[1] |
Wente E C. A condenser transmitter as a uniformly sensitive instrument for the absolute measurement of sound intensity[J]. Physical Review, 1917, 10(1):39.
|
[2] |
Scheeper P R, Van der Donk A G H, Olthuis W, et al.. A review of silicon microphones[J]. Sensors and Actuators A:Physical, 1994, 44(1):1-11.
|
[3] |
Royer M, Holmen J O, Wurm M A, et al.. ZnO on Si integrated acoustic sensor[J]. Sensors and Actuators, 1983, 4:357-362.
|
[4] |
Pedersen M, Olthuis. W, and Bergveld P. A silicon condenser microphone with polyimide diaphragm and backplate[J]. Sensors and Actuators A:Physical, 1997, 63:97-104.
|
[5] |
Kronast W, Müller B, Siedel W, et al.. Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap[J]. Sensors and Actuators A:Physical, 2001, 87(3):188-193.
|
[6] |
Wu C Y, Chen J M, and Kuo C F. Low polarization voltage and high sensitivity CMOS condenser microphone using stress relaxation design[J]. Procedia Chemistry, 2009, 1(1):859-862.
|
[7] |
Shahina A and Yegnanarayana B. Language identification in noisy environments using throat microphone signals[C]. IEEE Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005:400-403.
|
[8] |
Santori C M. Bone conduction microphone assembly[P]. Washington, DC, US, 1974:1974-01-22.
|
[9] |
Hough J V D, Richard G L, Barton Jr K E, et al.. Direct bone conduction hearing aid device[P]. Washington, DC, US, 1986-09-23.
|
[10] |
张杰. 骨传导听说技术在煤矿应急救援的应用[J]. 煤炭科学技术, 2013, 41(8):95-98. Zhang Jie. Application of bone conduction heared technology in coal mine emergency rescue[J]. Coal Science of Technology, 2013, 41(8):95-98.
|
[11] |
Li W, Liu M, Zhu Z, et al.. LDV remote voice acquisition and enhancement[C]. IEEE 18th International Conference on Pattern Recognition, 2006, 4:262-265.
|
[12] |
Avargel Y and Cohen I. Speech measurements using a laser Doppler vibrometer sensor:Application to speech enhancement[C]. Proceedings of the Hands-Free Speech Communication and Microphone Arrays, Edinburgh, Scotland, 2011:109-114.
|
[13] |
Shang J, He Y, Liu D, et al.. Laser Doppler vibrometer for real-time speech-signal acquirement[J]. Chinese Optics Letters, 2009, 7(8):732-733.
|
[14] |
Bakhtiari S, Gopalsami N, Elmer T W, et al.. Millimeter wave sensor for far-field standoff vibrometry[C]. Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, Chicago, IL, USA, 2008:1641-1648.
|
[15] |
Li Z W. Millimeter wave radar for detecting the speech signal applications[J]. International Journal of Infrared and Millimeter Waves, 1996, 17(12):2175-2183.
|
[16] |
Sharpe S M, Seals J, MacDonald A H, et al.. Non-contact vital signs monitorp[P]. Washington, DC, U.S., 1990.
|
[17] |
Caro C G and Bloice J A. Contactless apnoea detector based on radar[J]. The Lancet, 1971, 298(7731):959-961.
|
[18] |
Chen K M, Huang Y, Zhang J, et al.. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(1):105-114.
|
[19] |
Lohman B, Boric-Lubecke O, Lubecke V M, et al.. A digital signal processor for Doppler radar sensing of vital signs[J]. IEEE Engineering in Medicine and Biology Magazine, 2002, 21(5):161-164.
|
[20] |
王健琪, 王海滨, 荆西京, 等. 呼吸, 心率的雷达式非接触检测系统设计与研究[J]. 中国医疗器械杂志, 2001, 25(3):132-135. Wang Jian-qi, Wang Hai-bin, Jing Xi-jing, et al.. The study on non-contact detection of breathing and heartbeat based on radar principles[J]. Chinese Journal of Medical Instrumentation, 2001, 25(3):132-135.
|
[21] |
Wang Jianqi, Zheng Chongxun, Lu Guohua, et al.. A new method for identifying the life parameters via radar[J]. EURASIP Journal on Applied Signal Processing, 2007, 2007:031415.
|
[22] |
McEwan T E. Ultra-wideband receiver[P]. Washington, DC:U.S., 1996-06-04.
|
[23] |
Holzrichter J F, Lea W A, McEwan T E, et al.. Speech coding, recognition, and synthesis using radar and acoustic sensors[R]. University of California Report UCRL-ID-123687, 1996.
|
[24] |
Holzrichter J F, Burnett G C, Ng L C, et al.. Speech articulator measurements using low power EM-wave sensors[J]. The Journal of the Acoustical Society of America, 1998, 103(1):622-625.
|
[25] |
Burnett G C, Holzrichter J F, Ng L C, et al.. The use of Glottal Electromagnetic Micropower Sensors (GEMS) in determining a voiced excitation function[J]. The Journal of the Acoustical Society of America, 1999, 106(4):2183-2184.
|
[26] |
Ng L C, Burnett G C, Holzrichter J F, et al.. Denoising of human speech using combined acoustic and EM sensor signal processing[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'00, 2000, 1:229-232.
|
[27] |
Titze I R, Story B H, Burnett G C, et al.. Comparison between electroglottography and electromagnetic glottography[J]. The Journal of the Acoustical Society of America, 2000, 107(1):581-588.
|
[28] |
Staderini E M. UWB radars in medicine[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(1):13-18.
|
[29] |
Holzrichter J F, Ng L C, Burke G J, et al.. Measurements of glottal structure dynamics[J]. The Journal of the Acoustical Society of America, 2005, 117(3):1373-1385.
|
[30] |
Eid A M and Wallace J W. Ultrawideband speech sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1414-1417.
|
[31] |
Lin C S, Chang S F, Chang C C, et al.. Microwave human vocal vibration signal detection based on doppler radar technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(8):2299-2306.
|
[32] |
Hu R and Anderson D V. Single acoustic-channel speech enhancement based on glottal correlation using non-acoustic sensor[C]. INTERSPEECH, 2004.
|
[33] |
Hu R and Raj B. A robust voice activity detector using an acoustic Doppler radar[C]. IEEE Workshop on Automatic Speech Recognition and Understanding, 2005:319-324.
|
[34] |
Quatieri T F, Brady K, Messing D, et al.. Exploiting nonacoustic sensors for speech encoding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(2):533-544.
|
[35] |
Demiroglu C, Kamath S D, and Anderson D V. Segmentation-Based Speech Enhancement for Intelligibility Improvement in MELP Coders Using Auxiliary Sensors[C]. ICASSP (1), 2005:797-800.
|
[36] |
Xiao Y, Lin J, Boric-Lubecke O, et al.. A Ka-band low power Doppler radar system for remote detection of cardiopulmonary motion[C]. IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006:7151-7154.
|
[37] |
刘诚睿, 王健琪, 荆西京, 等. 非接触式语音探测系统[J]. 医疗卫生装备, 2006, 27(6):28-29. Liu Cheng-rui, Wang Jian-qi, Jing Xi-jing, et al.. Non-contact speech detection system[J]. Chinese Medical Equipment Journal, 2006, 27(6):28-29.
|
[38] |
Li S, Wang J Q, Niu M, et al.. Millimeter wave conduct speech enhancement based on auditory masking properties[J]. Microwave and Optical Technology Letters, 2008, 50(8):2109-2114.
|
[39] |
Bakhtiari S, Elmer T W, Cox N M, et al.. Compact millimeter-wave sensor for remote monitoring of vital signs[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3):830-841.
|
[40] |
Li S, Tian Y, Lu G, et al.. A 94-GHz millimeter-wave sensor for speech signal acquisition[J]. Sensors, 2013, 13(11):14248-14260.
|
[41] |
蒋金, 陈长兴, 周天翔, 等. 毫米波大气窗口在临近空间等离子体鞘套中的传播特性[J]. 空间科学学报, 2016, 36(1):56-62. Jiang Jin, Chen Chang-xing, Zhou Tian-xiang, et al.. Study on atmospheric window of millimeter wave propagation in near space plasma sheath[J]. Chinese Journal of Space Science, 2016, 36(1):56-62.
|