2016年 5卷 第5期
2016, 5(5): 455-461.
摘要:
生命探测雷达技术是近些年发展起来的一种新型非接触式生命检测技术,其通过对生命体的振动信息进行测量实现生命体检测和定位。由于生命体的振动幅度一般较小,噪声会对生命探测雷达的测量性能造成严重的干扰,而噪声(热噪声和相位噪声)对此类雷达测量性能的影响目前尚无有效的评价指标。针对这一问题,该文通过建模分析定义了生命探测雷达的微多普勒测量灵敏度并提出了分析该指标的新方法,有效地解决了生命探测雷达测量性能无法定量分析的问题。最后通过仿真给出了给定系统在不同距离的测振性能曲线。 生命探测雷达技术是近些年发展起来的一种新型非接触式生命检测技术,其通过对生命体的振动信息进行测量实现生命体检测和定位。由于生命体的振动幅度一般较小,噪声会对生命探测雷达的测量性能造成严重的干扰,而噪声(热噪声和相位噪声)对此类雷达测量性能的影响目前尚无有效的评价指标。针对这一问题,该文通过建模分析定义了生命探测雷达的微多普勒测量灵敏度并提出了分析该指标的新方法,有效地解决了生命探测雷达测量性能无法定量分析的问题。最后通过仿真给出了给定系统在不同距离的测振性能曲线。
生命探测雷达技术是近些年发展起来的一种新型非接触式生命检测技术,其通过对生命体的振动信息进行测量实现生命体检测和定位。由于生命体的振动幅度一般较小,噪声会对生命探测雷达的测量性能造成严重的干扰,而噪声(热噪声和相位噪声)对此类雷达测量性能的影响目前尚无有效的评价指标。针对这一问题,该文通过建模分析定义了生命探测雷达的微多普勒测量灵敏度并提出了分析该指标的新方法,有效地解决了生命探测雷达测量性能无法定量分析的问题。最后通过仿真给出了给定系统在不同距离的测振性能曲线。 生命探测雷达技术是近些年发展起来的一种新型非接触式生命检测技术,其通过对生命体的振动信息进行测量实现生命体检测和定位。由于生命体的振动幅度一般较小,噪声会对生命探测雷达的测量性能造成严重的干扰,而噪声(热噪声和相位噪声)对此类雷达测量性能的影响目前尚无有效的评价指标。针对这一问题,该文通过建模分析定义了生命探测雷达的微多普勒测量灵敏度并提出了分析该指标的新方法,有效地解决了生命探测雷达测量性能无法定量分析的问题。最后通过仿真给出了给定系统在不同距离的测振性能曲线。
2016, 5(5): 462-469.
摘要:
当使用生物雷达进行生命体征参数提取时,由于心脏跳动产生的位移形变很小,回波较为微弱,而呼吸带动的胸腔起伏回波强度较大,基于简单傅里叶变换的周期性信息检测,往往无法有效提取心跳信号。采用小波变换的方法可以较好地分离出含有心跳、呼吸运动信息的信号分量,但小波尺度的选择对于不同的场景存在细微差异,影响到了分离的效果。针对这一问题,该文采用Morlet二进小波变换,提出了一种基于信噪比阈值定标的自适应小波尺度选择方法,有效解决了不同场景的呼吸心跳分离问题。最后通过实测结果验证了算法的准确性和可行性。 当使用生物雷达进行生命体征参数提取时,由于心脏跳动产生的位移形变很小,回波较为微弱,而呼吸带动的胸腔起伏回波强度较大,基于简单傅里叶变换的周期性信息检测,往往无法有效提取心跳信号。采用小波变换的方法可以较好地分离出含有心跳、呼吸运动信息的信号分量,但小波尺度的选择对于不同的场景存在细微差异,影响到了分离的效果。针对这一问题,该文采用Morlet二进小波变换,提出了一种基于信噪比阈值定标的自适应小波尺度选择方法,有效解决了不同场景的呼吸心跳分离问题。最后通过实测结果验证了算法的准确性和可行性。
当使用生物雷达进行生命体征参数提取时,由于心脏跳动产生的位移形变很小,回波较为微弱,而呼吸带动的胸腔起伏回波强度较大,基于简单傅里叶变换的周期性信息检测,往往无法有效提取心跳信号。采用小波变换的方法可以较好地分离出含有心跳、呼吸运动信息的信号分量,但小波尺度的选择对于不同的场景存在细微差异,影响到了分离的效果。针对这一问题,该文采用Morlet二进小波变换,提出了一种基于信噪比阈值定标的自适应小波尺度选择方法,有效解决了不同场景的呼吸心跳分离问题。最后通过实测结果验证了算法的准确性和可行性。 当使用生物雷达进行生命体征参数提取时,由于心脏跳动产生的位移形变很小,回波较为微弱,而呼吸带动的胸腔起伏回波强度较大,基于简单傅里叶变换的周期性信息检测,往往无法有效提取心跳信号。采用小波变换的方法可以较好地分离出含有心跳、呼吸运动信息的信号分量,但小波尺度的选择对于不同的场景存在细微差异,影响到了分离的效果。针对这一问题,该文采用Morlet二进小波变换,提出了一种基于信噪比阈值定标的自适应小波尺度选择方法,有效解决了不同场景的呼吸心跳分离问题。最后通过实测结果验证了算法的准确性和可行性。
2016, 5(5): 470-476.
摘要:
由于临近多静止人体目标之间存在较强的相互干扰,仅利用单通道生物雷达的距离像难以区分多个静止人体目标。为解决上述问题,该文利用超宽带多输入多输出(UWB MIMO)生物雷达获取多静止人体目标的2维高分辨图像,从空间上更好地分隔多静止人体目标,然后基于UWB MIMO图像的慢时间序列对人体生理信号进行增强,有效抑制人体目标间的相互干扰。实测数据结果证明该文所提方法能够获得相互靠近的多静止人体目标的高分辨图像,使后续的多静止人体目标高性能检测与定位成为可能。 由于临近多静止人体目标之间存在较强的相互干扰,仅利用单通道生物雷达的距离像难以区分多个静止人体目标。为解决上述问题,该文利用超宽带多输入多输出(UWB MIMO)生物雷达获取多静止人体目标的2维高分辨图像,从空间上更好地分隔多静止人体目标,然后基于UWB MIMO图像的慢时间序列对人体生理信号进行增强,有效抑制人体目标间的相互干扰。实测数据结果证明该文所提方法能够获得相互靠近的多静止人体目标的高分辨图像,使后续的多静止人体目标高性能检测与定位成为可能。
由于临近多静止人体目标之间存在较强的相互干扰,仅利用单通道生物雷达的距离像难以区分多个静止人体目标。为解决上述问题,该文利用超宽带多输入多输出(UWB MIMO)生物雷达获取多静止人体目标的2维高分辨图像,从空间上更好地分隔多静止人体目标,然后基于UWB MIMO图像的慢时间序列对人体生理信号进行增强,有效抑制人体目标间的相互干扰。实测数据结果证明该文所提方法能够获得相互靠近的多静止人体目标的高分辨图像,使后续的多静止人体目标高性能检测与定位成为可能。 由于临近多静止人体目标之间存在较强的相互干扰,仅利用单通道生物雷达的距离像难以区分多个静止人体目标。为解决上述问题,该文利用超宽带多输入多输出(UWB MIMO)生物雷达获取多静止人体目标的2维高分辨图像,从空间上更好地分隔多静止人体目标,然后基于UWB MIMO图像的慢时间序列对人体生理信号进行增强,有效抑制人体目标间的相互干扰。实测数据结果证明该文所提方法能够获得相互靠近的多静止人体目标的高分辨图像,使后续的多静止人体目标高性能检测与定位成为可能。
2016, 5(5): 477-486.
摘要:
语音信号的获取对人类进行交流具有重要意义。生物雷达技术具有非接触、非侵入、安全、方向性好、灵敏度高、抗干扰能力强,并具有一定穿透性等多种优点,在语音信号探测领域具有重要应用前景。该文首先回顾了语音探测技术的发展历程,然后综述了生物雷达语音探测技术的研究现状,给出了生物雷达探测语音信号的基本原理,并对3种不同体制的生物雷达语音探测系统性能进行了对比阐述。最后对生物雷达语音信号探测技术的应用前景进行了展望。 语音信号的获取对人类进行交流具有重要意义。生物雷达技术具有非接触、非侵入、安全、方向性好、灵敏度高、抗干扰能力强,并具有一定穿透性等多种优点,在语音信号探测领域具有重要应用前景。该文首先回顾了语音探测技术的发展历程,然后综述了生物雷达语音探测技术的研究现状,给出了生物雷达探测语音信号的基本原理,并对3种不同体制的生物雷达语音探测系统性能进行了对比阐述。最后对生物雷达语音信号探测技术的应用前景进行了展望。
语音信号的获取对人类进行交流具有重要意义。生物雷达技术具有非接触、非侵入、安全、方向性好、灵敏度高、抗干扰能力强,并具有一定穿透性等多种优点,在语音信号探测领域具有重要应用前景。该文首先回顾了语音探测技术的发展历程,然后综述了生物雷达语音探测技术的研究现状,给出了生物雷达探测语音信号的基本原理,并对3种不同体制的生物雷达语音探测系统性能进行了对比阐述。最后对生物雷达语音信号探测技术的应用前景进行了展望。 语音信号的获取对人类进行交流具有重要意义。生物雷达技术具有非接触、非侵入、安全、方向性好、灵敏度高、抗干扰能力强,并具有一定穿透性等多种优点,在语音信号探测领域具有重要应用前景。该文首先回顾了语音探测技术的发展历程,然后综述了生物雷达语音探测技术的研究现状,给出了生物雷达探测语音信号的基本原理,并对3种不同体制的生物雷达语音探测系统性能进行了对比阐述。最后对生物雷达语音信号探测技术的应用前景进行了展望。
2016, 5(5): 487-498.
摘要:
充分利用雷达目标和环境特性,设计最优发射波形,能够从本质上提高雷达目标检测性能,具有重要的研究价值。该文将近几年发表的雷达目标检测的最优波形设计文献进行总结和归纳,为面向目标检测的波形优化设计研究提供方法和依据,具有一定的参考价值。 充分利用雷达目标和环境特性,设计最优发射波形,能够从本质上提高雷达目标检测性能,具有重要的研究价值。该文将近几年发表的雷达目标检测的最优波形设计文献进行总结和归纳,为面向目标检测的波形优化设计研究提供方法和依据,具有一定的参考价值。
充分利用雷达目标和环境特性,设计最优发射波形,能够从本质上提高雷达目标检测性能,具有重要的研究价值。该文将近几年发表的雷达目标检测的最优波形设计文献进行总结和归纳,为面向目标检测的波形优化设计研究提供方法和依据,具有一定的参考价值。 充分利用雷达目标和环境特性,设计最优发射波形,能够从本质上提高雷达目标检测性能,具有重要的研究价值。该文将近几年发表的雷达目标检测的最优波形设计文献进行总结和归纳,为面向目标检测的波形优化设计研究提供方法和依据,具有一定的参考价值。
2016, 5(5): 499-516.
摘要:
海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。 海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。
海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。 海杂波是影响海用雷达目标探测性能的主要制约因素之一,其物理机理复杂,影响因素众多,且非高斯、非平稳特性显著,因此海杂波特性认知研究是一项极其复杂的系统工程。该文从数据层海杂波特性认知出发,围绕目标检测算法所关注的海杂波幅度分布特性、谱特性、相关性及非平稳与非线性特性,回顾和总结了海杂波特性认知研究进展,梳理了主要研究结论。在此基础上,从海杂波影响因素的深化分析、海杂波精细化建模与检测器需求的博弈、海杂波与目标差异特性认知等4个方面展望了有待于进一步探索的问题。
2016, 5(5): 517-525.
摘要:
该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达降维联合自适应STAP处理的统一理论框架结构。在此基础上,建立了3种降维STAP处理结构。最后,针对上述3种降维结构,给出了相应的3类适用于MIMO体制的降维STAP处理算法。仿真实验表明:机载MIMO雷达联合降维自适应算法具有较好的杂波抑制性能和较强的抗干扰能力。 该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达降维联合自适应STAP处理的统一理论框架结构。在此基础上,建立了3种降维STAP处理结构。最后,针对上述3种降维结构,给出了相应的3类适用于MIMO体制的降维STAP处理算法。仿真实验表明:机载MIMO雷达联合降维自适应算法具有较好的杂波抑制性能和较强的抗干扰能力。
该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达降维联合自适应STAP处理的统一理论框架结构。在此基础上,建立了3种降维STAP处理结构。最后,针对上述3种降维结构,给出了相应的3类适用于MIMO体制的降维STAP处理算法。仿真实验表明:机载MIMO雷达联合降维自适应算法具有较好的杂波抑制性能和较强的抗干扰能力。 该文研究了机载多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达杂波抑制的收发联合降维空时自适应处理(Space Time Adaptive Processing,STAP)算法统一理论框架。首先,基于机载MIMO雷达发射波形分集的特性,构建了机载MIMO雷达降维联合自适应STAP处理的统一理论框架结构。在此基础上,建立了3种降维STAP处理结构。最后,针对上述3种降维结构,给出了相应的3类适用于MIMO体制的降维STAP处理算法。仿真实验表明:机载MIMO雷达联合降维自适应算法具有较好的杂波抑制性能和较强的抗干扰能力。
2016, 5(5): 526-530.
摘要:
增加信号相参积累时间能够提高弱目标检测能力。双基地雷达长时间相参积累的关键是解决非线性相位回波的目标运动补偿问题。在波束影响可忽略的情况下,该文提出了双基地雷达距离-速度域Radon-Fourier变换(RFT)处理方法。该方法通过频域联合搜索双基地距离和速度参数空间,完成距离走动校正与脉冲积累。理论分析和仿真实验证明了其有效性。 增加信号相参积累时间能够提高弱目标检测能力。双基地雷达长时间相参积累的关键是解决非线性相位回波的目标运动补偿问题。在波束影响可忽略的情况下,该文提出了双基地雷达距离-速度域Radon-Fourier变换(RFT)处理方法。该方法通过频域联合搜索双基地距离和速度参数空间,完成距离走动校正与脉冲积累。理论分析和仿真实验证明了其有效性。
增加信号相参积累时间能够提高弱目标检测能力。双基地雷达长时间相参积累的关键是解决非线性相位回波的目标运动补偿问题。在波束影响可忽略的情况下,该文提出了双基地雷达距离-速度域Radon-Fourier变换(RFT)处理方法。该方法通过频域联合搜索双基地距离和速度参数空间,完成距离走动校正与脉冲积累。理论分析和仿真实验证明了其有效性。 增加信号相参积累时间能够提高弱目标检测能力。双基地雷达长时间相参积累的关键是解决非线性相位回波的目标运动补偿问题。在波束影响可忽略的情况下,该文提出了双基地雷达距离-速度域Radon-Fourier变换(RFT)处理方法。该方法通过频域联合搜索双基地距离和速度参数空间,完成距离走动校正与脉冲积累。理论分析和仿真实验证明了其有效性。
2016, 5(5): 531-537.
摘要:
针对非合作跳频通信系统采样速率高,先验信息少等问题,论文提出基于盲压缩感知重构理论参数估计算法。利用稀疏编码与正交基变换交替迭代的思想实现信号精确重构,并根据重构结果直接对跳频信号进行参数估计。与传统的压缩感知理论相比,盲压缩感知理论避免了对信号先验信息的需求,有效解决了非合作通信系统中先验信息少的问题。首先,建立信号模型,然后利用正交块对角盲压缩感知算法(Orthonormal Block Diagonal Blind Compressed Sensing,OBD-BCS)实现信号的重构,并估算出跳变频率及跳变周期。通过实验分析,该方法可以在低信噪比环境下恢复信号原始结构及信息,完成参数估计。 针对非合作跳频通信系统采样速率高,先验信息少等问题,论文提出基于盲压缩感知重构理论参数估计算法。利用稀疏编码与正交基变换交替迭代的思想实现信号精确重构,并根据重构结果直接对跳频信号进行参数估计。与传统的压缩感知理论相比,盲压缩感知理论避免了对信号先验信息的需求,有效解决了非合作通信系统中先验信息少的问题。首先,建立信号模型,然后利用正交块对角盲压缩感知算法(Orthonormal Block Diagonal Blind Compressed Sensing,OBD-BCS)实现信号的重构,并估算出跳变频率及跳变周期。通过实验分析,该方法可以在低信噪比环境下恢复信号原始结构及信息,完成参数估计。
针对非合作跳频通信系统采样速率高,先验信息少等问题,论文提出基于盲压缩感知重构理论参数估计算法。利用稀疏编码与正交基变换交替迭代的思想实现信号精确重构,并根据重构结果直接对跳频信号进行参数估计。与传统的压缩感知理论相比,盲压缩感知理论避免了对信号先验信息的需求,有效解决了非合作通信系统中先验信息少的问题。首先,建立信号模型,然后利用正交块对角盲压缩感知算法(Orthonormal Block Diagonal Blind Compressed Sensing,OBD-BCS)实现信号的重构,并估算出跳变频率及跳变周期。通过实验分析,该方法可以在低信噪比环境下恢复信号原始结构及信息,完成参数估计。 针对非合作跳频通信系统采样速率高,先验信息少等问题,论文提出基于盲压缩感知重构理论参数估计算法。利用稀疏编码与正交基变换交替迭代的思想实现信号精确重构,并根据重构结果直接对跳频信号进行参数估计。与传统的压缩感知理论相比,盲压缩感知理论避免了对信号先验信息的需求,有效解决了非合作通信系统中先验信息少的问题。首先,建立信号模型,然后利用正交块对角盲压缩感知算法(Orthonormal Block Diagonal Blind Compressed Sensing,OBD-BCS)实现信号的重构,并估算出跳变频率及跳变周期。通过实验分析,该方法可以在低信噪比环境下恢复信号原始结构及信息,完成参数估计。
2016, 5(5): 538-547.
摘要:
圆迹合成孔径雷达(CSAR)的360全方位观测能够获取目标各方向的散射特征,但是单轨迹圆迹SAR对于强方向性目标高度向散射特征的获取能力非常弱。该文针对典型目标开展3维圆迹SAR干涉方法研究,开展了基于暗室实验的原理性验证,首次给出了实际坦克金属模型的干涉圆迹SAR的3维重建结果,验证了该方法的有效性,同时展示了3维重建与全方位观测相结合在目标精细特征描述方面具有的重要应用潜力。 圆迹合成孔径雷达(CSAR)的360全方位观测能够获取目标各方向的散射特征,但是单轨迹圆迹SAR对于强方向性目标高度向散射特征的获取能力非常弱。该文针对典型目标开展3维圆迹SAR干涉方法研究,开展了基于暗室实验的原理性验证,首次给出了实际坦克金属模型的干涉圆迹SAR的3维重建结果,验证了该方法的有效性,同时展示了3维重建与全方位观测相结合在目标精细特征描述方面具有的重要应用潜力。
圆迹合成孔径雷达(CSAR)的360全方位观测能够获取目标各方向的散射特征,但是单轨迹圆迹SAR对于强方向性目标高度向散射特征的获取能力非常弱。该文针对典型目标开展3维圆迹SAR干涉方法研究,开展了基于暗室实验的原理性验证,首次给出了实际坦克金属模型的干涉圆迹SAR的3维重建结果,验证了该方法的有效性,同时展示了3维重建与全方位观测相结合在目标精细特征描述方面具有的重要应用潜力。 圆迹合成孔径雷达(CSAR)的360全方位观测能够获取目标各方向的散射特征,但是单轨迹圆迹SAR对于强方向性目标高度向散射特征的获取能力非常弱。该文针对典型目标开展3维圆迹SAR干涉方法研究,开展了基于暗室实验的原理性验证,首次给出了实际坦克金属模型的干涉圆迹SAR的3维重建结果,验证了该方法的有效性,同时展示了3维重建与全方位观测相结合在目标精细特征描述方面具有的重要应用潜力。
2016, 5(5): 548-557.
摘要:
该文提出了一种针对滑动Mosaic模式合成孔径雷达(SAR)的全孔径成像算法,包含了扇贝效应校正和尖脉冲抑制。该方法创新性地通过方位向去斜预处理,来校正由于雷达天线转动引入的天线方向图加权,即扇贝效应校正技术。尖脉冲抑制的主要思想是利用线性预测谱估计算法,通过相邻Burst数据外推来补全Burst之间的空缺数据,从而抑制由多个Burst相干处理所引起的尖脉冲,即矛刺。最后,带宽为200 MHz的C波段机载SAR系统实验处理结果验证了该文所提方法的有效性。 该文提出了一种针对滑动Mosaic模式合成孔径雷达(SAR)的全孔径成像算法,包含了扇贝效应校正和尖脉冲抑制。该方法创新性地通过方位向去斜预处理,来校正由于雷达天线转动引入的天线方向图加权,即扇贝效应校正技术。尖脉冲抑制的主要思想是利用线性预测谱估计算法,通过相邻Burst数据外推来补全Burst之间的空缺数据,从而抑制由多个Burst相干处理所引起的尖脉冲,即矛刺。最后,带宽为200 MHz的C波段机载SAR系统实验处理结果验证了该文所提方法的有效性。
该文提出了一种针对滑动Mosaic模式合成孔径雷达(SAR)的全孔径成像算法,包含了扇贝效应校正和尖脉冲抑制。该方法创新性地通过方位向去斜预处理,来校正由于雷达天线转动引入的天线方向图加权,即扇贝效应校正技术。尖脉冲抑制的主要思想是利用线性预测谱估计算法,通过相邻Burst数据外推来补全Burst之间的空缺数据,从而抑制由多个Burst相干处理所引起的尖脉冲,即矛刺。最后,带宽为200 MHz的C波段机载SAR系统实验处理结果验证了该文所提方法的有效性。 该文提出了一种针对滑动Mosaic模式合成孔径雷达(SAR)的全孔径成像算法,包含了扇贝效应校正和尖脉冲抑制。该方法创新性地通过方位向去斜预处理,来校正由于雷达天线转动引入的天线方向图加权,即扇贝效应校正技术。尖脉冲抑制的主要思想是利用线性预测谱估计算法,通过相邻Burst数据外推来补全Burst之间的空缺数据,从而抑制由多个Burst相干处理所引起的尖脉冲,即矛刺。最后,带宽为200 MHz的C波段机载SAR系统实验处理结果验证了该文所提方法的有效性。