Volume 9 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
LIU Chao, SUN Jinping, CHEN Xiaolong, et al. Random finite set-based extended target tracking method with amplitude information[J]. Journal of Radars, 2020, 9(4): 730–738. doi: 10.12000/JR19071
Citation: LIU Chao, SUN Jinping, CHEN Xiaolong, et al. Random finite set-based extended target tracking method with amplitude information[J]. Journal of Radars, 2020, 9(4): 730–738. doi: 10.12000/JR19071

Random Finite Set-based Extended Target Tracking Method with Amplitude Information

DOI: 10.12000/JR19071
Funds:  The National Natural Science Foundation of China (61471019, U1633122)
More Information
  • Corresponding author: SUN Jinping, sunjinping@buaa.edu.cn
  • Received Date: 2019-07-25
  • Rev Recd Date: 2019-10-26
  • Available Online: 2019-11-26
  • Publish Date: 2020-08-28
  • The random finite set-based extended target tracking methods generally partition measurements by spatial information. It is possible to place clutter measurements into target cells in a dense clutter environment resulting in degradation of tracking performance. To solve this issue, in this paper, the amplitude information of the target and clutter was introduced into the Gaussian Inverse Wishart Probability Hypothesis Density (GIW-PHD) filter, and thus, the optimal partition was found by calculating the amplitude likelihood of the measurement cells. Additionally, when calculating the centroid of a measurement cell, amplitude was used as a weighting factor to find the mass center instead of the widely used geometric center. This further reduced clutter interference. The tracking results of Swerling 1 fluctuating targets in a Rayleigh clutter when the signal-to-clutter ratios were 13 dB and 6 dB showed that the performance of the proposed algorithm in cardinality estimation and state estimation was better than that of the GIW-PHD filter.

     

  • loading
  • [1]
    VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [2]
    尉强, 刘忠. 多普勒盲区下基于GM-PHD的雷达多目标跟踪算法[J]. 雷达学报, 2017, 6(1): 34–42. doi: 10.12000/JR16125

    WEI Qiang and LIU Zhong. A radar multi-target tracking algorithm based on Gaussian mixture PHD filter under Doppler blind zone[J]. Journal of Radars, 2017, 6(1): 34–42. doi: 10.12000/JR16125
    [3]
    GILHOLM K and SALMOND D. Spatial distribution model for tracking extended objects[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(5): 364–371. doi: 10.1049/ip-rsn:20045114
    [4]
    BOERS Y, DRIESSEN H, TORSTENSSON J, et al. Track-before-detect algorithm for tracking extended targets[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(4): 345–351. doi: 10.1049/ip-rsn:20050123
    [5]
    MAHLER R. PHD filters for nonstandard targets, I: Extended targets[C]. The 2009 12th International Conference on Information Fusion, Seattle, USA, 2009: 915–921.
    [6]
    GRANSTRÖM K, LUNDQUIST C, and ORGUNER U. A Gaussian mixture PHD filter for extended target tracking[C]. The 2010 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1–8.
    [7]
    GRANSTRÖM K, LUNDQUIST C, and ORGUNER U. Extended target tracking using a Gaussian-Mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268–3286. doi: 10.1109/TAES.2012.6324703
    [8]
    ORGUNER U, LUNDQUIST C, and GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[C]. The 14th International Conference on Information Fusion, Chicago, USA, 2011: 1–8.
    [9]
    ORGUNER U, LUNDQUIST C, and GRANSTRÖM K. Extended target tracking with a cardinalized probability hypothesis density filter[OL]. http://www.control.isy.liu.se/research/reports/2011/2999.pdf. 2011.
    [10]
    KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362
    [11]
    GRANSTRÖM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657–5671. doi: 10.1109/TSP.2012.2212888
    [12]
    LAN Jian and LI X R. Tracking of extended object or target group using random matrix—part I: New model and approach[C]. The 2012 15th International Conference on Information Fusion, Singapore, 2012: 2177–2184.
    [13]
    LAN Jian and LI X R. Tracking of extended object or target group using random matrix—part II: Irregular object[C]. The 2012 15th International Conference on Information Fusion, Singapore, 2012: 2185–2192.
    [14]
    GRANSTRÖM K and ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678–692. doi: 10.1109/TSP.2012.2230171
    [15]
    ZHANG Yongquan and JI Hongbing. A novel fast partitioning algorithm for extended target tracking using a Gaussian mixture PHD filter[J]. Signal Processing, 2013, 93(11): 2975–2985. doi: 10.1016/j.sigpro.2013.04.006
    [16]
    ZHANG Yongquan and JI Hongbing. Robust Bayesian partition for extended target Gaussian inverse Wishart PHD filter[J]. IET Signal Processing, 2014, 8(4): 330–338. doi: 10.1049/iet-spr.2013.0150
    [17]
    杨金龙, 刘风梅, 王冬, 等. 基于近邻传播聚类的多扩展目标量测集划分算法[J]. 雷达学报, 2015, 4(4): 452–459. doi: 10.12000/JR15003

    YANG Jinlong, LIU Fengmei, WANG Dong, et al. Affinity propagation based measurement partition algorithm for multiple extended target tracking[J]. Journal of Radars, 2015, 4(4): 452–459. doi: 10.12000/JR15003
    [18]
    LERRO D and BAR-SHALOM Y. Interacting multiple model tracking with target amplitude feature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 494–509. doi: 10.1109/7.210086
    [19]
    CLARK D, RISTIC B, VO B N, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 26–37. doi: 10.1109/TSP.2009.2030640
    [20]
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2848) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint