Volume 13 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
GAO Yuhang, ZHANG Kaixiang, FAN Huayu, et al. Range-Doppler two-dimensional jamming reconstruction algorithm based on interpulse code agile waveform[J]. Journal of Radars, 2024, 13(1): 187–199. doi: 10.12000/JR23196
Citation: GAO Yuhang, ZHANG Kaixiang, FAN Huayu, et al. Range-Doppler two-dimensional jamming reconstruction algorithm based on interpulse code agile waveform[J]. Journal of Radars, 2024, 13(1): 187–199. doi: 10.12000/JR23196

Range-Doppler Two-dimensional Jamming Reconstruction Algorithm Based on Interpulse Code Agile Waveform

DOI: 10.12000/JR23196
Funds:  The National Natural Science Foundation of China (62001024), The 111 Project of China (B14010), The Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0260)
More Information
  • Corresponding author: FAN Huayu, fan_huayu@sina.com
  • Received Date: 2023-10-08
  • Rev Recd Date: 2023-12-26
  • Available Online: 2023-12-28
  • Publish Date: 2024-01-05
  • Dense false target jamming generates a large number of false targets around the real target, leading to dual jamming effects of deception and suppression. This severely affects the target detection ability of the radar. Therefore, this study proposes a range-Doppler two-dimensional jamming reconstruction algorithm based on the interpulse code agile waveform to suppress dense false target jamming. Based on the range-gating characteristics of the interpulse code agile waveform, the jamming and target echo reconstruction in the range-Doppler domain is realized by alternate inversion. Reconstruction jamming is eliminated by the iterative cancellation method. First, the jamming and target echo are processed by constructing receiving filter banks with different range intervals. Second, a joint mismatched filter bank is used to make the range sidelobe structure of each pulse filter output approximately the same. This reduces the divergence energy along the Doppler dimension after the pulse Doppler processing of the interpulse code agile waveform. The filter matrix is then constructed using the energy distribution characteristics of the jamming and target echo in different range-Doppler regions. Finally, accurate jamming and target echo reconstruction are achieved by alternate inversion to suppress dense false target jamming. Simulation results demonstrate the superior performance of the proposed algorithm in terms of jamming suppression and running time compared with traditional algorithms. These procedures significantly improve the target detection capability of the radar in strong jamming scenarios.

     

  • loading
  • [1]
    李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087

    LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087
    [2]
    FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958
    [3]
    BUTT F A and JALIL M. An overview of electronic warfare in radar systems[C]. 2013 The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Konya, Turkey, 2013: 213–217.
    [4]
    HEAGNEY C P. Digital radio frequency memory synthetic instrument enhancing US navy automated test equipment mission[J]. IEEE Instrumentation & Measurement Magazine, 2018, 21(4): 41–63. doi: 10.1109/MIM.2018.8423745
    [5]
    SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[C]. 2005 IEEE International Radar Conference, Arlington, USA, 2005: 507–512.
    [6]
    AKHTAR J. Orthogonal block coded ECCM schemes against repeat radar jammers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1218–1226. doi: 10.1109/TAES.2009.5259195
    [7]
    AKHTAR J. An ECCM scheme for orthogonal independent range-focusing of real and false targets[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 846–849.
    [8]
    LI Yongzhe and VOROBYOV S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197–1212. doi: 10.1109/TSP.2017.2787104
    [9]
    SONG Junxiao, BABU P, and PALOMAR D P. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866–2879. doi: 10.1109/TSP.2016.2535312
    [10]
    REN Wei, ZHANG Honggang, LIU Quanhua, et al. Greedy code search based memetic algorithm for the design of orthogonal polyphase code sets[J]. IEEE Access, 2019, 7: 13561–13576. doi: 10.1109/ACCESS.2019.2893970
    [11]
    徐乃清. 基于捷变波形的雷达抗干扰技术研究[D]. [硕士论文], 南京航空航天大学, 2020.

    XU Naiqing. Research on radar anti-jamming technique based on agile waveform[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2020.
    [12]
    YANG Ya, CUI Guolong, WU Jian, et al. Optimized phase-coded waveforms design against range repeat jamming[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 395–399.
    [13]
    BU Yi, YU Xianxiang, YANG Jing, et al. A new approach for design of constant modulus discrete phase radar waveform with low WISL[J]. Signal Processing, 2021, 187: 108145. doi: 10.1016/j.sigpro.2021.108145
    [14]
    LI Yongzhe and VOROBYOV S A. Efficient single/multiple unimodular waveform design with low weighted correlations[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 3226–3230.
    [15]
    徐磊磊. 雷达波形设计及抗主瓣有源干扰若干技术研究[D]. [博士论文], 西安电子科技大学, 2019.

    XU Leilei. Researches on Radar waveform design and several techniques of mainlobe active interference suppression[D]. [Ph.D. dissertation], Xidian University, 2019.
    [16]
    XU Leilei, ZHOU Shenghua, LIU Hongwei, et al. Distributed multiple-input-multiple-output radar waveform and mismatched filter design with expanded mainlobe[J]. IET Radar, Sonar & Navigation, 2018, 12(2): 227–238. doi: 10.1049/iet-rsn.2017.0340
    [17]
    BERESTESKY P and ATTIA E H. Sidelobe leakage reduction in random phase diversity radar using coherent CLEAN[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2426–2435. doi: 10.1109/TAES.2018.2888652
    [18]
    SUN Yinghao, FAN Huayu, REN Lixiang, et al. Folded clutter suppression for pulse-Doppler radar based on pulse-agile waveforms[J]. IEEE Transactions on Signal Processing, 2022, 70: 3774–3788. doi: 10.1109/TSP.2022.3190626
    [19]
    BLUNT S D, COOK M R, and STILES J. Embedding information into radar emissions via waveform implementation[C]. 2010 International Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 195–199.
    [20]
    O’CONNOR A C, KANTOR J M, and JAKABOSKY J. Joint equalization filters that mitigate waveform-diversity modulation of clutter[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6.
    [21]
    SUN Yinghao, FAN Huayu, WANG Jingdong, et al. Optimization of diverse PCFM waveforms and joint mismatched filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1840–1854. doi: 10.1109/TAES.2021.3053105
    [22]
    DOERRY A W. Catalog of window taper functions for sidelobe control[R]. SAND2017-4042, 2017.
    [23]
    HOU Kaiyue, REN Wei, and LIU Quanhua. Majorization minimization based memetic algorithm for designing polyphase sequences with good correlation properties[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(721) PDF downloads(199) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint