Overview of Multi-source Parameter Estimation and Jamming Mitigation for Monopulse Radars
-
摘要: 单脉冲测角是当前主动雷达广泛采用的主流测角技术,大量应用于警戒跟踪、精确制导等雷达/雷达导引头探测领域。该文简要回顾了主瓣多点源条件下的单脉冲信号处理理论与技术发展历程,围绕单脉冲雷达多点源参数估计与抗干扰技术最新成果进行综述,最后对单脉冲雷达多点源参数估计与抗干扰技术的未来发展做了展望。Abstract: Monopulse is a mainstream technique used to acquire the angle information about active radar systems that are widely used in air defense warning, target tracking, and precision guidance. This study briefly reviews the development history of the monopulse theory and technology for the main-lobe multi-source condition. The importance of several key technologies within multi-source parameters estimation and multi-source jamming mitigation is also summarized. Finally, the future development of monopulse technology to resolve the problem of multi-source jamming is considered.
-
1. 引言
森林高度是估算森林蓄积量及生物量的重要基础数据,对于研究森林资源状况以及分析全球生态环境、气候变化具有重要意义。极化合成孔径雷达干涉测量技术(Polarimetric SAR Interferometry, PolInSAR)采用微波监测模式,其回波信号不仅记录垂直结构及其属性信息,且可以区分同一分辨单元内不同散射体高度的能力,已被视为大范围、高分辨率、高精度反演森林高度的有效手段之一[1]。
为了实现利用PolInSAR观测量准确地提取森林高度,Thrauhft等人[2]建立了随机地体二层散射模型(Random Volume over Ground, RVoG),该模型将森林散射场景抽象为两层,即由随机均匀分布的散射体组成的植被层,以及微波信号不可穿透的地表层。随后,Papathanassiou等人[3,4]进一步分析PolInSAR复相干性与RVoG模型的关联,建立了利用PolInSAR反演森林高度的框架。实质上,该框架是基于体散射去相干的模型表达来反演森林高度等参数的,并且利用不同PolInSAR数据都获得了较高的反演精度[5-7]。
由于森林场景具有显著的时变性,具有长时间间隔的星载重轨干涉SAR(如ALOS-1至少为46天,ALOS-2为14天)散射场景内介电常数变化(如降雨)和风动都会产生严重的时间去相干。因此,除了体去相干的影响,时间去相干也是星载重轨极化干涉SAR数据中不可忽略的去相干因素,决定了森林参数反演的精度,甚至是反演成败的关键。为此,Yang等人[8]在随机移动散射模型(Random Motion over Ground, RMoG)[9]和体时去相干散射模型 (Volume Temporal Decorrelation, VTD)模型[10]基础上,提出一种时间去相干半经验森林高度反演方法。该方法结合少量机载LiDAR森林高度数据辅助时间去相干半经验模型解算,利用ALOS-1 PARSAR-1 HV极化相干幅度成功实现了大尺度森林高度反演。
然而,该方法需假设HV极化不包含地表散射回波能量贡献,事实上,L波段SAR信号具有较强的穿透性,尤其当森林高度较低或密度较小时,HV极化方式会记录显著地表回波信号。此外,该方法只适用于单基线干涉数据,尚未考虑多基线条件下,如何充分利用观测几何的多样性提升反演结果的可靠性。因此本文的目的是针对上述反演方法的限制,利用ALOS-2 PARSAR-2多基线PolInSAR数据更为准确地提取森林高度。主要思路如下:首先利用相干最大分离算法(Maximum Coherence Difference, MCD)在极化空间内寻求具有最少地面散射能量贡献的极化方式,以获得更为纯净的森林冠层散射贡献。然后利用该极化方式的相干幅度,在少量森林高度地面调查数据辅助下基于时间去相干半经验模型进行森林高度反演。在此基础之上,结合多基线数据根据PolInSAR相干集在复数平面内的几何表达,甄选最优观测干涉数据的反演结果作为森林高度反演最终结果。
2. 多基线PolInSAR森林高度反演策略
2.1 时间去相干半经验模型
综合顾及垂直方向上散射体分布产生的体去相干、散射场景内介电特性改变和植被风动引起的时间去相干同时占主导地位,星载重轨PolInSAR复相干系数一般形式表示为[8]
γ(ω)=eiφ0⋅γvd⋅γv/m+γgd⋅μ(ω)1+μ(ω) (1) 式中,
φ0 为地表相位;γvd 和γgd 分别表示植被体层和地面层介电特性改变引起的时间去相干复因子;μ(ω) 为地体幅度比,与极化方式有关;γv/m 为体散射去相干和时间去相干(植被风动引起)产生的耦合去相干γv/m=∫h0exp[−12(4πλ)2σ2r(z)]⋅f(z)⋅exp(ikzz)dz∫h0f(z)dz (2) 其中,
h 表示森林高度;f(z) 为指数形式的垂直结构函数,描述垂直方向z 上散射体的分布;σr(z) 为散射体沿雷达视线方向的随机运动标准差,假定与森林高度呈线性关系σr(z)=σrhrz (3) 式中,
σr 表示在参考高度hr (根据先验信息一般设为15 m[8,9])处的运动标准差。为了解决上述模型过参数化问题,Yang等人[8]对散射场景做如下假设:(1) 散射场景内时间去相干与消光系数在空间上具有一致性;(2) HV极化方式具有较小地面散射能量贡献,可假定其地体幅度比
μmin=0 ,此时对于该极化方式可忽略地面层介电常数改变引起的时间去相干;(3) 假定干涉场景为零空间基线理想情况(忽略森林垂直结构引起的体散射去相干),即垂直有效波束kz=0 ,此时对于式(2)适用积分第一中值定理(即对于在给定区间[a,b] 有连续函数f(x) 和同号可积函数g(x) ,区间内存在一点ε 满足∫baf(x)g(x)dx=f(ε)∫bag(x)dx 。因此在上述假定条件下,式(1)可简化为时间去相干半经验模型[8,11]γ=Sscene⋅exp[−12(4πσrαλhr)2h2]≈Sscene⋅sinc(hCscene) (4) 其中,
α 为中值ε 关于森林高度的比例因子,即ε=αh (0≤α≤1 );Sscene ,Cscene 分别与植被体层介电特性改变和风动引起的时间去相干有关Sscene=|γvd|; Cscene=λhr2π2σrα (5) 2.2 MCD相干优化算法
已有方法主要选用对森林冠层较为敏感的HV极化方式进行模型求解,但是ALOS-2 PALSAR-2发射具有较强穿透能力的L波段电磁波,HV极化方式回波信号中同样会记录显著地表回波信号。鉴于此,本文利用ALOS-2 PALSAR-2全极化数据结合极化相干最优理论,尽可能抑制地表回波信号的干扰。具体方法如下:
在主辅极化SAR影像散射机制相同的情况下,极化干涉SAR的复相干系数表示为[12]
γ=⟨ωHΩ12ω⟩√⟨ωHT11ω⟩⟨ωHT22ω⟩ (6) 式中,自相关矩阵
T11 和T22 都是标准Hermitian相干矩阵,分别描述主辅影像的极化特性,Ω12 为互相关矩阵,不仅包含极化信息,还包含了主副影像不同极化通道间的干涉相位关系。ω 为归一化复投影矢量,通过转换ω 可以计算极化空间内任意极化基下对应散射机制的复相干系数,组成相干集。该复相干系数集合形成的区域边界范围可以看作将相干复平面旋转任意角度,得到的实部最大和最小相干系数[13]Re(γeiϕ)=ωHAωωHTωA=eiϕΩ12+e−iϕΩH122,T=T11+T222} (7) 式中,
ϕ 为旋转相位,在[0,π) 范围内等间隔采样角度。式(7)求极值可以转化为求解特征值问题即Aω=λTω ,进而得到最大和最小特征值分别对应的特征向量ω1 和ω2 ,那么相干区域的一对边界点可以表示为[14]γ1=ωH1Ω12ω1ωH1Tω1, γ2=ωH2Ω12ω2ωH2Tω2 (8) 相比传统InSAR技术只能获取HH, HV或VV极化方式对应的复相干系数,相干集中包含了特定极化散射机理对应的复相干系数,为寻求极化空间内具有更为纯净森林冠层散射贡献的极化方式提供了可能。相干区域范围示意如图1所示,其中在相干区域成对边界点中距离最远的一对相干系数点
γA ,γB (也就是相干区域长轴两端点),可以表征植被层和地表层有效相位中心的最大分离[15]。根据式(9)进一步确定体散射占优极化方式复相干γ(μmin) 与地表散射占优极化方式的复相干γ(μmax) kz>0:ifarg(γAγ∗B)>0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγ∗B)<0thenγ(μmin)=γB,γ(μmax)=γAkz<0:ifarg(γAγ∗B)<0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγ∗B)>0thenγ(μmin)=γB,γ(μmax)=γA} (9) 其中,
μmin 表示具有最小地体幅度比的极化方式,对应体散射占优极化方式复相干;μmax 表示具有最大地体幅度比的极化方式,对应表面散射占优极化方式复相干;kz 为垂直有效波束,取决于成像相对几何关系(垂直基线B⊥ ,斜距R ,入射角θ 和雷达波长λ )[16]kz=4πB⊥λRsinθ (10) 2.3 森林高度反演方法
即便简化了模型参数和采用多基线PolInSAR数据增加了观测量,利用传统多维非线性迭代求解时间去相干半经验模型仍存在秩亏问题。因此本文采用一种外部数据辅助反演法[8],即先利用小范围真实森林高度数据辅助解算出模型参数
Sscene 和Cscene ,然后代入模型中即可得到整个散射场景范围的森林高度结果。模型参数求解具体思路如下:对于给定模型参数初始值,利用训练数据中的μmin 极化方式相干幅度结合式(4)可以得到反演森林高度结果hinvert ,它与对应真实森林高度数据hreal 确定的散点图如图2所示。理想情况下,两者数据散点应沿虚线y=x 分布,但实际上在初始模型参数误差存在情况下,两者散点点阵椭圆主轴与y=x 并非一致,而是存在一定的偏差。因此通过利用训练数据对其调整来寻求散射场景最佳模型参数。主成分分析思想[17]为实现上述思路提供了契机,即通过对训练数据中
hreal 与hinvert 这两个二维数据的协方差矩阵进行特征值分解,可以确定该二维数据降维后的主轴(也就是散点点阵椭圆的长轴)斜率k X=[Var(hreal)Cov(hreal,hinvert)Cov(hinvert,hreal)Var(hinvert)]=[P11P12P21P22][λ100λ2][P11P12P21P22]−1k=P21P11} (11) 其中
λ1 和λ2 为按降序排列的特征值,P 为特征值对应的特征向量的元素。而点阵椭圆质心与虚线y=x 的偏差b 可以表示为b=M(hreal)−M(hinvert)[M(hreal)+M(hinvert)]/2 (12) 式中,M 表示取平均运算。
散点点阵椭圆主轴确定后,显然可以通过建立使逼近参数
k ,b 分别趋近于1, 0的目标函数(k−1)2+(b−0)2=min (13) 该目标函数可以利用高斯-牛顿迭代算法进行非线性最小二乘求解,如式(14)所示
[S∗sceneC∗scene]=(JT0J0)−1JT0[1−k00−b0]+[Sscene0Cscene0] (14) 式中,
∗ 表示最终迭代次数;通过给定模型参数初始值Sscene0 ,Cscene0 ,结合上述主成分思想可以得到初始点相应的k0 ,b0 以及雅克比矩阵J0 J0=[∂k∂Sscene∂k∂Cscene∂b∂Sscene∂b∂Cscene]|Sscene0Cscene0 (15) 然后将得到修正后的模型参数作为新的初始点进行下一次迭代,经过多次迭代后即可获得最佳模型参数
S∗scene ,C∗scene ,迭代终止条件为(ε 为经验阈值,本文设为10−6 )|[S∗sceneC∗scene]−[S(∗−1)sceneC(∗−1)scene]|<ε (16) 在利用训练数据求得时间去相干半经验模型参数后,对每个像元求解一元非线性方程得到整个散射场景内的森林高度结果。
2.4 多基线融合策略
时间去相干、体去相干以及其他噪声等因素会共同影响PolInSAR复相干性在复平面单位圆上的几何表达[18]。在多基线配置下,不同干涉对在同一分辨单元内往往呈现出不同的相干区域结构(如图1所示)。而相干特性
P 可以作为评价相干区域结构的指标[19]P=|γ(μmin)−γ(μmax)||γ(μmin)+γ(μmax)| (17) 式中,
γ(μmin) ,γ(μmax) 为2.2节所述相干区域长轴的两端点,分别对应体散射极化通道与地表散射极化通道的复相干系数。|γ(μmin)−γ(μmax)| 即为极化相干区域的长轴,反映了不同极化相干点在复数单位圆的分离程度;|γ(μmin)+γ(μmax)| 为相干区域质心到坐标原点距离的2倍,反映了相干区域整体相干性的平均水平。因此,P 值越大说明该干涉对具有更好的相干性质量与极化分离度,反演的结果更为可靠。通过相干特性指标P 甄选出不同干涉对在同一分辨单元内反演出的最优森林高度值作为多基线PolInSAR森林高度融合结果,多基线PolInSAR融合反演框架可表示为
max‖P1(γ1(μmin),γ1(μmax))P2(γ2(μmin),γ2(μmax))⋮PN(γN(μmin),γN(μmax))‖ (18) 式中,N 为极化干涉SAR观测基线数。
3. 实验与分析
3.1 实验区及数据分析
研究区域黄丰桥国有林场(27°
05′ —27°24′ N, 113°35′ —113°55′ E)呈带状分布,横跨湖南省攸县东西两部(如图3所示)。该林场属亚热带季风湿润性气候区,年平均气温17.8 °C,年降水量1410.8 mm,大部分降雨发生于春、夏季。林场境内森林茂盛,拥有森林蓄积量90.12×104 m3,森林覆盖率达90%。林分类型以针叶林为主,包括杉木、油松、落叶松等。地面实测数据由中南林业科技大学于2016年6~7月采集得到,通过在林区范围内选取60个相互独立的林分样地以确保避免空间自相关,每个林分样地规格为30×30 m。树高则基于单木测高原理利用激光测高仪测得,林分高度范围为4.60~20.20 m,平均高度为13.24 m。本文通过随机采样,将60个林分样地数据随机分为45个训练数据(图3黄点所示)和15个验证数据(图3红点所示)两组。
多基线星载重轨PolInSAR数据是利用日本宇航局(JAXA)提供的5景覆盖研究区域的ALOS-2 PALSAR-2 L波段全极化数据。该SAR影像范围如图3蓝色虚线所示,获取时间为2016年6月至8月,获取模式为StripMap2(SM2),影像主要参数信息如表1所示。将5景SAR影像组成3个时间基线为14天的干涉影像对(BL1, BL2, BL3),然后各自进行配准处理,并进行公共带通滤波以确保去除几何去相干。相干性以11×11窗口进行估计,并应用Boxcar滤波进行平滑处理以消除斑点效应。最后利用SRTM DEM对SAR影像进行地理编码,并将其重采样至与DEM空间分辨率一致(30×30 m)。图4为3个干涉对的HV极化和
μmin 极化的相干性统计图,由统计图可见不同干涉对的相干性均较低,说明研究区域受时间去相干影响较为严重。表 1 ALOS-2 PALSAR-2参数信息Table 1. Parameter information of ALOS-2 PALSAR-2日期(2016年) 垂直有效波数(rad/m) 时间基线(天) 距离向/方位向分辨率(m) 中心入射角 (°) 极化方式 0616—0630 (BL1) 0.013~0.015 0630—0714 (BL2) 0.010~0.011 14 2.86/2.97 38.99 Full 0811—0825 (BL3) 0.009~0.010 3.2 实验结果与分析
以选取的15个验证林分的实测森林高度(H-field)对反演结果(H-invert)进行分析评价,图5为3个干涉对利用HV极化反演得到的散点图结果,均方根误差RMSE分别为:4.20 m, 4.03 m和3.42 m。利用
μmin 极化方式反演的验证结果如图6所示,3个干涉对的反演精度分别提高了:20%, 17%和12%,除此之外,相关系数R2 也分别有所提高。分析认为采用全极化数据结合PolInSAR相干优化算法扩展了极化空间,相比已有方法中选用的HV极化,μmin 极化含有更少地表散射贡献,更贴近时间去相干半经验模型推导过程中基于“零”地体幅度比的关键假设。从上述单基线森林高度反演结果看,不同干涉对反演整体精度较为接近,但是对于同一林分在利用不同干涉对反演的结果却存在明显差异。因此,当多基线数据可用时,我们进一步在单基线PolInSAR森林高度反演结果的基础上挖掘PolInSAR数据本身特性并对其森林高度反演能力进行评判。与时间去相干相关的参数
Sscene 和Cscene 共同反映了散射场景内的时间去相干影响水平,其中Sscene 与植被体层介电特性变化相关,Cscene 反映了植被体层随机运动引起时间去相关水平。表2即为单基线PolInSAR模型参数解算结果,对于不同干涉对,Sscene 越小,表明该基线在散射场景内植被体层介电变化(降水等引起)越显著;Cscene 越小,则表明植被体层随机运动(风动等引起)越强烈。从图4相干性统计图也可以看出,干涉对BL1相干性相对更低,受时间去相干的影响更为严重。因此,在不同时间去相干以及其他噪声影响下,每个干涉对在同一分辨单元内会具有不同的的相干特性,呈现出优劣不同的相干区域结构。表 2 单基线PolInSAR模型参数解算结果Table 2. Model parameter results of single baseline PolInSAR inversion模型参数 BL1 BL2 BL3 Sscene 0.69 0.78 0.78 Cscene 9.88 10.08 11.14 3个干涉对在验证林分的相干特性P值、反演森林高度值以及多基线融合森林高度值如表3所示,从整体看,根据相干特性P值大小从3个单基线PolInSAR反演结果中甄选出的森林高度结果更接近于实测真实森林高度。整个实验区的多基线PolInSAR融合反演结果以及精度评定如图7所示,均方根误差RMSE为2.05 m,相比于已有的方法,本文提出的多基线PolInSAR融合反演策略精度至少提高了40%(与图5中BL3基线结果对比),同时,相关系数也提升至0.81。
表 3 3个干涉对的相干特性P值以及森林高度值Table 3. Coherence characteristic P-value and forest heights for three interferometric pairs林分样地编号 BL1 P值 / 森林高度(m) BL2 P值 / 森林高度(m) BL3 P值 / 森林高度(m) 多基线融合结果(m) 实测森林高度(m) 1 0.130 / 17.82 0.113 / 17.02 0.081 / 16.89 17.82 14.43 2 0.116 / 14.38 0.104 / 15.30 0.091 / 16.52 14.38 14.20 3 0.092 / 12.46 0.075 / 15.83 0.135 / 11.34 11.34 9.80 4 0.103 / 15.21 0.111 / 15.34 0.119 / 14.19 14.19 16.00 5 0.106 / 6.86 0.106 / 7.24 0.131 / 8.31 8.31 10.70 6 0.110 / 12.98 0.083 / 14.67 0.118 / 11.89 11.89 13.50 7 0.114 / 13.35 0.096 / 15.30 0.101 / 16.10 13.35 13.43 8 0.079 / 14.29 0.106 / 16.15 0.117 / 16.22 16.22 16.95 9 0.069 / 12.12 0.090 / 17.63 0.060 / 12.30 17.63 20.10 10 0.104 / 12.33 0.089 / 13.67 0.102 / 11.72 12.33 15.60 11 0.075 / 18.34 0.103 / 16.75 0.154 / 10.16 10.16 13.30 12 0.113 / 9.08 0.134 / 9.46 0.106 / 12.69 9.46 11.00 13 0.086 / 13.76 0.096 / 9.07 0.109 / 16.00 16.00 16.40 14 0.197 / 10.17 0.230 / 8.71 0.186 / 9.51 8.71 6.00 15 0.103 / 14.59 0.064 / 19.17 0.128 / 15.40 15.40 14.70 4. 结束语
在多基线全极化数据可用条件下,弥补单基线InSAR观测信息不足以及几何结构单一的问题,对于反演结果整体精度提升具有重要作用。本文提出了一种星载重轨多基线PolInSAR反演森林高度的策略,对InSAR极化空间和观测几何空间进行扩展,主要结论如下:
(1) 该方法利用MCD相干优化算法获得对体散射最为敏感的极化方式,并基于时间去相干半经验模型进行森林高度反演,使每条单基线反演精度在一定程度上都有所提高。
(2) 利用由相干特性指标P确定的相干区域最优准则可以优选出同一分辨单元内最优的单基线森林高度反演结果。因此,相比仅利用单基线单一极化反演方法,多基线PolInSAR融合策略具有更好的稳定性,精度也更高。
-
-
[1] SHERMAN S M and BARTON D K. Monopulse Principles and Techniques[M]. Norwood, MA: Artech House, 2011: 1–18. [2] HOWARD D D. Radar target glint in tracking and guidance system based on echo signal phase distortion[J]. Proceedings of NEC, 1959, 15: 840–849. [3] LINDSAY J E. Angular glint and the moving, rotating, complex radar target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1968, AES-4(2): 164–173. doi: 10.1109/TAES.1968.5408954 [4] DUNN H H and HOWARD D D. Radar target amplitude, angle, and Doppler scintillation from analysis of the echo signal propagating in space[J]. IEEE Transactions on Microwave Theory and Techniques, 1968, 16(9): 715–728. doi: 10.1109/TMTT.1968.1126776 [5] KAJENSKI P J. Comparison of two theories of angle glint: Polarization considerations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 206–210. doi: 10.1109/TAES.2006.1603415 [6] YIN Hongcheng and HUANG Peikang. Unification and comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 778–783. doi: 10.1109/7.381924 [7] YIN Hongcheng and HUANG Peikang. Further comparison between two concepts of radar target angular glint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 372–380. doi: 10.1109/TAES.2008.4517012 [8] SHERMAN S M. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(1): 160–170. doi: 10.1109/TAES.1971.310264 [9] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Extended analysis of retrodirective cross-eye jamming[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2803–2806. doi: 10.1109/TAP.2009.2027353 [10] HARWOOD N M, DAWBER W N, KING D J, et al. Multiple-element crosseye[J]. IET Radar, Sonar & Navigation, 2007, 1(1): 67–73. doi: 10.1049/iet-rsn:20060042 [11] 殷红成, 王超, 黄培康. 雷达目标角闪烁三种表示的内在联系(英文)[J]. 雷达学报, 2014, 3(2): 119–128. doi: 10.3724/SP.J.1300.2014.14025YIN Hongcheng, WANG Chao, and HUANG Peikang. Inherent relations among the three representations of radar target angular glint[J]. Journal of Radars, 2014, 3(2): 119–128. doi: 10.3724/SP.J.1300.2014.14025 [12] MONAKOV A. Physical and statistical properties of the complex monopulse ratio[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 960–968. doi: 10.1109/TAES.2013.6494392 [13] SHARENSON S. Angle estimation accuracy with a monopulse radar in the search mode[J]. IRE Transactions on Aerospace and Navigational Electronics, 1962, ANE-9(3): 175–179. doi: 10.1109/TANE3.1962.4201876 [14] KANTER I. Multiple Gaussian targets: The track-on-jam problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(6): 620–623. doi: 10.1109/TAES.1977.308502 [15] KANTER I. Corrections to " multiple Gaussian targets: The track-on-jam problem”[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(3): 544. doi: 10.1109/TAES.1978.308619 [16] KANTER I. Varieties of average monopulse responses to multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(1): 25–28. doi: 10.1109/TAES.1981.309032 [17] KANTER I. The probability density function of the monopulse ratio for n looks at a combination of constant and Rayleigh targets[J]. IEEE Transactions on Information Theory, 1977, 23(5): 643–648. doi: 10.1109/TIT.1977.1055778 [18] ASSEO S J. Effect of monopulse signal thresholding on tracking multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(4): 504–509. doi: 10.1109/TAES.1974.307805 [19] ASSEO S J. Corrections to " detection of target multiplicity using monopulse quadrature angle”[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(6): 466–468. doi: 10.1109/TAES.1981.309077 [20] TULLSSON B E. Monopulse tracking of Rayleigh targets: A simple approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(3): 520–531. doi: 10.1109/7.81434 [21] GROVES G W, BLAIR W D, and CHOW W C. Probability distribution of complex monopulse ratio with arbitrary correlation between channels[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1345–1350. doi: 10.1109/7.625136 [22] SEIFER A D. Monopulse-radar angle tracking in noise or noise jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 622–638. doi: 10.1109/7.256285 [23] BLAIR W D and BRANDT-PEARCE M. Unresolved Rayleigh target detection using monopulse measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 543–552. doi: 10.1109/7.670335 [24] SINHA A, KIRUBARAJAN T, and BAR-SHALOM Y. Maximum likelihood angle extractor for two closely spaced targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 183–203. doi: 10.1109/7.993239 [25] NICKEL U. Performance of corrected adaptive monopulse estimation[J]. IEE Proceedings - Radar, Sonar and Navigation, 1999, 146(1): 17–24. doi: 10.1049/ip-rsn:19990257 [26] NICKEL U. Overview of generalized monopulse estimation[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(6): 27–56. doi: 10.1109/MAES.2006.1662039 [27] NICKEL U R O, CHAUMETTE E, and LARZABAL P. Statistical performance prediction of generalized monopulse estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 381–404. doi: 10.1109/TAES.2011.5705682 [28] CHAUMETTE E, NICKEL U, and LARZABAL P. Detection and parameter estimation of extended targets using the generalized monopulse estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3389–3417. doi: 10.1109/TAES.2012.6324719 [29] NICKEL U, CHAUMETTE E, and LARZABAL P. Estimation of extended targets using the generalized monopulse estimator: Extension to a mixed target model[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 2084–2096. doi: 10.1109/TAES.2013.6558043 [30] DU PLESSIS W P. Platform skin return and retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 490–501. doi: 10.1109/TAES.2012.6129650 [31] DU PLESSIS W P. Cross-eye gain in multiloop retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 875–882. doi: 10.1109/TAES.2016.140112 [32] LIU Tianpeng, LIAO Dongping, and WEI Xizhang. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1867–1876. doi: 10.1109/TAES.2015.140035 [33] LIU Tianpeng, LIU Zhen, LIAO Dongping, et al. Platform skin return and multiple-element linear retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 821–835. doi: 10.1109/TAES.2016.140949 [34] MA Jiazhi, SHI Longfei, CUI Gang, et al. Further analysis of retrodirective cross-eye jamming: Polarization considerations[C]. Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.1252. [35] GLASS J D and BLAIR W D. Detection of Rayleigh targets using adjacent matched filter samples[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1927–1941. doi: 10.1109/TAES.2015.140683 [36] GLASS J D, BLAIR W D, and LANTERMAN A D. Joint-bin monopulse processing of Rayleigh targets[J]. IEEE Transactions on Signal Processing, 2015, 63(24): 6673–6683. doi: 10.1109/TSP.2015.2478749 [37] BLAIR W D and BRANDT-PEARCE M. Monopulse DOA estimation of two unresolved Rayleigh targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 452–469. doi: 10.1109/7.937461 [38] ZHANG Xin, WILLETT P K, and BAR-SHALOM Y. Monopulse radar detection and localization of multiple unresolved targets via joint bin processing[J]. IEEE Transactions on Signal Processing, 2005, 53(4): 1225–1236. doi: 10.1109/TSP.2005.843732 [39] ZHANG Xin, WILLETT P, and BAR-SHALOM Y. Detection and localization of multiple unresolved extended targets via monopulse radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 455–472. doi: 10.1109/TAES.2009.5089534 [40] WILLETT P, BLAIR W D, and ZHANG Xin. The multitarget monopulse CRLB for matched filter samples[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4183–4197. doi: 10.1109/TSP.2007.894405 [41] ISAAC A, WILLETT P, and BAR-SHALOM Y. MCMC methods for tracking two closely spaced targets using monopulse radar channel signals[J]. IET Radar, Sonar & Navigation, 2007, 1(3): 221–229. doi: 10.1049/iet-rsn:20060117 [42] NANDAKUMARAN N, SINHA A, and KIRUBARAJAN T. Joint detection and tracking of unresolved targets with monopulse radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1326–1341. doi: 10.1109/TAES.2008.4667712 [43] LEE S P, CHO B L, LEE S M, et al. Unambiguous angle estimation of unresolved targets in monopulse radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1170–1177. doi: 10.1109/TAES.2014.140178 [44] ZHENG Yibin, TSENG S M, and YU K B. Closed-form four-channel monopulse two-target resolution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1083–1089. doi: 10.1109/TAES.2003.1238760 [45] CROUSE D F, NICKEL U, and WILLETT P. Comments on " closed-form four-channel monopulse two-target resolution”[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 913–916. doi: 10.1109/TAES.2012.6129678 [46] JARDAK S, AHMED S, and ALOUINI M S. Generalised two target localisation using passive monopulse radar[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 932–936. doi: 10.1049/iet-rsn.2016.0495 [47] MA Jiazhi, SHI Longfei, and LIU Jian. Improved two-targets resolution using dual-polarization radar with interlaced subarray partition[C]. Proceedings of the 13th IEEE International Conference on Electronic Measurement & Instruments, Yangzhou, China, 2017: 397–400. doi: 10.1109/ICEMI.2017.8265831. [48] 戴幻尧, 王建路, 韩慧, 等. 基于对角差信号的单脉冲雷达二维角估计新方法[J]. 现代雷达, 2017, 39(1): 22–25, 31. doi: 10.16592/j.cnki.1004-7859.2017.01.005DAI Huanyao, WANG Jianlu, HAN Hui, et al. Two dimension DOA estimation method of monopulse radar based on diagonal difference channel signal[J]. Modern Radar, 2017, 39(1): 22–25, 31. doi: 10.16592/j.cnki.1004-7859.2017.01.005 [49] 徐振海, 肖顺平, 熊子源. 阵列雷达低角跟踪技术[M]. 北京: 科学出版社, 2014.XU Zhenhai, XIAO Shunping, and XIONG Ziyuan. Low Angle Tracking Techniques for Array Radars[M]. Beijing: Science Press, 2014. [50] WHITE W D. Low-angle radar tracking in the presence of multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 835–852. doi: 10.1109/TAES.1974.307892 [51] WHITE W D. Double null technique for low angle tracking[J]. Microwave Journal, 1976, 19(12): 35–38, 60. [52] 徐振海, 熊子源, 宋聃, 等. 阵列雷达双零点单脉冲低角跟踪算法[J]. 国防科技大学学报, 2015, 37(1): 130–135. doi: 10.11887/j.cn.201501022XU Zhenhai, XIONG Ziyuan, SONG Dan, et al. Double-null monopulse low-angle tracking algorithm with array radars[J]. Journal of National University of Defense Technology, 2015, 37(1): 130–135. doi: 10.11887/j.cn.201501022 [53] SEBT M A, SHEIKHI A, and NAYEBI M M. Robust low-angle estimation by an array radar[J]. IET Radar, Sonar & Navigation, 2010, 4(6): 780–790. doi: 10.1049/iet-rsn.2009.0067 [54] XU Zhenhai, XIONG Ziyuan, WU Jiani, et al. Symmetrical difference pattern monopulse for low-angle tracking with array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2676–2684. doi: 10.1109/TAES.2016.140436 [55] 赵英俊, 李荣锋, 王永良, 等. 基于主瓣多径干扰抑制的米波雷达测角方法[J]. 华中科技大学学报(自然科学版), 2013, 41(4): 51–55. doi: 10.13245/j.husst.2013.04.014ZHAO Yingjun, LI Rongfeng, WANG Yongliang, et al. Angles measurement of meter-wave radars by mainlobe multipath jamming suppression[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2013, 41(4): 51–55. doi: 10.13245/j.husst.2013.04.014 [56] PARK D, YANG E, AHN S, et al. Adaptive beamforming for low-angle target tracking under multipath interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2564–2577. doi: 10.1109/TAES.2014.130185 [57] 朱伟, 陈伯孝. 强相干干扰下微弱信号波达方向估计[J]. 电波科学学报, 2013, 28(2): 212–219. doi: 10.13443/j.cjors.2013.02.019ZHU Wei and CHEN Baixiao. Weak signal DOA estimation under coherent intensive interferences[J]. Chinese Journal of Radio Science, 2013, 28(2): 212–219. doi: 10.13443/j.cjors.2013.02.019 [58] DARVISHI H and SEBT M A. Adaptive hybrid method for low-angle target tracking in multipath[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 931–937. doi: 10.1049/iet-rsn.2018.5114 [59] SHANG She, ZHANG Shouhong, and ZHANG Xiushe. Investigation on low-angle tracking technique for HRR radar[C]. Proceedings of 2001 CIE International Conference on Radar Proceedings, Beijing, China, 2001: 839–842. doi: 10.1109/ICR.2001.984842. [60] HU Jingyuan, ZHAO Guoqiang, and SUN Houjun. A dual polarization multi-layer array antenna used by digital system[C]. Proceedings of 2015 Asia-Pacific Microwave Conference, Nanjing, China, 2015, 3: 1–3. doi: 10.1109/APMC.2015.7413305. [61] LI Teng, MENG Hongfu, and DOU Wenbin. Design and implementation of dual-frequency dual-polarization slotted waveguide antenna array for Ka-band application[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1317–1320. doi: 10.1109/LAWP.2014.2337355 [62] HASANI H, PEIXEIRO C, SKRIVERVIK A K, et al. Single-layer quad-band printed reflectarray antenna with dual linear polarization[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5522–5528. doi: 10.1109/TAP.2015.2481918 [63] NERI F. Introduction to Electronic Defense Systems[M]. Boston, MA: Artech House, 2001. [64] MANGULIS V. Frequency diversity in low-angle radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1981, AES-17(1): 149–153. doi: 10.1109/TAES.1981.309050 [65] BOSSE E, TURNER R M, and RISEBOROUGH E S. Model-based multifrequency array signal processing for low-angle tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 194–210. doi: 10.1109/7.366303 [66] ZHOU Jie, WANG Jianming, and XING Wenge. Study on low-angle tracking technique for shipboard phased array radar[C]. Proceedings of 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343591. [67] ZHANG Y D, LI Xin, and AMIN G M. Target localization in multipath environment through the exploitation of multi-frequency array[C]. Proceedings of 2010 International Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 206–210. doi: 10.1109/WDD.2010.5592512. [68] ZHU Yutang, ZHAO Yongbo, and SHUI Penglang. Low-angle target tracking using frequency-agile refined maximum likelihood algorithm[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 491–497. doi: 10.1049/iet-rsn.2016.0301 [69] BLAIR W D, GROVES G W, BAR-SHALOM Y, et al. Frequency agility and fusion for tracking targets in the presence of multipath propagation[C]. Proceedings of 1994 IEEE National Radar Conference, Atlanta, GA, USA, 1994: 166–170. doi: 10.1109/NRC.1994.328118. [70] 施龙飞. 雷达极化抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2007.SHI Longfei. Study on the suppression of interference with radar polarization information[D]. [Ph.D. dissertation], National University of Defense Technology, 2007. [71] KWAK H, YANG E, and CHUN H. Vector sensor arrays in DOA estimation for the low angle tracking[C]. Proceedings of 2007 International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 183–187. doi: 10.1109/WDDC.2007.4339406. [72] 施龙飞, 王雪松, 肖顺平. 低空镜像角闪烁的极化抑制[J]. 电波科学学报, 2008, 23(6): 1038–1044. doi: 10.3969/j.issn.1005-0388.2008.06.005SHI Longfei, WANG Xuesong, and XIAO Shunping. Depressing of angle glint of low-altitude enantiomorphous target by polarization diversity[J]. Chinese Journal of Radio Science, 2008, 23(6): 1038–1044. doi: 10.3969/j.issn.1005-0388.2008.06.005 [73] 宋志勇, 肖怀铁, 祝依龙, 等. 基于扩展单脉冲比的拖曳式诱饵存在性检测[J]. 航空学报, 2011, 32(9): 1656–1668.SONG Zhiyong, XIAO Huaitie, ZHU Yilong, et al. Detection of presence of towed radar active decoy based on extended monopulse ratio[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1656–1668. [74] 王建路, 戴幻尧, 韩慧, 等. 雷达导引头对拖曳式诱饵干扰的检测和识别新方法[J]. 航天电子对抗, 2016, 32(6): 5–8, 28. doi: 10.16328/j.htdz8511.2016.06.002WANG Jianlu, DAI Huanyao, HAN Hui, et al. A new method for detection and recognition of towed decoy jamming by radar seeker[J]. Aerospace Electronic Warfare, 2016, 32(6): 5–8, 28. doi: 10.16328/j.htdz8511.2016.06.002 [75] 李永祯, 胡万秋, 孙豆, 等. 一种基于极化信息的机载拖曳式诱饵存在性检测与抑制方法研究[J]. 雷达学报, 2016, 5(6): 666–672. doi: 10.12000/JR16115LI Yongzhen, HU Wanqiu, SUN Dou, et al. Scheme for polarization detection and suppression of TRAD[J]. Journal of Radars, 2016, 5(6): 666–672. doi: 10.12000/JR16115 [76] 李永祯, 胡万秋, 程旭, 等. 相干两点源角欺骗干扰的极化鉴别方法研究[J]. 兵工学报, 2013, 34(9): 1078–1083. doi: 10.3969/j.issn.1000-1093.2013.09.004LI Yongzhen, HU Wanqiu, CHENG Xu, et al. Research on polarization discrimination algorithm for coherent dual-source angle deception interference[J]. Acta Armamentarii, 2013, 34(9): 1078–1083. doi: 10.3969/j.issn.1000-1093.2013.09.004 [77] 宗志伟, 李永祯, 施龙飞, 等. 全极化雷达相干两点源角度欺骗干扰识别方法[J]. 电波科学学报, 2014, 29(4): 621–626. doi: 10.13443/j.cjors.2013071201ZONG Zhiwei, LI Yongzhen, SHI Longfei, et al. Discrimination method for coherent dual point sources angular deception using fully polarimetric radar[J]. Chinese Journal of Radio Science, 2014, 29(4): 621–626. doi: 10.13443/j.cjors.2013071201 [78] 马佳智. 极化雷达导引头多点源参数估计与抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2017.MA Jiazhi. Study on multi-sources parameter estimation and jamming mitigation for polarimetric radar seeker[D]. [Ph.D. dissertation], National University of Defense Technology, 2017. [79] 施龙飞, 毛楚乔, 张建明, 等. 基于极化-空间谱特征的雷达目标检测方法[J]. 雷达科学与技术, 2018, 16(2): 174–180. doi: 10.3969/j.issn.1672-2337.2018.02.010SHI Longfei, MAO Chuqiao, ZHANG Jianming, et al. A target detection method based on polarization-space joint spectrum characteristic[J]. Radar Science and Technology, 2018, 16(2): 174–180. doi: 10.3969/j.issn.1672-2337.2018.02.010 [80] 胥文泉, 施龙飞, 肖顺平. 基于相位分集的目标极化特征检测方法[J]. 雷达科学与技术, 2018, 16(3): 275–280, 285. doi: 10.3969/j.issn.1672-2337.2018.03.007XU Wenquan, SHI Longfei, and XIAO Shunping. A target detection method with polarization characteristic based on phase diversity[J]. Radar Science and Technology, 2018, 16(3): 275–280, 285. doi: 10.3969/j.issn.1672-2337.2018.03.007 [81] GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi: 10.1109/TSP.2007.909326 [82] 卢龙云, 李明, 陈洪猛, 等. 基于奇异谱分析的抗数字射频存储距离波门拖引干扰[J]. 电子与信息学报, 2016, 38(3): 600–606. doi: 10.11999/JEIT150550LU Longyun, LI Ming, CHEN Hongmeng, et al. Countering DRFM range gate pull-off jamming based on singular spectrum analysis[J]. Journal of Electronics &Information Technology, 2016, 38(3): 600–606. doi: 10.11999/JEIT150550 [83] ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1300. doi: 10.1109/TAES.2013.6494414 [84] 李永祯. 瞬态极化统计特性及处理的研究[D]. [博士论文], 国防科学技术大学, 2004.LI Yongzhen. Study on statistical characteristics and processing of instantaneous polarization[D]. [Ph.D. dissertation], National University of Defense Technology, 2004. [85] 王涛. 弹道中段目标极化域特征提取与识别[D]. [博士论文], 国防科学技术大学, 2006.WANG Tao. Feature extraction and recognition of targets in ballistic midcourse in polarization-domain[D]. [Ph.D. dissertation], National University of Defense Technology, 2006. [86] SHI Longfei, WANG Xuesong, and XIAO Shunping. Polarization discrimination between repeater false-target and radar target[J]. Science in China Series F: Information Sciences, 2009, 52(1): 149–158. doi: 10.1007/s11432-009-0009-9 [87] ZONG Zhiwei, SHI Longfei, and WANG Xuesong. Commonality used to discriminate active repetition false targets based on polarisation characteristics of antenna[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1178–1185. doi: 10.1049/iet-rsn.2015.0421 [88] 宗志伟. 弹道中段目标极化雷达识别方法[D]. [博士论文], 国防科学技术大学, 2016.ZONG Zhiwei. Discrimination methods for ballistic targets base on polarization radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2016. [89] 沈允春, 谢俊好, 刘庆普. 识别箔条云新方案[J]. 系统工程与电子技术, 1995(4): 60–63. doi: 10.3321/j.issn:1001-506X.1995.04.011SHEN Yunchun, XIE Junhao, and LIU Qingpu. A novel scheme for identifying chaff interference[J]. Systems Engineering and Electronics, 1995(4): 60–63. doi: 10.3321/j.issn:1001-506X.1995.04.011 [90] 刘庆普, 沈允春. 箔条云极化识别方案性能分析[J]. 系统工程与电子技术, 1996(11): 1–7. doi: 10.3321/j.issn:1001-506X.1996.11.001LIU Qingpu and SHEN Yunchun. Performance analysis of identifying chaff interference using polarization characteristics[J]. Systems Engineering and Electronics, 1996(11): 1–7. doi: 10.3321/j.issn:1001-506X.1996.11.001 [91] 李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科学技术大学, 2010.LI Jinliang. Study on characteristics of chaff jamming and anti-chaff technology for radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010. [92] 朱珍珍, 汤广富, 程翥, 等. 基于极化分解的舰船和角反射器鉴别方法[J]. 舰船电子对抗, 2010, 33(6): 15–21. doi: 10.3969/j.issn.1673-9167.2010.06.003ZHU Zhenzhen, TANG Guangfu, CHENG Zhu, et al. Discrimination method of ship and corner reflector based on polarization decomposition[J]. Shipboard Electronic Countermeasure, 2010, 33(6): 15–21. doi: 10.3969/j.issn.1673-9167.2010.06.003 [93] YU K B and MURROW D J. Adaptive digital beamforming for angle estimation in jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 508–523. doi: 10.1109/7.937465 [94] 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039 [95] 施龙飞, 任博, 马佳智, 等. 雷达极化抗干扰技术进展[J]. 现代雷达, 2016, 38(4): 1–7, 29. doi: 10.16592/j.cnki.1004-7859.2016.04.001SHI Longfei, REN Bo, MA Jiazhi, et al. Recent developments of radar anti-interference techniques with polarimetry[J]. Modern Radar, 2016, 38(4): 1–7, 29. doi: 10.16592/j.cnki.1004-7859.2016.04.001 [96] 胡航. 现代相控阵雷达阵列处理技术[M]. 北京: 国防工业出版社, 2017.HU Hang. Array Processing Techniques for Modern Phased Array Radar[M]. Beijing: National Defense Industry Press, 2017. [97] 邱朝阳, 雷丽丽, 胡航, 等. 子阵级相控阵差波束旁瓣抑制新方法[J]. 电波科学学报, 2011, 26(1): 13–17, 202. doi: 10.3969/j.issn.1005-0388.2011.01.003QIU Chaoyang, LEI Lili, HU Hang, et al. Novel approach of sidelobe suppression for difference beam of phased array at subarray level[J]. Chinese Journal of Radio Science, 2011, 26(1): 13–17, 202. doi: 10.3969/j.issn.1005-0388.2011.01.003 [98] 李荣锋, 饶灿, 戴凌燕, 等. 子阵间约束自适应和差单脉冲测角算法[J]. 华中科技大学学报(自然科学版), 2013, 41(9): 6–10. doi: 10.13245/j.hust.2013.09.013LI Rongfeng, RAO Can, DAI Lingyan, et al. Algorithm for constrained adaptive sum-difference monopulse among sub-arrays[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2013, 41(9): 6–10. doi: 10.13245/j.hust.2013.09.013 [99] CHEN Xinzhu, SHU Ting, YU K B, et al. Enhanced ADBF architecture for monopulse angle estimation in multiple jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2684–2687. doi: 10.1109/LAWP.2017.2740958 [100] CHENG Ziyang, HE Zishu, DUAN Xiang, et al. Adaptive monopulse approach with joint linear constraints for planar array at subarray level[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1432–1441. doi: 10.1109/TAES.2018.2793318 [101] 周必雷, 李荣锋, 戴凌燕, 等. 和差四通道及辅助阵元联合自适应单脉冲方法[J]. 系统工程与电子技术, 2017, 39(9): 1905–1914. doi: 10.3969/j.issn.1001-506X.2017.09.01ZHOU Bilei, LI Rongfeng, DAI Lingyan, et al. Adaptive monopulse algorithm combining four-channel sum-difference beam and auxiliary elements[J]. Systems Engineering and Electronics, 2017, 39(9): 1905–1914. doi: 10.3969/j.issn.1001-506X.2017.09.01 [102] 陈功, 谢文冲, 王永良. 基于空时联合约束的机载雷达STAP单脉冲角度估计方法[J]. 电子学报, 2015, 43(3): 489–495. doi: 10.3969/j.issn.0372-2112.2015.03.011CHEN Gong, XIE Wenchong, and WANG Yongliang. Space-time adaptive monopulse angle estimation approach for airborne radar based on space-time joint constraint[J]. Acta Electronica Sinica, 2015, 43(3): 489–495. doi: 10.3969/j.issn.0372-2112.2015.03.011 [103] 刘义, 赵志超, 王雪松, 等. 反辐射导弹复合测角抗诱偏干扰方法[J]. 宇航学报, 2009, 30(5): 2122–2127. doi: 10.3873/j.issn.1000-1328.2009.05.063LIU Yi, ZHAO Zhichao, WANG Xuesong, et al. Approach of anti-decoy based on complex angle measuring system[J]. Journal of Astronautics, 2009, 30(5): 2122–2127. doi: 10.3873/j.issn.1000-1328.2009.05.063 [104] 宋立众, 乔晓林, 孟宪德. 一种单脉冲雷达中的极化估值与滤波算法[J]. 系统工程与电子技术, 2005, 27(5): 764–766. doi: 10.3321/j.issn:1001-506X.2005.05.002SONG Lizhong, QIAO Xiaolin, and MENG Xiande. Algorithm of polarization estimation and filtering for mono-pulse radar[J]. Systems Engineering and Electronics, 2005, 27(5): 764–766. doi: 10.3321/j.issn:1001-506X.2005.05.002 [105] MA Jiazhi, SHI Longfei, LI Yongzhen, et al. Angle estimation of extended targets in main-lobe interference with polarization filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 169–189. doi: 10.1109/TAES.2017.2649783 [106] MA Jiazhi, SHI Longfei, LI Yongzhen, et al. Angle estimation with polarization filtering: A single snapshot approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 257–268. doi: 10.1109/TAES.2017.2756218 [107] YANG Yong, XIAO Shunping, FENG Dejun, et al. Polarisation oblique projection for radar seeker tracking in chaff centroid jamming environment without prior knowledge[J]. IET Radar, Sonar & Navigation, 2014, 8(9): 1195–1202. doi: 10.1049/iet-rsn.2013.0388 [108] 王文涛, 张剑云, 李小波, 等. Fast ICA应用于雷达抗主瓣干扰算法研究[J]. 信号处理, 2015, 31(4): 497–503. doi: 10.3969/j.issn.1003-0530.2015.04.016WANG Wentao, ZHANG Jianyun, LI Xiaobo, et al. A study on radar mainlobe jamming suppression algorithm based on fast ICA[J]. Journal of Signal Processing, 2015, 31(4): 497–503. doi: 10.3969/j.issn.1003-0530.2015.04.016 [109] 温媛媛, 陈豪. 基于时域卷积盲信号分离的雷达干扰抑制算法[J]. 中国科学院大学学报, 2013, 30(4): 523–527. doi: 10.7523/j.issn.2095-6134.2013.04.014WEN Yuanyuan and CHEN Hao. Algorithm of radar interference suppression based on blind signal separation in the time domain[J]. Journal of University of Chinese Academy of Sciences, 2013, 30(4): 523–527. doi: 10.7523/j.issn.2095-6134.2013.04.014 [110] WASHIZAWA Y, YAMASHITA Y, TANAKA T, et al. Blind extraction of global signal from multi-channel noisy observations[J]. IEEE Transactions on Neural Networks, 2010, 21(9): 1472–1481. doi: 10.1109/TNN.2010.2052828 [111] 王瑜, 李小波, 周青松, 等. 联合BSS和FRFT的雷达抗主瓣干扰新方法[J]. 现代雷达, 2016, 38(7): 72–77. doi: 10.16592/j.cnki.1004-7859.2016.07.018WANG Yu, LI Xiaobo, ZHOU Qingsong, et al. A new method of radar main lobe interference based on the combination of BSS and FRFT[J]. Modern Radar, 2016, 38(7): 72–77. doi: 10.16592/j.cnki.1004-7859.2016.07.018 [112] LI Jiong, ZHANG Hang, and ZHANG Jiang. Fast adaptive BSS algorithm for independent/dependent sources[J]. IEEE Communications Letters, 2016, 20(11): 2221–2224. doi: 10.1109/LCOMM.2016.2598144 [113] 周必雷, 李荣锋, 陈风波, 等. 基于盲分离的空时联合处理抗复合干扰方法[J]. 系统工程与电子技术, 2018, 40(11): 2393–2402. doi: 10.3969/j.issn.1001-506X.2018.11.01ZHOU Bilei, LI Rongfeng, CHEN Fengbo, et al. Space-time complex-jamming suppression algorithm based on the BSS[J]. Systems Engineering and Electronics, 2018, 40(11): 2393–2402. doi: 10.3969/j.issn.1001-506X.2018.11.01 [114] LEE S H, LEE S J, CHOI I O, et al. ICA-based phase-comparison monopulse technique for accurate angle estimation of multiple targets[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 323–331. doi: 10.1049/iet-rsn.2017.0156 [115] 周伟江, 王培强, 张进, 等. 雷达射频掩护信号分析及对抗方法研究[J]. 航天电子对抗, 2013, 29(5): 47–50. doi: 10.3969/j.issn.1673-2421.2013.05.014ZHOU Weijiang, WANG Peiqiang, ZHANG Jin, et al. Analysis and countermeasures of radar radio frequency-screen signal[J]. Aerospace Electronic Warfare, 2013, 29(5): 47–50. doi: 10.3969/j.issn.1673-2421.2013.05.014 [116] 金珊珊, 王春阳, 邱程, 等. 对抗应答式干扰的射频掩护脉冲设计[J]. 中国电子科学研究院学报, 2014, 9(4): 377–381. doi: 10.3969/j.issn.1673-5692.2014.04.010JIN Shanshan, WANG Chunyang, QIU Cheng, et al. Design of RF protecting signal for transponder jamming suppression[J]. Journal of CSEIT, 2014, 9(4): 377–381. doi: 10.3969/j.issn.1673-5692.2014.04.010 [117] 李凤从. 雷达抗干扰波形优化设计的研究[D]. [博士论文], 哈尔滨工业大学, 2014.LI Fengcong. Research on anti-interference waveform optimization for radar[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2014. [118] MA Jiazhi, SHI Longfei, XIAO Shunping, et al. Mitigation of cross-eye jamming using a dual-polarization array[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 491–498. doi: 10.21629/JSEE.2018.03.06 [119] 白渭雄, 唐宏, 陶建峰. 拖曳式诱饵对单脉冲雷达的干扰分析[J]. 电子信息对抗技术, 2007, 22(6): 39–42. doi: 10.3969/j.issn.1674-2230.2007.06.010BAI Weixiong, TANG Hong, and TAO Jianfeng. Analysis of towed decoy jamming on monopulse radar[J]. Electronic Information Warfare Technology, 2007, 22(6): 39–42. doi: 10.3969/j.issn.1674-2230.2007.06.010 [120] 廖云, 何松华, 张军. 脉冲多普勒雷达抗拖曳式干扰方法研究[J]. 雷达科学与技术, 2009, 7(5): 325–328. doi: 10.3969/j.issn.1672-2337.2009.05.001LIAO Yun, HE Songhua, and ZHANG Jun. Method research on mono-pulse Doppler radar countering towed decoy jamming[J]. Radar Science and Technology, 2009, 7(5): 325–328. doi: 10.3969/j.issn.1672-2337.2009.05.001 [121] YANG Yong, FENG Dejun, ZHANG Wenming, et al. Detection of chaff centroid jamming aided by GPS/INS[J]. IET Radar, Sonar & Navigation, 2013, 7(2): 130–142. doi: 10.1049/iet-rsn.2012.0101 [122] 徐娟, 姚如贵, 陈赟, 等. 频域空时域级联导航抗干扰技术研究[J]. 弹箭与制导学报, 2015, 35(2): 137–141. doi: 10.15892/j.cnki.djzdxb.2015.02.035XU Juan, YAO Rugui, CHEN Yun, et al. Cascaded frequency and spatial-time domain anti-jamming technique in navigation systems[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2015, 35(2): 137–141. doi: 10.15892/j.cnki.djzdxb.2015.02.035 [123] WANG LUO Shengbin, XU Zhenhai, LIU Xinghua, et al. Subarray-based frequency diverse array for target range-angle localization with monopulse processing[J]. IEEE Sensors Journal, 2018, 18(14): 5937–5947. doi: 10.1109/JSEN.2018.2844280 [124] 龙杰. 单脉冲前斜SAR成像信息处理技术研究[D]. [博士论文], 北京理工大学, 2014.LONG Jie. Research on monopulse squint SAR imaging information processing technique[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2014. 期刊类型引用(5)
1. 汪思源,曲毅,陈怡君. 基于U-Net的涡旋电磁波雷达成像方法. 空军工程大学学报. 2024(03): 77-85 . 百度学术
2. 潘浩然,马晖,胡敦法,刘宏伟. 基于涡旋电磁波新体制的雷达前视三维成像. 雷达学报. 2024(05): 1109-1122 . 本站查看
3. 毛德庆,杨建宇,杨明杰,张永超,张寅,黄钰林. IAA-Net:一种实孔径扫描雷达迭代自适应角超分辨成像方法. 雷达学报. 2024(05): 1073-1091 . 本站查看
4. 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 . 百度学术
5. 袁航,罗迎,陈怡君,苏令华. 基于反正弦圆环天线阵列的二维成像. 北京航空航天大学学报. 2023(06): 1487-1494 . 百度学术
其他类型引用(10)
-