雷达目标检测的最优波形设计综述

王璐璐 王宏强 王满喜 黎湘

王璐璐, 王宏强, 王满喜, 黎湘. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487-498. doi: 10.12000/JR16084
引用本文: 王璐璐, 王宏强, 王满喜, 黎湘. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487-498. doi: 10.12000/JR16084
Wang Lulu, Wang Hongqiang, Wang Manxi, Li Xiang. An Overview of Radar Waveform Optimization for Target Detection[J]. Journal of Radars, 2016, 5(5): 487-498. doi: 10.12000/JR16084
Citation: Wang Lulu, Wang Hongqiang, Wang Manxi, Li Xiang. An Overview of Radar Waveform Optimization for Target Detection[J]. Journal of Radars, 2016, 5(5): 487-498. doi: 10.12000/JR16084

雷达目标检测的最优波形设计综述

doi: 10.12000/JR16084
详细信息
    作者简介:

    王璐璐(1988-),女,河南人,2015年获得国防科技大学工学博士学位,现任电子信息系统复杂电磁环境效应国家重点实验室助理研究员,主要研究方向为自适应波形设计、认知雷达。E-mail:wanglulunudt@163.com;王宏强(1970-),男,陕西人,现任国防科技大学电子科学与工程学院研究员,博士生导师,主要研究方向为太赫兹技术、量子雷达、雷达目标特性;王满喜(1979-),男,河南人,现任电子信息系统复杂电磁环境效应国家重点实验室助理研究员,主要研究方向为通信对抗;黎湘(1967-),男,湖南人,现任国防科技大学电子科学与工程学院教授,博士生导师,主要研究方向为雷达系统与信号处理、雷达自动目标识别与模糊工程、雷达成像等

    通讯作者:

    王璐璐wanglulunudt@163.com

An Overview of Radar Waveform Optimization for Target Detection

  • 摘要: 充分利用雷达目标和环境特性,设计最优发射波形,能够从本质上提高雷达目标检测性能,具有重要的研究价值。该文将近几年发表的雷达目标检测的最优波形设计文献进行总结和归纳,为面向目标检测的波形优化设计研究提供方法和依据,具有一定的参考价值。

     

  • [1] Haykin S. Cognitive radar:A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1):30-40.
    [2] 黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9):1863-1870. Li Xiang and Fan Mei-mei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9):1863-1870.
    [3] Haykin S, Xue Y, and Davidson T N. Optimal waveform design for cognitive radar[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008:3-7.
    [4] Deng X, Qiu C, Cao Z, et al.. Waveform design for enhanced detection of extended target in signal-dependent interference[J]. IET Radar, Sonar & Navigation, 2012, 6(1):30-38.
    [5] Xin F, Wang B, Wang J, et al.. Optimal waveform design with constant modulus constraint for rank-one target detection[J]. Sensors & Transducers, 2014, 163(1):39-43.
    [6] Sen S. Characterizations of PAPR-constrained radar waveforms for optimal target detection[J]. IEEE Sensors Journal, 2014, 14(5):1647-1654.
    [7] Bell M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5):1578-1597.
    [8] Romero R A, Bae J, and Goodman N A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):912-927.
    [9] Kay S M. Optimal signal design of Gaussian point targets in stationary Gaussian clutter/reverberation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1):31-41.
    [10] Pillai S U, Youla D C, Oh H S, et al.. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2):577-584.
    [11] Garren D A, Osborn M K, Odom A C, et al.. Enhanced target detection and identification via optimised radar transmission pulse shape[J]. IEE Poceedings-F Radars, Sonar and Navigation, 2001, 148(3):130-138.
    [12] Bergin J S, Techau P M, and Don Carlos J E. Radar waveform optimization for colored noise mitigation[C]. IEEE International Radar Conference, Arlington, Virginia, 2005:149-154.
    [13] Li J, Guerci J R, and Xu L. Signal waveform's optimal-under-restriction design for active sensing[J]. IEEE Signal Processing Letters, 2006, 13(9):565-568.
    [14] Gini F, De Maio A, and Patten L K. Waveform Design and Diversity for Advanced Radar Systems[M]. London:The Instituion of Engineering and Technology, 2012.
    [15] Jackson L B, Kay S M, and Vankayalapati N. Iterative method for nonlinear FM synthesis of radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2):910-917.
    [16] Goodman N A, Venkata P R, and Neifeld M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1):105-113.
    [17] Gong X, Meng H, Wei Y, et al.. Phase-modulated waveform design for extended target detection in the presence of clutter[J]. Sensors, 2011, 11(7):7162-7177.
    [18] Pillai S U, Li K Y, and Beyer H. Reconstruction of constant envelope signals with given Fourier transform magnitude[C]. IEEE Radar Conference, Pasadena, CA, USA, 2009:1-4.
    [19] Patten L K. On the satisfaction of modulus and ambiguity function constraints in radar waveform optimization for detection[D].[Ph.D. dissertation], Wright State University, 2009.
    [20] Wang Lu-lu, Wang Hong-qiang, and Qin Yu-liang. Adaptive waveform design for multi-target classification in signal dependent interference[C]. 19th International Conference on Digital Signal Processing, Hong Kong, China, 2014:167-172.
    [21] Sen S. Constant-envelope waveform design for optimal target-detection and autocorrelation performances[C]. IEEE International Conference on Acoustics Speech and Signal Processing(ICASSP), Vancouver, BC, Canada, 2013:3851-3855.
    [22] Stoica P, He H, and Li J. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4):1415-1425.
    [23] Zhang J D, Zhu D Y, and Zhang G. Multi-objective waveform design for cognitive radar[C]. IEEE CIE International Conference on Radar, Chengdu, China, 2011:580-583.
    [24] Sen S. PAPR-constrained pareto-optimal waveform design for OFDM STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3658-3669.
    [25] Aubry A, De Maio A, Piezzo M, et al.. Knowledge-aided (poentially cognitive) transmit signal and receive filter design in signal-depended clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1):93-117.
    [26] De Maio A, Huang Y, Piezzo M, et al.. Design of optimized radar codes with a peak to average power ratio constraint[J]. IEEE Transactions on Signal Processing, 2011, 59(6):2683-2697.
    [27] Cui G, Li H, and Rangaswamy M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2):343-353.
    [28] 黄培康, 殷红成,许小剑. 雷达目标特性[M]. 北京:电子工业出版社, 2005. Huang Pei-kang, Yin Hong-cheng, and Xu Xiao-jian. Radar Target Signature[M]. Beijing:Publishing House of Electronics Industry, 2005.
    [29] Wei Y, Meng H, Liu Y, et al.. Radar phase-modulated waveform design for extended target detection[J]. Tsinghua Science and Technology, 2011, 16(4):364-370.
    [30] Yin F, Debes C, and Zoubir A M. Parametric waveform design using discrete prolate spheroidal sequences for enhanced detection of extended targets[J]. IEEE Transactions on Signal Processin, 2012, 60(9):4525-4536.
    [31] Sen S and Nehorai A. Target detection in clutter using adaptive OFDM radar[J]. IEEE Signal Processing Letters, 2009, 16(7):592-595.
    [32] Chen C Y and Vaidyanathan P P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9):3533-3544.
    [33] Peizzo M, Aubry A, Buzzi S, et al.. Non-cooperative code design in radar networks:A game-theoretic approach[J]. EURASIP Journal on Advances in Signal Processing, 2013(1):1-17.
    [34] Stoica P, He H, and Li J. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4):1730-1740.
    [35] Aubry A, De Maio A, Iommelli S, et al.. Cognitive design of the transmitted phase code and receive filter in reverberating environment[C]. International Conference on Waveform Diversity and Design, Kauai, Hawaii, 2012:85-90.
    [36] Sira S P, Cochran D, Papandreou-Suppappola A, et al.. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1):56-66.
    [37] Cohen A I. An algorithm for designing burst waveforms with quantized transmitter weights[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(1):56-64.
    [38] DeLong Jr D F and Hofstetter E M. Optimum radar signal-filter pairs in a cluttered environment[J]. IEEE Transactions on Information Theory, 1970, 16(1):89-90.
    [39] Mesiya M F and Mclane P J. Design of optimal radar signals subject to a fixed amplitude constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(5):679-687.
    [40] Rummler W D. A technique for improving the clutter performance of coherent pulse trains[J]. IEEE Transactions on Aerospace and Electronic Systems, 1967, 3(6):898-906.
    [41] Patton L K and Rigling B D. Autocorrelation constraints in radar waveform optimization for detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):951-968.
    [42] Sibul L and Titlebaum E L. Signal design for detection of targets in clutter[J]. Proceedings of the IEEE, 1981, 69(4):481-482.
    [43] Kay S M. Modern Spectral Estimation:Theory and Application[M]. Englewood Cliffs:NJ:Prentice-Hall, 1988.
    [44] Sen S and Glover C W. Optimal multicarrier phase-coded waveform design for detection of extended targets[C]. IEEE Radar Conference, Ottawa, Ontario, Canada, 2013:1-6.
    [45] Stringer J, Lamont G, and Akers G. Multi-objective evolutionary algorithm determined radar phase codes[C]. IEEE Radar Conference, Atlanta, GA, 2012:161-166.
    [46] Sen S, Tang G, and Nehorai A. Multiobjective optimization of OFDM radar waveform for target detection[J]. IEEE Transactions on Signal Processing, 2011, 59(2):639-652.
  • 加载中
计量
  • 文章访问数:  5624
  • HTML全文浏览量:  959
  • PDF下载量:  2191
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-01
  • 修回日期:  2016-08-29
  • 网络出版日期:  2016-10-28

目录

    /

    返回文章
    返回