Citation: | |
[1] |
LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. New York: CRC Press, 2009: 43–44.
|
[2] |
LARRAÑAGA A and ÁLVAREZ-MOZOS J. On the added value of quad-pol data in a multi-temporal crop classification framework based on RADARSAT-2 imagery[J]. Remote Sensing, 2016, 8(4): 335. doi: 10.3390/rs8040335
|
[3] |
WU Fu, WANG Chao, ZHANG Hong, et al. Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 196–200. doi: 10.1109/LGRS.2010.2055830
|
[4] |
YAJIMA Y, YAMAGUCHI Y, SATO R, et al. POLSAR image analysis of wetlands using a modified four-component scattering power decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1667–1673. doi: 10.1109/tgrs.2008.916326
|
[5] |
ZHANG Biao, PERRIE W, LI Xiaofeng, et al. Mapping sea surface oil slicks using RADARSAT‐2 quad‐polarization SAR image[J]. Geophysical Research Letters, 2011, 38(10): L10602. doi: 10.1029/2011gl047013
|
[6] |
NUNZIATA F, MIGLIACCIO M, and BROWN C E. Reflection symmetry for polarimetric observation of man-made metallic targets at sea[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 384–394. doi: 10.1109/JOE.2012.2198931
|
[7] |
洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074
HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074
|
[8] |
SOUYRIS J C, IMBO P, FJORTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634–646. doi: 10.1109/TGRS.2004.842486
|
[9] |
STACY N and PREISS M. Compact polarimetric analysis of X-band SAR data[C]. The 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
|
[10] |
RANEY R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397–3404. doi: 10.1109/TGRS.2007.895883
|
[11] |
RANEY R K, CAHILL J T S, PATTERSON G W, et al. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): E00H21. doi: 10.1029/2011je003986
|
[12] |
RANEY R K, SPUDIS P D, BUSSEY B, et al. The lunar mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. doi: 10.1109/JPROC.2010.2084970
|
[13] |
MISRA T and KUMAR A S K. Scatterometer and RISAT-1: ISRO’S contribution to radar remote sensing[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 4220–4223. doi: 10.1109/IGARSS.2015.7326757.
|
[14] |
YOKOTA Y, NAKAMURA S, ENDO J, et al. Evaluation of compact polarimetry and along track interferometry as experimental mode of PALSAR-2[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 2015: 4125–4128. doi: 10.1109/IGARSS.2015.7326733.
|
[15] |
SPACEX. RADARSAT constellation mission[EB/OL]. https://www.spacex.com/sites/spacex/files/radarsat_constellation_mission_press_kit.pdf, 2019.
|
[16] |
RANEY R K. DESDynI adopts hybrid polarity SAR architecture[C]. 2009 IEEE Radar Conference, Pasadena, US, 2009: 1–4. doi: 10.1109/RADAR.2009.4977046.
|
[17] |
PUTREVU D, DAS A, VACHHANI J G, et al. Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith[J]. Advances in Space Research, 2016, 57(2): 627–646. doi: 10.1016/J.ASR.2015.10.029
|
[18] |
张红, 谢镭, 王超, 等. 简缩极化SAR数据信息提取与应用[J]. 中国图象图形学报, 2013, 18(9): 1065–1073. doi: 10.11834/jig.20130902
ZHANG Hong, XIE Lei, WANG Chao, et al. Information extraction and application of compact polarimetric SAR data[J]. Journal of Image and Graphics, 2013, 18(9): 1065–1073. doi: 10.11834/jig.20130902
|
[19] |
NORD M E, AINSWORTH T L, LEE J S, et al. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 174–188. doi: 10.1109/TGRS.2008.2000925
|
[20] |
YIN Junjun, YANG Jian, and ZHANG Xinzheng. On the ship detection performance with compact polarimetry[C]. 2011 IEEE RadarCon (RADAR), Kansas City, USA, 2011: 675–680. doi: 10.1109/RADAR.2011.5960623.
|
[21] |
DENBINA M and COLLINS M J. Iceberg detection using compact polarimetric synthetic aperture radar[J]. Atmosphere-Ocean, 2012, 50(4): 437–446. doi: 10.1080/07055900.2012.733307
|
[22] |
COLLINS M J, DENBINA M, and ATTEIA G. On the reconstruction of quad-pol SAR data from compact polarimetry data for ocean target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 591–600. doi: 10.1109/TGRS.2012.2199760
|
[23] |
LI Haiyan, WU Jin, PERRIE W, et al. Wind speed retrieval from hybrid-pol compact polarization synthetic aperture radar images[J]. IEEE Journal of Oceanic Engineering, 2018, 43(3): 713–724. doi: 10.1109/JOE.2017.2722225
|
[24] |
LI Yu, ZHANG Yuanzhi, CHEN Jie, et al. Improved compact polarimetric SAR quad-pol reconstruction algorithm for oil spill detection[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1139–1142. doi: 10.1109/lgrs.2013.2288336
|
[25] |
ESPESETH M M, BREKKE C, and ANFINSEN S N. Hybrid-polarity and reconstruction methods for sea ice with L-and C-band SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 467–471. doi: 10.1109/LGRS.2016.2519824
|
[26] |
KUMAR A and PANIGRAHI R K. Entropy based reconstruction technique for analysis of hybrid-polarimetric SAR data[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 620–626. doi: 10.1049/iet-rsn.2018.5338
|
[27] |
YUE Dongxiao, XU Feng, and JIN Yaqiu. Wishart-Bayesian reconstruction of Quad-Pol from Compact-Pol SAR image[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1623–1627. doi: 10.1109/LGRS.2017.2727280
|
[28] |
REIGBER A, NEUMANN M, FERRO-FAMIL L, et al. Multi-baseline coherence optimisation in partial and compact polarimetric modes[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 597–600. doi: 10.1109/IGARSS.2008.4779063.
|
[29] |
RANEY R K. Comparing compact and quadrature polarimetric SAR performance[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 861–864. doi: 10.1109/lgrs.2016.2550863
|
[30] |
RANEY R K. Hybrid dual-polarization synthetic aperture radar[J]. Remote Sensing, 2019, 11(13): 1521. doi: 10.3390/rs11131521
|
[31] |
RANEY R K. Dual-polarized SAR and stokes parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 317–319. doi: 10.1109/LGRS.2006.871746
|
[32] |
CHARBONNEAU F J, BRISCO B, RANEY R K, et al. Compact polarimetry: Multi-thematic evaluation[C]. The 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry (PolInSAR), Frascati, Italy, 2009, 26–30.
|
[33] |
RANEY R K, CAHILL J T S, PATTERSON G W, et al. The m-chi decomposition of hybrid dual-polarimetric radar data[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich: Germany, 2012, 5093–5096. doi: 10.1109/IGARSS.2012.6352465.
|
[34] |
CLOUDE S R, GOODENOUGH D G, and CHEN H. Compact decomposition theory[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 28–32. doi: 10.1109/LGRS.2011.2158983
|
[35] |
SABRY R and VACHON P W. A unified framework for general compact and quad polarimetric SAR data and imagery analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 582–602. doi: 10.1109/TGRS.2013.2242479
|
[36] |
GUO R, LIU Y B, WU Y H, et al. Applying H/α decomposition to compact polarimetric SAR[J]. IET Radar, Sonar & Navigation, 2012, 6(2): 61–70. doi: 10.1049/iet-rsn.2011.0007
|
[37] |
ZHANG Hong, XIE Lei, WANG Chao, et al. Investigation of the capability of H-α decomposition of compact polarimetric SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 868–872. doi: 10.1109/LGRS.2013.2280456
|
[38] |
谢镭. 多模式极化SAR图像分解与分类方法及应用研究[D]. [博士论文], 中国科学院大学, 2016: 46–59.
XIE Lei. Researches on methods and applications of image decomposition and classification for multi-mode polarimetric SAR[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2016: 46–59.
|
[39] |
GUO Rui, HE Wei, ZHANG Shuangxi, et al. Analysis of three-component decomposition to compact polarimetric synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2014, 8(6): 685–691. doi: 10.1049/iet-rsn.2013.0114
|
[40] |
刘萌, 张红, 王超. 基于简缩极化数据的三分量分解模型[J]. 电波科学学报, 2012, 27(2): 365–371.
LIU Meng, ZHANG Hong, and WANG Chao. Three-component scattering model for compact polarimetric SAR data[J]. Chinese Journal of Radio Science, 2012, 27(2): 365–371.
|
[41] |
HAN Kuoye, JIANG Mian, WANG Mingjiang, et al. Compact polarimetric SAR interferometry target decomposition with the freeman-durden method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2847–2861. doi: 10.1109/JSTARS.2018.2842125
|
[42] |
KUMAR A, DAS A, and PANIGRAHI R K. Hybrid-pol based three-component scattering model for analysis of RISAT data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5155–5162. doi: 10.1109/JSTARS.2017.2768378
|
[43] |
AINSWORTH T L, KELLY J P, and LEE J S. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(5): 464–471. doi: 10.1016/j.isprsjprs.2008.12.008
|
[44] |
KUMAR V, RAO Y S, BHATTACHARYA A, et al. Classification assessment of real versus simulated compact and quad-pol modes of ALOS-2[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1497–1501. doi: 10.1109/LGRS.2019.2899268
|
[45] |
CHARBONNEAU F J, BRISCO B, RANEY R K, et al. Compact polarimetry overview and applications assessment[J]. Canadian Journal of Remote Sensing, 2010, 36(S2): S298–S315. doi: 10.5589/m10-062
|
[46] |
OHKI M and SHIMADA M. Large-area land use and land cover classification with quad, compact, and dual polarization SAR data by PALSAR-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5550–5557. doi: 10.1109/TGRS.2018.2819694
|
[47] |
BRISCO B, LI K, TEDFORD B, et al. Compact polarimetry assessment for rice and wetland mapping[J]. International Journal of Remote Sensing, 2013, 34(6): 1949–1964. doi: 10.1080/01431161.2012.730156
|
[48] |
XU Lu, ZHANG Hong, and WANG Chao. Comparative analysis of classification results between compact and fully polarimetric SAR images in random forest classifier[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, USA, 2017: 3929–3932. doi: 10.1109/IGARSS.2017.8127859.
|
[49] |
XU Lu, ZHANG Hong, WANG Chao, et al. Corn mapping uisng multi-temporal fully and compact SAR data[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017. doi: 10.1109/BIGSARDATA.2017.8124925.
|
[50] |
MAHDIANPARI M, MOHAMMADIMANESH F, MCNAIRN H, et al. Mid-season crop classification using dual-, compact-, and full-polarization in preparation for the Radarsat Constellation Mission (RCM)[J]. Remote Sensing, 2019, 11(13): 1582. doi: 10.3390/rs11131582
|
[51] |
XIE Lei, ZHANG Hong, WU Fan, et al. Capability of rice mapping using hybrid polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3812–3822. doi: 10.1109/JSTARS.2014.2387214
|
[52] |
XIE Lei, ZHANG Hong, LI Hongzhong, et al. A unified framework for crop classification in southern China using fully polarimetric, dual polarimetric, and compact polarimetric SAR data[J]. International Journal of Remote Sensing, 2015, 36(14): 3798–3818. doi: 10.1080/01431161.2015.1070319
|
[53] |
UPPALA D, KOTHAPALLI R V, POLOJU S, et al. Rice crop discrimination using single date RISAT1 hybrid (RH, RV) polarimetric data[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(7): 557–563. doi: 10.14358/PERS.81.7.557
|
[54] |
UPPALA D, VENKATA R K, POLOJU S, et al. Discrimination of maize crop with hybrid polarimetric RISAT1 data[J]. International Journal of Remote Sensing, 2016, 37(11): 2641–2652. doi: 10.1080/01431161.2016.1184353
|
[55] |
国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20–27. doi: 10.6046/gtzyyg.2018.04.04
GUO Xianyu, LI Kun, WANG Zhiyong, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM +SFS strategy[J]. Remote Sensing for Land &Resources, 2018, 30(4): 20–27. doi: 10.6046/gtzyyg.2018.04.04
|
[56] |
CHIRAKKAL S, HALDAR D, and MISRA A. Evaluation of hybrid polarimetric decomposition techniques for winter crop discrimination[J]. Progress in Electromagnetics Research M, 2017, 55: 73–84. doi: 10.2528/PIERM17011603
|
[57] |
BALLESTER-BERMAN J D, and LOPEZ-SANCHEZ J M. Time series of hybrid-polarity parameters over agricultural crops[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 139–143. doi: 10.1109/LGRS.2011.2162312
|
[58] |
ZHANG Wangfei, LI Zengyuan, CHEN Erxue, et al. Compact polarimetric response of rape (Brassica napus L.) at C-band: Analysis and growth parameters inversion[J]. Remote Sensing, 2017, 9(6): 591. doi: 10.3390/rs9060591
|
[59] |
DAVE V A, HALDAR D, DAVE R, et al. Cotton crop biophysical parameter study using hybrid/compact polarimetric RISAT-1 SAR data[J]. Progress in Electromagnetics Research M, 2017, 57: 185–196. doi: 10.2528/PIERM16121903
|
[60] |
HOMAYOUNI S, MCNAIRN H, HOSSEINI M, et al. Quad and compact multitemporal C-band PolSAR observations for crop characterization and monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 78–87. doi: 10.1016/j.jag.2018.09.009
|
[61] |
GUO Xianyu, LI Kun, SHAO Yun, et al. Inversion of rice biophysical parameters using simulated compact polarimetric SAR C-band data[J]. Sensors, 2018, 18(7): 2271. doi: 10.3390/s18072271
|
[62] |
LIU Changan, CHEN Zhongxin, HAO Pengyu, et al. LAI Retrieval of winter wheat using simulated compact SAR data through GA-PLS modeling[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 3840–3843. doi: 10.1109/IGARSS.2018.8518005.
|
[63] |
YANG Zhi, LI Kun, LIU Long, et al. Rice growth monitoring using simulated compact polarimetric C band SAR[J]. Radio Science, 2014, 49(12): 1300–1315. doi: 10.1002/2014RS005498
|
[64] |
YANG Zhi, SHAO Yun, LI Kun, et al. An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data[J]. Remote Sensing of Environment, 2017, 195: 184–201. doi: 10.1016/j.rse.2017.04.016
|
[65] |
LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, BALLESTER-BERMAN J D, et al. Polarimetric response of rice fields at C-band: Analysis and phenology retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2977–2993. doi: 10.1109/TGRS.2013.2268319
|
[66] |
IZUMI Y, DEMIRCI S, BIN BAHARUDDIN M, et al. Analysis of dual-and full-circular polarimetric SAR modes for rice phenology monitoring: An experimental investigation through ground-based measurements[J]. Applied Sciences, 2017, 7(4): 368. doi: 10.3390/app7040368
|
[67] |
ATTEIA G and COLLINS M J. Ship detection performance assessment for simulated RCM SAR data[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 2014: 553–556. doi: 10.1109/IGARSS.2014.6946482.
|
[68] |
SHIRVANY R, CHABERT M, and TOURNERET J Y. Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-pol SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 885–892. doi: 10.1109/JSTARS.2012.2182760
|
[69] |
YIN Junjun and YANG Jian. Ship detection by using the M-Chi and M-Delta decompositions[C]. 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, Canada, 2014: 2738–2741. doi: 10.1109/IGARSS.2014.6947042.
|
[70] |
曹成会, 张杰, 张晰, 等. C波段紧缩极化合成孔径雷达船只目标检测性能分析[J]. 中国海洋大学学报, 2017, 47(2): 85–93. doi: 10.16441/j.cnki.hdxb.20160347
CAO Chenghui, ZHANG Jie, ZHANG Xi, et al. The analysis of ship target detection performance with C band compact polarimetric SAR[J]. Periodical of Ocean University of China, 2017, 47(2): 85–93. doi: 10.16441/j.cnki.hdxb.20160347
|
[71] |
XU Lu, ZHANG Hong, WANG Chao, et al. Compact polarimetric SAR ship detection with m-δ decomposition using visual attention model[J]. Remote Sensing, 2016, 8(9): 751. doi: 10.3390/rs8090751
|
[72] |
FAN Qiancong, CHEN Feng, CHENG Ming, et al. A modified framework for ship detection from compact polarization SAR image[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 3539–3542. doi: 10.1109/IGARSS.2018.8518763.
|
[73] |
FAN Qiancong, CHEN Feng, CHENG Ming, et al. Ship detection using a fully convolutional network with compact polarimetric sar images[J]. Remote Sensing, 2019, 11(18): 2171. doi: 10.3390/rs11182171
|
[74] |
GAO Gui, GAO Sheng, HE Juan, et al. Adaptive ship detection in hybrid-polarimetric SAR images based on the power-entropy decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5394–5407. doi: 10.1109/TGRS.2018.2815592
|
[75] |
GAO Gui, GAO Sheng, HE Juan, et al. Ship detection using compact polarimetric SAR based on the notch filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5380–5393. doi: 10.1109/TGRS.2018.2815582
|
[76] |
JI Kefeng, LENG Xiangguang, WANG Haibo, et al. Ship detection using weighted SVM and M-CHI decomposition in compact polarimetric SAR imagery[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 890–893. doi: 10.1109/IGARSS.2017.8127095.
|
[77] |
CAO Chenghui, ZHANG Jie, MENG Junmei, et al. Analysis of ship detection performance with full-, compact-and dual-polarimetric SAR[J]. Remote Sensing, 2019, 11(18): 2160. doi: 10.3390/rs11182160
|
[78] |
ZHANG Biao, LI Xiaofeng, PERRIE W, et al. Compact polarimetric synthetic aperture radar for marine oil platform and slick detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1407–1423. doi: 10.1109/TGRS.2016.2623809
|
[79] |
LI Haiyan, PERRIE W, HE Yijun, et al. Target detection on the ocean with the relative phase of compact polarimetry SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3299–3305. doi: 10.1109/TGRS.2012.2224119
|
[80] |
LI Haiyan, PERRIE W, HE Yijun, et al. Analysis of the polarimetric SAR scattering properties of oil-covered waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3751–3759. doi: 10.1109/JSTARS.2014.2348173
|
[81] |
KUMAR L J V, KISHORE K J, and RAO K P. Decomposition methods for detection of oil spills based on RISAT-1 SAR images[J]. International Journal of Remote Sensing & Geoscience, 2014, 3(4): 2319–3484.
|
[82] |
MIGLIACCIO M, NUNZIATA F, and BUONO A. SAR polarimetry for sea oil slick observation[J]. International Journal of Remote Sensing, 2015, 36(12): 3243–3273. doi: 10.1080/01431161.2015.1057301
|
[83] |
YIN Junjun, YANG Jian, ZHOU Zhengshu, et al. The extended Bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3760–3772. doi: 10.1109/JSTARS.2014.2359141
|
[84] |
NUNZIATA F, MIGLIACCIO M, and LI Xiaofeng. Sea oil slick observation using hybrid-polarity SAR architecture[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 426–440. doi: 10.1109/JOE.2014.2329424
|
[85] |
BUONO A, NUNZIATA F, MIGLIACCIO M, et al. Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5862–5874. doi: 10.1109/TGRS.2016.2574561
|
[86] |
ZHANG Yuanzhi, LI Yu, LIANG X S, et al. Comparison of oil spill classifications using fully and compact polarimetric SAR images[J]. Applied Sciences, 2017, 7(2): 193. doi: 10.3390/app7020193
|
[87] |
谢广奇, 杨帅, 陈启浩, 等. 简缩极化特征值分析的溢油检测[J]. 遥感学报, 2019, 23(2): 303–312. doi: 10.11834/jrs.20197260
XIE Guangqi, YANG Shuai, CHEN Qihao, et al. Oil spill detection based on compact polarimetric eigenvalue decomposition[J]. Journal of Remote Sensing, 2019, 23(2): 303–312. doi: 10.11834/jrs.20197260
|
[88] |
DABBOOR M, SINGHA S, TOPOUZELIS K, et al. Oil spill detection using simulated radarsat constellation mission compact polarimetric SAR data[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 4582–4585. doi: 10.1109/IGARSS.2017.8128021.
|
[89] |
DABBOOR M, SINGHA S, MONTPETIT B, et al. Assessment of simulated compact polarimetry of the RCM medium resolution SAR modes for oil spill detection[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 2416–2419. doi: 10.1109/IGARSS.2018.8517756.
|
[90] |
DABBOOR M, SINGHA S, MONTPETIT B, et al. Pre-launch assessment of RADARSAT constellation mission medium resolution modes for sea oil slicks and lookalike discrimination[J]. Canadian Journal of Remote Sensing, 2019, 45(3/4): 530–549. doi: 10.1080/07038992.2019.1659722
|
[91] |
LI Haiyan and PERRIE W. Sea ice characterization and classification using hybrid polarimetry SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4998–5010. doi: 10.1109/JSTARS.2016.2584542
|
[92] |
SINGHA S and RESSEL R. Arctic sea ice characterization using RISAT-1 compact-pol SAR imagery and feature evaluation: A case study over Northeast Greenland[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3504–3514. doi: 10.1109/JSTARS.2017.2691258
|
[93] |
SINGHA S. Potential of compact polarimetry for operational sea ice monitoring over arctic and Antarctic region[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 7113–7116. doi: 10.1109/IGARSS.2018.8517653.
|
[94] |
ESPESETH M M, BREKKE C, and JOHANSSON A M. Assessment of RISAT-1 and radarsat-2 for sea ice observations from a hybrid-polarity perspective[J]. Remote Sensing, 2017, 9(11): 1088. doi: 10.3390/rs9111088
|
[95] |
NASONOVA S, SCHARIEN R K, GELDSETZER T, et al. Optimal compact polarimetric parameters and texture features for discriminating sea ice types during winter and advanced melt[J]. Canadian Journal of Remote Sensing, 2018, 44(4): 390–411. doi: 10.1080/07038992.2018.1527683
|
[96] |
DABBOOR M, MONTPETIT B, and HOWELL S. Assessment of simulated compact polarimetry of the high resolution radarsat constellation mission SAR mode for multiyear and first year sea ice characterization[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 2420–2423. doi: 10.1109/IGARSS.2018.8517737.
|
[97] |
GHANBARI M, CLAUSI D A, XU Linlin, et al. Contextual classification of sea-ice types using compact polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7476–7491. doi: 10.1109/TGRS.2019.2913796
|
[98] |
TRUONG-LOI M L, FREEMAN A, DUBOIS-FERNANDEZ P C, et al. Estimation of soil moisture and Faraday rotation from bare surfaces using compact polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3608–3615. doi: 10.1109/TGRS.2009.2031428
|
[99] |
PONNURANGAM G G, JAGDHUBER T, HAJNSEK I, et al. Soil moisture estimation using hybrid polarimetric SAR data of RISAT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2033–2049. doi: 10.1109/TGRS.2015.2494860
|
[100] |
SANTI E, PETTINATO S, PALOSCIA S, et al. Estimating soil moisture from C and X band Sar using machine learning algorithms and compact polarimetry[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 1426–1429. doi: 10.1109/IGARSS.2018.8518469.
|
[101] |
PONNURANGAM G G and RAO Y S. The application of compact polarimetric decomposition algorithms to L-band PolSAR data in agricultural areas[J]. International Journal of Remote Sensing, 2018, 39(22): 8337–8360. doi: 10.1080/01431161.2018.1488281
|
[102] |
LAVALLE M, SOLIMINI D, POTTIER E, et al. Compact polarimetric SAR interferometry[J]. IET Radar, Sonar & Navigation, 2010, 4(3): 449–456. doi: 10.1049/iet-rsn.2009.0049
|
[103] |
DUBOIS-FERNANDEZ P C, SOUYRIS J C, ANGELLIAUME S, et al. The compact polarimetry alternative for spaceborne SAR at low frequency[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3208–3222. doi: 10.1109/TGRS.2008.919143
|
[104] |
谈璐璐, 杨立波, 杨汝良. 合成孔径雷达简缩极化干涉数据的植被高度反演技术研究[J]. 电子与信息学报, 2010, 32(12): 2814–2819. doi: 10.3724/SP.J.1146.2010.00091
TAN Lulu, YANG Libo, and YANG Ruliang. Investigation on vegetation height retrieval technique with compact PolInSAR data[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2814–2819. doi: 10.3724/SP.J.1146.2010.00091
|
[105] |
RAMACHANDRAN N and DIKSHIT O. Experimental validation of compact tomosar for vegetation characterization[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 2018: 6727–6730. doi: 10.1109/IGARSS.2018.8517824.
|
[106] |
SABRY R and AINSWORTH T L. SAR compact polarimetry for change detection and characterization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(3): 898–909. doi: 10.1109/JSTARS.2019.2896536
|
[107] |
ZHANG Xuefei, ZHANG Hong, and WANG Chao. Water-change detection with Chinese Gaofen-3 simulated compact polarimetric SAR images[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017. doi: 10.1109/BIGSARDATA.2017.8124940.
|
[108] |
MAHDIANPARI M, SALEHI B, MOHAMMADIMANESH F, et al. An assessment of simulated compact polarimetric SAR data for wetland classification using random forest algorithm[J]. Canadian Journal of Remote Sensing, 2017, 43(5): 468–484. doi: 10.1080/07038992.2017.1381550
|
[109] |
DABBOOR M, BRISCO B, BANKS S, et al. Multitemporal monitoring of wetlands using simulated radarsat constellation mission compact polarimetric SAR data[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017: 4586–4589. doi: 10.1109/IGARSS.2017.8128022.
|
[110] |
DABBOOR M, BANKS S, WHITE L, et al. Comparison of compact and fully polarimetric SAR for multitemporal wetland monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5): 1417–1430. doi: 10.1109/JSTARS.2019.2909437
|
[111] |
MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. Full and simulated compact polarimetry sar responses to Canadian wetlands: Separability analysis and classification[J]. Remote Sensing, 2019, 11(5): 516. doi: 10.3390/rs11050516
|
[112] |
BANKS S, MILLARD K, BEHNAMIAN A, et al. Contributions of actual and simulated satellite SAR data for substrate type differentiation and shoreline mapping in the Canadian arctic[J]. Remote Sensing, 2017, 9(12): 1206. doi: 10.3390/rs9121206
|
[113] |
WHITE L, MILLARD K, BANKS S, et al. Moving to the RADARSAT constellation mission: Comparing synthesized compact polarimetry and dual polarimetry data with fully polarimetric RADARSAT-2 data for image classification of peatlands[J]. Remote Sensing, 2017, 9(6): 573. doi: 10.3390/rs9060573
|
[114] |
FOBERT M A, SPRAY J G, and SINGHROY V. Assessing the benefits of simulated RADARSAT constellation mission polarimetry images for structural mapping of an impact crater in the Canadian shield[J]. Canadian Journal of Remote Sensing, 2018, 44(4): 321–336. doi: 10.1080/07038992.2018.1517022
|
[115] |
BRISCO B, SHELAT Y, MURNAGHAN K, et al. Evaluation of C-band SAR for identification of flooded vegetation in emergency response products[J]. Canadian Journal of Remote Sensing, 2019, 45(1): 73–87. doi: 10.1080/07038992.2019.1612236
|
[116] |
LIU Yin, LI Linlin, CHEN Qihao, et al. Building damage assessment of compact polarimetric SAR using statistical model texture parameter[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017. doi: 10.1109/BIGSARDATA.2017.8124923.
|
[117] |
JEON W and KIM Y. Investigation of hybrid polarimetric features for tsunami-induced damage assessment of urban areas[J]. Remote Sensing Letters, 2019, 10(10): 988–997. doi: 10.1080/2150704x.2019.1637957
|