Volume 8 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
LIU Jiaqi, CHEN Bo, and JIE Xi. Radar high-resolution range profile target recognition based on attention mechanism and bidirectional gated recurrent[J]. Journal of Radars, 2019, 8(5): 589–597. doi: 10.12000/JR19014
Citation: LIU Jiaqi, CHEN Bo, and JIE Xi. Radar high-resolution range profile target recognition based on attention mechanism and bidirectional gated recurrent[J]. Journal of Radars, 2019, 8(5): 589–597. doi: 10.12000/JR19014

Radar High-resolution Range Profile Target Recognition Based on Attention Mechanism and Bidirectional Gated Recurrent

DOI: 10.12000/JR19014
Funds:  The National Natural Science Foundation of China (61771361, 61701379), The National Science Fund for Distinguished Young Scholars (61525105)
More Information
  • Corresponding author: CHEN Bo, bchen@mail.xidian.edu.cn
  • Received Date: 2019-01-29
  • Rev Recd Date: 2019-04-07
  • Available Online: 2019-05-24
  • Publish Date: 2019-10-01
  • To address the problem of radar High-Resolution Range Profile (HRRP) target recognition, traditional methods only consider the envelope information of the sample and ignore the temporal correlation between the range cells. In this study, we propose a bidirectional self-recurrent neural network model based on an attention mechanism. The model divides the HRRP data in the time domain into two sequences, i.e., forward and backward using a sliding window, then extracts the features through two independent GRU networks, and splices the extracted features simultaneously, thus utilizing the bidirectional temporal information of HRRP. Considering that sequences at different moments have different degrees of importance to the target classification, different attention weights are assigned to the hidden layer features at each moment. Finally, the model uses the hidden features weighted summation to obtain target recognition and classification result. Experimental results show that the proposed method can effectively solve the target recognition problem of HRRP, and that the target area can still be accurately identified when the time shift occurs.

     

  • loading
  • [1]
    DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664
    [2]
    DU Lan, LIU Hongwei, BAO Zheng, et al. Radar HRRP target recognition based on higher order spectra[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2359–2368. doi: 10.1109/TSP.2005.849161
    [3]
    FENG Bo, DU Lan, LIU Hongwei, et al. Radar HRRP target recognition based on K-SVD algorithm[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011, 1: 642–645. doi: 10.1109/CIE-Radar.2011.6159622.
    [4]
    李彬, 李辉. 基于混合概率主成分分析的HRRP特征提取[J]. 系统工程与电子技术, 2017, 39(1): 1–7. doi: 10.3969/j.issn.1001-506X.2017.01.01

    LI Bin and LI Hui. HRRP feature extraction based on mixtures of probabilistic principal component analysis[J]. Systems Engineering and Electronics, 2017, 39(1): 1–7. doi: 10.3969/j.issn.1001-506X.2017.01.01
    [5]
    唐绩, 朱峰, 路彬彬, 等. 一种基于混合Gamma分布的自动目标识别混合EM算法[J]. 现代雷达, 2017, 39(4): 45–49.

    TANG Ji, ZHU Feng, LU Binbin, et al. A mixed EM algorithm of automatic target recognition based on mixed Gamma distribution[J]. Modern Radar, 2017, 39(4): 45–49.
    [6]
    DU Lan, LIU Hongwei, and BAO Zheng. Radar automatic target recognition based on complex high-resolution range profiles[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–5. doi: 10.1109/ICR.2006.343562.
    [7]
    PAN Mian, DU Lan, WANG Penghui, et al. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012: 86. doi: 10.1186/1687-6180-2012-86
    [8]
    JI Shihao, LIAO Xuejun, and CARIN L. Adaptive multiaspect target classification and detection with hidden Markov models[J]. IEEE Sensors Journal, 2005, 5(5): 1035–1042. doi: 10.1109/JSEN.2005.847936
    [9]
    SU Yuting, LU Yao, CHEN Mei, et al. Spatiotemporal joint mitosis detection using CNN-LSTM network in time-lapse phase contrast microscopy images[J]. IEEE Access, 2017, 5: 18033–18041. doi: 10.1109/ACCESS.2017.2745544
    [10]
    CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL]. https://arxiv.org/abs/1406.1078, 2014.
    [11]
    PASCANU R, MIKOLOV T, and BENGIO Y. On the difficulty of training recurrent neural networks[C]. Proceedings of International Conference on Machine Learning, Atlanta, USA, 2013: 1310–1318.
    [12]
    CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. https://arxiv.org/abs/1412.3555, 2014.
    [13]
    WANG Yequan, HUANG Minlie, ZHAO Li, et al. Attention-based LSTM for aspect-level sentiment classification[C]. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, USA, 2016: 606–615.
    [14]
    SU Baolan and LU Shijian. Accurate scene text recognition based on recurrent neural network[C]. Proceedings of 12th Asian Conference on Computer Vision, Singapore, 2014: 35–48. doi: 10.1007/978-3-319-16865-4_3.
    [15]
    ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016, 2: 207–212.
    [16]
    FENG Bo, CHEN Bo, and LIU Hongwei. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. doi: 10.1016/j.patcog.2016.08.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3787) PDF downloads(350) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint