生物雷达语音信号探测技术研究进展

陈扶明 李盛 安强 张自启 王健琪

陈扶明, 李盛, 安强, 张自启, 王健琪. 生物雷达语音信号探测技术研究进展[J]. 雷达学报, 2016, 5(5): 477-486. doi: 10.12000/JR16099
引用本文: 陈扶明, 李盛, 安强, 张自启, 王健琪. 生物雷达语音信号探测技术研究进展[J]. 雷达学报, 2016, 5(5): 477-486. doi: 10.12000/JR16099
Chen Fuming, Li Sheng, An Qiang, Zhang Ziqi, Wang Jianqi. Advancements in Bio-radar Speech Signal Detection Technology[J]. Journal of Radars, 2016, 5(5): 477-486. doi: 10.12000/JR16099
Citation: Chen Fuming, Li Sheng, An Qiang, Zhang Ziqi, Wang Jianqi. Advancements in Bio-radar Speech Signal Detection Technology[J]. Journal of Radars, 2016, 5(5): 477-486. doi: 10.12000/JR16099

生物雷达语音信号探测技术研究进展

doi: 10.12000/JR16099
基金项目: 

国家自然科学基金(61327805,61371163),陕西省工业科技攻关(2016GY-058)

详细信息
    作者简介:

    陈扶明(1989-),男,甘肃人,第四军医大学生物医学工程学院博士研究生,研究方向为生物雷达语音信号探测、生物雷达生理信号检测。E-mail:cfm5762@126.com;李盛(1972-),男,副教授,博士,硕士生导师,研究方向为生命信息的获取及处理。E-mail:sheng@mail.xjtu.edu.cn;安强(1990-),男,甘肃天水人,第四军医大学生物医学工程学院博士生,研究方向为非接触生理信号检测和穿墙成像等。

    通讯作者:

    王健琪wangjq@fmmu.edu.cn

Advancements in Bio-radar Speech Signal Detection Technology

Funds: 

The National Natural Science Foundation of China (61327805, 61371163), The Key Industrial Science and Technology Program of Shaanxi Province, China (2016GY-058)

  • 摘要: 语音信号的获取对人类进行交流具有重要意义。生物雷达技术具有非接触、非侵入、安全、方向性好、灵敏度高、抗干扰能力强,并具有一定穿透性等多种优点,在语音信号探测领域具有重要应用前景。该文首先回顾了语音探测技术的发展历程,然后综述了生物雷达语音探测技术的研究现状,给出了生物雷达探测语音信号的基本原理,并对3种不同体制的生物雷达语音探测系统性能进行了对比阐述。最后对生物雷达语音信号探测技术的应用前景进行了展望。

     

  • [1] Wente E C. A condenser transmitter as a uniformly sensitive instrument for the absolute measurement of sound intensity[J]. Physical Review, 1917, 10(1):39.
    [2] Scheeper P R, Van der Donk A G H, Olthuis W, et al.. A review of silicon microphones[J]. Sensors and Actuators A:Physical, 1994, 44(1):1-11.
    [3] Royer M, Holmen J O, Wurm M A, et al.. ZnO on Si integrated acoustic sensor[J]. Sensors and Actuators, 1983, 4:357-362.
    [4] Pedersen M, Olthuis. W, and Bergveld P. A silicon condenser microphone with polyimide diaphragm and backplate[J]. Sensors and Actuators A:Physical, 1997, 63:97-104.
    [5] Kronast W, Müller B, Siedel W, et al.. Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap[J]. Sensors and Actuators A:Physical, 2001, 87(3):188-193.
    [6] Wu C Y, Chen J M, and Kuo C F. Low polarization voltage and high sensitivity CMOS condenser microphone using stress relaxation design[J]. Procedia Chemistry, 2009, 1(1):859-862.
    [7] Shahina A and Yegnanarayana B. Language identification in noisy environments using throat microphone signals[C]. IEEE Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005:400-403.
    [8] Santori C M. Bone conduction microphone assembly[P]. Washington, DC, US, 1974:1974-01-22.
    [9] Hough J V D, Richard G L, Barton Jr K E, et al.. Direct bone conduction hearing aid device[P]. Washington, DC, US, 1986-09-23.
    [10] 张杰. 骨传导听说技术在煤矿应急救援的应用[J]. 煤炭科学技术, 2013, 41(8):95-98. Zhang Jie. Application of bone conduction heared technology in coal mine emergency rescue[J]. Coal Science of Technology, 2013, 41(8):95-98.
    [11] Li W, Liu M, Zhu Z, et al.. LDV remote voice acquisition and enhancement[C]. IEEE 18th International Conference on Pattern Recognition, 2006, 4:262-265.
    [12] Avargel Y and Cohen I. Speech measurements using a laser Doppler vibrometer sensor:Application to speech enhancement[C]. Proceedings of the Hands-Free Speech Communication and Microphone Arrays, Edinburgh, Scotland, 2011:109-114.
    [13] Shang J, He Y, Liu D, et al.. Laser Doppler vibrometer for real-time speech-signal acquirement[J]. Chinese Optics Letters, 2009, 7(8):732-733.
    [14] Bakhtiari S, Gopalsami N, Elmer T W, et al.. Millimeter wave sensor for far-field standoff vibrometry[C]. Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, Chicago, IL, USA, 2008:1641-1648.
    [15] Li Z W. Millimeter wave radar for detecting the speech signal applications[J]. International Journal of Infrared and Millimeter Waves, 1996, 17(12):2175-2183.
    [16] Sharpe S M, Seals J, MacDonald A H, et al.. Non-contact vital signs monitorp[P]. Washington, DC, U.S., 1990.
    [17] Caro C G and Bloice J A. Contactless apnoea detector based on radar[J]. The Lancet, 1971, 298(7731):959-961.
    [18] Chen K M, Huang Y, Zhang J, et al.. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(1):105-114.
    [19] Lohman B, Boric-Lubecke O, Lubecke V M, et al.. A digital signal processor for Doppler radar sensing of vital signs[J]. IEEE Engineering in Medicine and Biology Magazine, 2002, 21(5):161-164.
    [20] 王健琪, 王海滨, 荆西京, 等. 呼吸, 心率的雷达式非接触检测系统设计与研究[J]. 中国医疗器械杂志, 2001, 25(3):132-135. Wang Jian-qi, Wang Hai-bin, Jing Xi-jing, et al.. The study on non-contact detection of breathing and heartbeat based on radar principles[J]. Chinese Journal of Medical Instrumentation, 2001, 25(3):132-135.
    [21] Wang Jianqi, Zheng Chongxun, Lu Guohua, et al.. A new method for identifying the life parameters via radar[J]. EURASIP Journal on Applied Signal Processing, 2007, 2007:031415.
    [22] McEwan T E. Ultra-wideband receiver[P]. Washington, DC:U.S., 1996-06-04.
    [23] Holzrichter J F, Lea W A, McEwan T E, et al.. Speech coding, recognition, and synthesis using radar and acoustic sensors[R]. University of California Report UCRL-ID-123687, 1996.
    [24] Holzrichter J F, Burnett G C, Ng L C, et al.. Speech articulator measurements using low power EM-wave sensors[J]. The Journal of the Acoustical Society of America, 1998, 103(1):622-625.
    [25] Burnett G C, Holzrichter J F, Ng L C, et al.. The use of Glottal Electromagnetic Micropower Sensors (GEMS) in determining a voiced excitation function[J]. The Journal of the Acoustical Society of America, 1999, 106(4):2183-2184.
    [26] Ng L C, Burnett G C, Holzrichter J F, et al.. Denoising of human speech using combined acoustic and EM sensor signal processing[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'00, 2000, 1:229-232.
    [27] Titze I R, Story B H, Burnett G C, et al.. Comparison between electroglottography and electromagnetic glottography[J]. The Journal of the Acoustical Society of America, 2000, 107(1):581-588.
    [28] Staderini E M. UWB radars in medicine[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(1):13-18.
    [29] Holzrichter J F, Ng L C, Burke G J, et al.. Measurements of glottal structure dynamics[J]. The Journal of the Acoustical Society of America, 2005, 117(3):1373-1385.
    [30] Eid A M and Wallace J W. Ultrawideband speech sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1414-1417.
    [31] Lin C S, Chang S F, Chang C C, et al.. Microwave human vocal vibration signal detection based on doppler radar technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(8):2299-2306.
    [32] Hu R and Anderson D V. Single acoustic-channel speech enhancement based on glottal correlation using non-acoustic sensor[C]. INTERSPEECH, 2004.
    [33] Hu R and Raj B. A robust voice activity detector using an acoustic Doppler radar[C]. IEEE Workshop on Automatic Speech Recognition and Understanding, 2005:319-324.
    [34] Quatieri T F, Brady K, Messing D, et al.. Exploiting nonacoustic sensors for speech encoding[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(2):533-544.
    [35] Demiroglu C, Kamath S D, and Anderson D V. Segmentation-Based Speech Enhancement for Intelligibility Improvement in MELP Coders Using Auxiliary Sensors[C]. ICASSP (1), 2005:797-800.
    [36] Xiao Y, Lin J, Boric-Lubecke O, et al.. A Ka-band low power Doppler radar system for remote detection of cardiopulmonary motion[C]. IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006:7151-7154.
    [37] 刘诚睿, 王健琪, 荆西京, 等. 非接触式语音探测系统[J]. 医疗卫生装备, 2006, 27(6):28-29. Liu Cheng-rui, Wang Jian-qi, Jing Xi-jing, et al.. Non-contact speech detection system[J]. Chinese Medical Equipment Journal, 2006, 27(6):28-29.
    [38] Li S, Wang J Q, Niu M, et al.. Millimeter wave conduct speech enhancement based on auditory masking properties[J]. Microwave and Optical Technology Letters, 2008, 50(8):2109-2114.
    [39] Bakhtiari S, Elmer T W, Cox N M, et al.. Compact millimeter-wave sensor for remote monitoring of vital signs[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3):830-841.
    [40] Li S, Tian Y, Lu G, et al.. A 94-GHz millimeter-wave sensor for speech signal acquisition[J]. Sensors, 2013, 13(11):14248-14260.
    [41] 蒋金, 陈长兴, 周天翔, 等. 毫米波大气窗口在临近空间等离子体鞘套中的传播特性[J]. 空间科学学报, 2016, 36(1):56-62. Jiang Jin, Chen Chang-xing, Zhou Tian-xiang, et al.. Study on atmospheric window of millimeter wave propagation in near space plasma sheath[J]. Chinese Journal of Space Science, 2016, 36(1):56-62.
  • 加载中
计量
  • 文章访问数:  1463
  • HTML全文浏览量:  363
  • PDF下载量:  1475
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-13
  • 修回日期:  2016-11-02

目录

    /

    返回文章
    返回