doi: 10.1016/j.dsp.2013.12.003.
    [13]
    SUN Zhi, LI Xiaolong, YI Wei, et al. A coherent detection and velocity estimation algorithm for the high-speed target based on the modified location rotation transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2346–2361. doi: 10.1109/JSTARS.2018.2834535.
    [14]
    王超, 王岩飞, 刘畅, 等. 基于参数估计的高分辨率SAR运动目标距离徙动校正方法[J]. 雷达学报, 2019, 8(1): 64–72. doi: 10.12000/JR18054.

    WANG Chao, WANG Yanfei, LIU Chang, et al. A new approach to range cell migration correction for ground moving targets in high-resolution SAR system based on parameter estimation[J]. Journal of Radars, 2019, 8(1): 64–72. doi: 10.12000/JR18054.
    [15]
    XU Jia, XIA Xianggen, PENG Shibao, et al. Radar maneuvering target motion estimation based on generalized Radon-Fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/TSP.2012.2217137.
    [16]
    KONG Lingjiang, LI Xiaolong, CUI Guolong, et al. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4474–4486. doi: 10.1109/TSP.2015.2437844.
    [17]
    XIONG Wei, ZHANG Ying, DONG Xichao, et al. A novel ship imaging method with multiple sinusoidal functions to match rotation effects in geosynchronous SAR[J]. Remote Sensing, 2022, 12(14): 2249. doi: 10.3390/rs12142249.
    [18]
    LI Xiaolong, CUI Guolong, YI Wei, et al. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3): 270–274. doi: 10.1109/LSP.2014.2358230.
    [19]
    LI Xiaolong, CUI Guolong, KONG Lingjiang, et al. Fast non-searching method for maneuvering target detection and motion parameters estimation[J]. IEEE Transactions on Signal Processing, 2016, 64(9): 2232–2244. doi: 10.1109/TSP.2016.2515066.
    [20]
    贺雄鹏, 廖桂生, 许京伟, 等. 机动目标距离徙动校正与检测算法[J]. 系统工程与电子技术, 2018, 40(1): 1–8. doi: 10.3969/j.issn.1001-506X.2018.01.01.

    HE Xiongpeng, LIAO Guisheng, XU Jingwei, et al. Maneuvering target range migration correction and detection algorithm[J]. Systems Engineering and Electronics, 2018, 40(1): 1–8. doi: 10.3969/j.issn.1001-506X.2018.01.01.
    [21]
    贺雄鹏, 廖桂生, 许京伟, 等. 基于频率轴反转的机动目标距离徙动补偿方法[J]. 电子学报, 2018, 46(6): 1496–1502. doi: 10.3969/j.issn.0372-2112.2018.06.032.

    HE Xiongpeng, LIAO Guisheng, XU Jingwei, et al. Range migration compensation method for maneuvering target based on frequency axis reversal[J]. Acta Electronica Sinica, 2018, 46(6): 1496–1502. doi: 10.3969/j.issn.0372-2112.2018.06.032.
    [22]
    CHEN C C and ANDREWS H C. Target-motion-induced RADAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873.
    [23]
    张泽. 空间目标的SAR/ISAR成像方法研究[D]. [硕士论文], 哈尔滨工业大学, 2019. doi: 10.27061/d.cnki.ghgdu.2019.000599.

    ZHANG Ze. Research on SAR/ISAR imaging method for space target[D]. [Master dissertation], Harbin Institute of Technology, 2019. doi: 10.27061/d.cnki.ghgdu.2019.000599.
    [24]
    ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562.
    [25]
    SAUER T and SCHROTH A. Robust range alignment algorithm via Hough transform in an ISAR imaging system[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1173–1177. doi: 10.1109/7.395222.
    [26]
    ZHANG Lei, SHENG Jialian, DUAN Jia, et al. Translational motion compensation for ISAR imaging under low SNR by minimum entropy[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 33. doi: 10.1186/1687-6180-2013-33.
    [27]
    LIU Lei, ZHOU Feng, TAO Mingliang, et al. Adaptive translational motion compensation method for ISAR imaging under low SNR based on particle swarm optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5146–5157. doi: 10.1109/JSTARS.2015.2491307.
    [28]
    SHAO Shuai, LIU Hongwei, ZHANG Lei, et al. Integration of super-resolution ISAR imaging and fine motion compensation for complex maneuvering ship targets under high sea state[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5222820. doi: 10.1109/TGRS.2022.3147266.
    [29]
    FU Jixiang, XING Mengdao, AMIN M, et al. ISAR translational motion compensation with simultaneous range alignment and phase adjustment in low SNR environments[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–6. doi: 10.1109/RadarConf2147009.2021.9455148.
    [30]
    LIU Fengkai, HUANG Darong, GUO Xinrong, et al. Joint range alignment and autofocus method based on combined Broyden-fletcher-Goldfarb-Shanno algorithm and whale optimization algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5214617. doi: 10.1109/TGRS.2023.3306474.
    [31]
    DJEDDI M and BENIDIR M. A two parallel extended Kalman filtering algorithm for the estimation of chirp signals in non-Gaussian noise[C]. The 13th European Signal Processing Conference, Antalya, Turkey, 2005: 1–4.
    [32]
    YANG Jungang, HUANG Xiaotao, JIN Tian, et al. New approach for SAR imaging of ground moving targets based on a keystone transform[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 829–833. doi: 10.1109/LGRS.2011.2118739.
    [33]
    LI Gang, XIA Xianggen, and PENG Yingning. Doppler keystone transform: An approach suitable for parallel implementation of SAR moving target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 573–577. doi: 10.1109/LGRS.2008.2000621.
    [34]
    黄小平, 王岩, 缪鹏程. 目标定位跟踪原理及应用—MATLAB仿真[M]. 北京: 电子工业出版社, 2018.

    HUANG Xiaoping, WANG Yan, and MIAO Pengcheng. Principles and Applications of Target Localization and Tracking—MATLAB Simulation[M]. Beijing: Publishing House of Electronics Industry, 2018.
    [35]
    LI Min, SUN Defeng, and TOH K C. A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block[J]. Asia-Pacific Journal of Operational Research, 2015, 32(4): 1550024. doi: 10.1142/S0217595915500244.
    [36]
    CHEN Lin, JIANG Bowen, LIU Yuqi, et al. Application of adaptive EKF in real-time orbit determination[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(4): 187. doi: 10.1007/s40430-021-02867-z.
    [37]
    LIU Jianjuan, CHEN Hongmei, and LIU Nanbo. Effective Sage-Husa Kalman filter for sins/Doppler/platform compass integrated navigation system[C]. 2016 IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, 2016: 541–546. doi: 10.1109/CGNCC.2016.7828843.
    [38]
    HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Ground maneuvering target imaging and high-order motion parameter estimation based on second-order Keystone and generalized Hough-HAF transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 320–335. doi: 10.1109/TGRS.2016.2606436.
    [39]
    孙景波. 旋翼无人机雷达回波微动特征分析与提取[D]. [硕士论文], 中国民航大学, 2021. doi: 10.27627/d.cnki.gzmhy.2021.000057.

    SUN Jingbo. Micro-motion feature analysis and extraction of rotor UAV radar echoes[D]. [Master dissertation], Civil Aviation University of China, 2021. doi: 10.27627/d.cnki.gzmhy.2021.000057.
    [40]
    DU Huagui, SONG Yongping, ZHOU Jiwen, et al. A novel parameter estimation method for polynomial phase signals via adaptive EKF[J]. IEEE Internet of Things Journal, 2024, 11(11): 20816–20830. doi: 10.1109/JIOT.2024.3373642.
    [41]
    王武. 机载圆周SAR-GMTI关键技术研究[D]. [博士论文], 国防科技大学, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000357.

    WANG Wu. Study on key techniques for circular SAR-GMTI[D]. [Ph.D. dissertation], National University of Defense Technology, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000357.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(672) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint