Zhang Ran, Feng Dejun, Xu Letao. Design and Polarization Characteristics Analysis of Dihedral Based on Salisbury Screen[J]. Journal of Radars, 2016, 5(6): 658-665. doi: 10.12000/JR16055
Citation: ZOU Huanxin, LI Meilin, MA Qian, et al. An unsupervised PolSAR image classification algorithm based on tensor product graph diffusion[J]. Journal of Radars, 2019, 8(4): 436–447. doi: 10.12000/JR19057

An Unsupervised PolSAR Image Classification Algorithm Based on Tensor Product Graph Diffusion

DOI: 10.12000/JR19057
Funds:  The National Natural Science Foundation of China (61331015, 41601436)
More Information
  • Corresponding author: Zou Huanxin, hxzou2008@163.com
  • Received Date: 2019-05-14
  • Rev Recd Date: 2019-07-19
  • Available Online: 2019-07-25
  • Publish Date: 2019-08-01
  • To overcome the difficulty of similarity expression and the effects of speckle noise in unsupervised classification of Polarimetric Synthetic Aperture Radar (PolSAR) images, a novel unsupervised PolSAR image terrain classification algorithm based on Tensor Product Graph (TPG) diffusion has been developed herein. Generally, TPG diffusion is usually utilized for optical image segmentation or image retrieval. In the present study, it can be used for PolSAR image terrain classification. TPG diffusion can robustly estimate geodesic distances ; therefore, it can be used for mining the intrinsic affinity between data points. First, the PolSAR image is over-segmented into many superpixels. Second, seven features are extracted based on the segmented superpixels to form a feature vector and construct a similarity matrix by using the Gaussian kernel. Third, TPG diffusion is performed on this similarity matrix to obtain another similarity matrix with stronger discriminability by propagating affinity information along the mainfold structure of data to achieve the global affinity measure. Finally, spectral clustering based on the diffused similarity matrix is adopted to perform terrain classification. Extensive experiments conducted on both simulated and real-world PolSAR images demonstrate that our approach can effectively combine neighborhood information and achieve higher classification accuracy, compared to four other competitive state-of-the-art methods.

     

  • [1]
    SHI Lei, ZHANG Lefei, ZHAO Lingli, et al. Adaptive Laplacian Eigenmap-based dimension reduction for ocean target discrimination[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(7): 902–906. doi: 10.1109/LGRS.2016.2553046
    [2]
    杨文, 钟能, 严天恒, 等. 基于黎曼流形的极化SAR图像分类[J]. 雷达学报, 2017, 6(5): 433–441. doi: 10.12000/JR17031

    YANG Wen, ZHONG Neng, YAN Tianheng, et al. Classification of polarimetric SAR images based on the Riemannian manifold[J]. Journal of Radars, 2017, 6(5): 433–441. doi: 10.12000/JR17031
    [3]
    LIU Wensong, YANG Jie, LI Pingxiang, et al. A novel object-based supervised classification method with active learning and random forest for PolSAR imagery[J]. Remote Sensing, 2018, 10(7): 1092. doi: 10.3390/rs10071092
    [4]
    SHI Lei, ZHANG Lefei, ZHAO Lingli, et al. The potential of linear discriminative Laplacian Eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 86: 124–135. doi: 10.1016/j.isprsjprs.2013.09.013
    [5]
    WANG Shuang, LIU Kun, PEI Jingjing, et al. Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 622–626. doi: 10.1109/LGRS.2012.2216249
    [6]
    LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722–731. doi: 10.1109/TGRS.2003.819883
    [7]
    RATHA D, BHATTACHARYA A, and FRERY A C. Unsupervised classification of polsar data using a scattering similarity measure derived from a geodesic distance[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 151–155. doi: 10.1109/LGRS.2017.2778749
    [8]
    LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258. doi: 10.1109/36.789621
    [9]
    钟能, 杨文, 杨祥立, 等. 基于混合Wishart模型的极化SAR图像非监督分类[J]. 雷达学报, 2017, 6(5): 533–540. doi: 10.12000/JR16133

    ZHONG Neng, YANG Wen, YANG Xiangli, et al. Unsupervised classification for polarimetric synthetic aperture radar images based on Wishart mixture models[J]. Journal of Radars, 2017, 6(5): 533–540. doi: 10.12000/JR16133
    [10]
    WU Yonghui, JI Kefeng, YU Wenxian, et al. Region-based classification of polarimetric SAR images using Wishart MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 668–672. doi: 10.1109/LGRS.2008.2002263
    [11]
    VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395–416. doi: 10.1007/s11222-007-9033-z
    [12]
    YANG Yifang, WANG Yuping, XUE Xingsi, et al. A novel spectral clustering method with superpixels for image segmentation[J]. Optik, 2016, 127(1): 161–167. doi: 10.1016/j.ijleo.2015.10.053
    [13]
    HU Jingliang, WANG Yuanyuan, GHAMISI P, et al. Evaluation of polsar similarity measures with spectral clustering[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 3254–3257.
    [14]
    LI Yonggang, ZHANG Shichao, CHENG Debo, et al. Spectral clustering based on hypergraph and self-re-presentation[J]. Multimedia Tools and Applications, 2017, 76(16): 17559–17576. doi: 10.1007/s11042-016-4131-6
    [15]
    YANG Xingwei, PRASAD L, and JAN LATECKI L. Affinity learning with diffusion on tensor product graph[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 28–38. doi: 10.1109/TPAMI.2012.60
    [16]
    ZHANG Yue, ZOU Huanxin, LUO Tiancheng, et al. A fast superpixel segmentation algorithm for PolSAR images based on edge refinement and revised Wishart distance[J]. Sensors, 2016, 16(10): 1687. doi: 10.3390/s16101687
    [17]
    CAO Fang, HONG Wen, WU Yirong, et al. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/α/A space and the complex Wishart clustering for fully polarimetric SAR data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454–3467. doi: 10.1109/TGRS.2007.907601
    [18]
    ZHOU Xiaofeng, WANG Shuang, HUA Wenqiang, et al. Unsupervised classification of PolSAR data based on a novel polarization feature[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 4594–4599.
    [19]
    张月, 邹焕新, 邵宁远, 等. 基于相似度网络融合的极化SAR图像地物分类[J]. 系统工程与电子技术, 2018, 40(2): 295–302. doi: 10.3969/j.issn.1001-506X.2018.02.09

    ZHANG Yue, ZOU Huanxin, SHAO Ningyuan, et al. Terrain classification of polarimetric SAR images based on consensus similarity network fusion[J]. Systems Engineering and Electronics, 2018, 40(2): 295–302. doi: 10.3969/j.issn.1001-506X.2018.02.09
    [20]
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [21]
    CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127
    [22]
    YANG Xingwei, SZYLD D B, and JAN LATECKI L. Diffusion on a tensor product graph for semi-supervised learning and interactive image segmentation[J]. Advances in Imaging and Electron Physics, 2011, 169: 147–172. doi: 10.1016/B978-0-12-385981-5.00004-5
    [23]
    VAN LOAN C F. The ubiquitous Kronecker product[J]. Journal of Computational and Applied Mathematics, 2000, 123(1/2): 85–100.
    [24]
    QIN Xianxiang, ZOU Huanxin, ZHOU Shilin, et al. Simulation of spatially correlated PolSAR images using inverse transform method[J]. Journal of Applied Remote Sensing, 2015, 9(1): 095082. doi: 10.1117/1.JRS.9.095082
    [25]
    HOU Biao, WU Qian, WEN Zaidao, et al. Robust semisupervised classification for PolSAR image with noisy labels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6440–6455. doi: 10.1109/TGRS.2017.2728186
    [26]
    SONG Wanying, LI Ming, ZHANG Peng, et al. Unsupervised PolSAR image classification and segmentation using Dirichlet process mixture model and Markov random fields with similarity measure[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3556–3568. doi: 10.1109/JSTARS.2017.2684301
    [27]
    VASILE G, TROUVÉ E, LEE J S, et al. Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1609–1621. doi: 10.1109/TGRS.2005.864142
  • Relative Articles

    [1]DING Chuanwei, LIU Zhilin, ZHANG Li, ZHAO Heng, ZHOU Qing, HONG Hong, ZHU Xiaohua. Tangential Human Posture Recognition with Sequential Images Based on MIMO Radar[J]. Journal of Radars, 2025, 14(1): 151-167. doi: 10.12000/JR24116
    [2]XIAO Jiong, TANG Bo, WANG Hai. Sparse Reconstruction-based Direction of Arrival Estimation for MIMO Radar in the Presence of Unknown Mutual Coupling[J]. Journal of Radars, 2024, 13(5): 1123-1133. doi: 10.12000/JR24061
    [3]LI Yachao, WANG Jiadong, ZHANG Tinghao, SONG Xuan. Present Situation and Prospect of Missile-borne Radar Imaging Technology[J]. Journal of Radars, 2022, 11(6): 943-973. doi: 10.12000/JR22119
    [4]HE Zishu, CHENG Ziyang, LI Jun, ZHANG Wei, SHI Jingxi, SU Yang, DENG Minglong. A Survey of Collocated MIMO Radar[J]. Journal of Radars, 2022, 11(5): 805-829. doi: 10.12000/JR22128
    [5]GUO Zhongyi, WANG Yunlai, WANG Yanzhe, GUO Kai. Research Advances in Vortex Radar Imaging Technology[J]. Journal of Radars, 2021, 10(5): 665-679. doi: 10.12000/JR21075
    [6]ZHANG Guoxin, YI Wei, KONG Lingjiang. Direct Position Determination for Massive MIMO System with One-bit Quantization[J]. Journal of Radars, 2021, 10(6): 970-981. doi: 10.12000/JR21062
    [7]DING Jinshan. Focusing Algorithms and Moving Target Detection Based on Video SAR[J]. Journal of Radars, 2020, 9(2): 321-334. doi: 10.12000/JR20018
    [8]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [9]YANG Jianyu. Multi-directional Evolution Trend and Law Analysis of Radar Ground Imaging Technology(in English)[J]. Journal of Radars, 2019, 8(6): 669-692. doi: 10.12000/JR19099
    [10]Xu Jingwei, Zhu Shengqi, Liao Guisheng, Zhang Yuhong. An Overview of Frequency Diverse Array Radar Technology[J]. Journal of Radars, 2018, 7(2): 167-182. doi: 10.12000/JR18023
    [11]Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [12]Gong Pengcheng, Liu Gang, Huang He, Wang Wenqin. Multidimensional Parameter Estimation Method Based on Sparse Iteration in FDA-MIMO Radar[J]. Journal of Radars, 2018, 7(2): 194-201. doi: 10.12000/JR16121
    [13]Luo Ying, Gong Yishuai, Chen Yijun, Zhang Qun. Multi-target Micro-motion Feature Extraction Based on Tracking Pulses in MIMO Radar[J]. Journal of Radars, 2018, 7(5): 575-584. doi: 10.12000/JR18035
    [14]Zhang Keshu, Pan Jie, Wang Ran, Li Guangzuo, Wang Ning, Wu Yirong. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology[J]. Journal of Radars, 2017, 6(1): 1-10. doi: 10.12000/JR16152
    [15]Liang Hao, Cui Chen, Yu Jian. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array[J]. Journal of Radars, 2016, 5(3): 254-264. doi: 10.12000/JR16016
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Tan Yun-hua, Wang Li-bo, Li Lian-lin. A Novel Probability Model for Suppressing Multipath Ghosts in GPR and TWI Imaging: A Numerical Study(in English)[J]. Journal of Radars, 2015, 4(5): 509-517. doi: 10.12000/JR15066
    [18]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [19]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
    [20]Mao Yong-fei, Wang Xiao-jie, Xiang Mao-sheng. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System[J]. Journal of Radars, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
  • Cited by

    Periodical cited type(2)

    1. 纪正江,程琳豪,郑锡涛,闫雷雷. 基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计. 应用数学和力学. 2024(08): 1096-1105 .
    2. 曹文博,麻晢乂培,黄小忠,姜超. 基于单层频率选择表面的轻质宽频吸波体设计. 电子元件与材料. 2022(02): 180-185 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.5 %FULLTEXT: 26.5 %META: 67.9 %META: 67.9 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %其他: 1.1 %其他: 1.1 %Canada: 0.0 %Canada: 0.0 %China: 0.6 %China: 0.6 %India: 0.0 %India: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.6 %[]: 0.6 %上海: 0.7 %上海: 0.7 %上海市: 0.1 %上海市: 0.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.0 %临沂: 0.0 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰辛: 0.0 %兰辛: 0.0 %内蒙古自治区呼和浩特: 0.2 %内蒙古自治区呼和浩特: 0.2 %凉山彝族自治州: 0.0 %凉山彝族自治州: 0.0 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 16.6 %北京: 16.6 %北京市: 1.0 %北京市: 1.0 %南京: 0.9 %南京: 0.9 %南京市: 0.1 %南京市: 0.1 %南充: 0.0 %南充: 0.0 %南昌: 0.2 %南昌: 0.2 %厦门: 0.0 %厦门: 0.0 %台北: 0.3 %台北: 0.3 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %呼和浩特市: 0.1 %呼和浩特市: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.1 %商丘: 0.1 %大连: 0.0 %大连: 0.0 %天水: 0.0 %天水: 0.0 %天津: 0.3 %天津: 0.3 %太原: 0.2 %太原: 0.2 %安康: 0.1 %安康: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宿迁: 0.1 %宿迁: 0.1 %密蘇里城: 0.1 %密蘇里城: 0.1 %岳阳: 0.2 %岳阳: 0.2 %崇左: 0.1 %崇左: 0.1 %巴彦淖尔: 0.1 %巴彦淖尔: 0.1 %巴黎: 0.1 %巴黎: 0.1 %广州: 1.0 %广州: 1.0 %广州市: 0.1 %广州市: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.0 %开封: 0.0 %张家口: 1.9 %张家口: 1.9 %张家口市: 0.3 %张家口市: 0.3 %徐州: 0.2 %徐州: 0.2 %成都: 0.6 %成都: 0.6 %成都市: 0.2 %成都市: 0.2 %扬州: 0.1 %扬州: 0.1 %承德: 0.1 %承德: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.4 %无锡: 0.4 %日照: 0.1 %日照: 0.1 %昆明: 0.3 %昆明: 0.3 %昆明市: 0.0 %昆明市: 0.0 %晋城: 0.0 %晋城: 0.0 %杭州: 1.3 %杭州: 1.3 %杭州市: 0.1 %杭州市: 0.1 %柳州: 0.0 %柳州: 0.0 %株洲: 0.0 %株洲: 0.0 %梅州: 0.1 %梅州: 0.1 %榆林: 0.2 %榆林: 0.2 %榆林市: 0.0 %榆林市: 0.0 %武汉: 0.7 %武汉: 0.7 %武汉市: 0.2 %武汉市: 0.2 %永州: 0.1 %永州: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.1 %沈阳: 0.1 %泰州: 0.0 %泰州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.6 %济南: 0.6 %海口: 0.1 %海口: 0.1 %淄博: 0.0 %淄博: 0.0 %淮北: 0.2 %淮北: 0.2 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.5 %深圳: 0.5 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %湘潭市: 0.0 %湘潭市: 0.0 %漯河: 0.1 %漯河: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.1 %烟台: 0.1 %特罗姆瑟: 0.1 %特罗姆瑟: 0.1 %玉林: 0.0 %玉林: 0.0 %珠海: 0.1 %珠海: 0.1 %白银: 0.0 %白银: 0.0 %益阳: 0.0 %益阳: 0.0 %石家庄: 0.7 %石家庄: 0.7 %石家庄市: 0.4 %石家庄市: 0.4 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %聊城: 0.0 %聊城: 0.0 %自贡: 0.0 %自贡: 0.0 %芒廷维尤: 14.7 %芒廷维尤: 14.7 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %荆州: 0.0 %荆州: 0.0 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛市: 0.0 %葫芦岛市: 0.0 %衡阳: 0.0 %衡阳: 0.0 %西宁: 37.8 %西宁: 37.8 %西安: 0.8 %西安: 0.8 %西安市: 0.1 %西安市: 0.1 %贵港: 0.2 %贵港: 0.2 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.1 %赣州: 0.1 %运城: 0.6 %运城: 0.6 %邢台: 0.1 %邢台: 0.1 %郑州: 0.5 %郑州: 0.5 %郑州市: 0.0 %郑州市: 0.0 %重庆: 0.1 %重庆: 0.1 %重庆市: 0.1 %重庆市: 0.1 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.8 %长沙: 0.8 %长沙市: 0.1 %长沙市: 0.1 %长治: 0.1 %长治: 0.1 %阜新市: 0.0 %阜新市: 0.0 %青岛: 0.1 %青岛: 0.1 %鞍山市: 0.0 %鞍山市: 0.0 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄石: 0.0 %黄石: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他CanadaChinaIndiaKao-sungTaiwan, ChinaUnited States[]上海上海市东莞临汾临沂丹东乌鲁木齐佛山保定兰辛内蒙古自治区呼和浩特凉山彝族自治州加利福尼亚州包头北京北京市南京南京市南充南昌厦门台北台州合肥呼和浩特呼和浩特市哈尔滨哥伦布商丘大连天水天津太原安康宝鸡宿迁密蘇里城岳阳崇左巴彦淖尔巴黎广州广州市库比蒂诺开封张家口张家口市徐州成都成都市扬州承德新乡无锡日照昆明昆明市晋城杭州杭州市柳州株洲梅州榆林榆林市武汉武汉市永州汕头沈阳泰州洛阳济南海口淄博淮北淮南淮安深圳深圳市温州渭南湖州湘潭湘潭市漯河濮阳烟台特罗姆瑟玉林珠海白银益阳石家庄石家庄市秦皇岛纽约绵阳聊城自贡芒廷维尤芝加哥苏州荆州莫斯科葫芦岛市衡阳西宁西安西安市贵港贵阳赣州运城邢台郑州郑州市重庆重庆市铁岭长春长沙长沙市长治阜新市青岛鞍山市香港香港特别行政区黄石龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2520) PDF downloads(199) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint