Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
Citation: LI Nian, LIU Jie, YU Junming, et al. Building layout tomography method based on joint multidomain direct wave estimation[J]. Journal of Radars, 2025, 14(2): 309–321. doi: 10.12000/JR24220

Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation

DOI: 10.12000/JR24220 CSTR: 32380.14.JR24220
Funds:  The National Natural Science Foundation of China (62401098, 62371110)
More Information
  • Corresponding author: CHEN Jiahui, chenjiahui@uestc.edu.cn
  • Received Date: 2024-11-06
  • Rev Recd Date: 2024-12-23
  • Available Online: 2024-12-25
  • Publish Date: 2025-01-06
  • Obtaining internal layout information before entering unfamiliar buildings is crucial for various applications, such as counter-terrorism operations, disaster relief, and surveillance, highlighting its great practical significance and research value. To enable the acquisition of the building layout information, this paper presents a building layout tomography method based on joint multidomain direct wave estimation. First, a linear approximation model is established to map the relationship between the propagation delay of direct wave signals and the layout of the unknown building. Using this model, the distribution characteristics of direct wave and multipath signals in the fast-time, slow-time, and Doppler domains are analyzed in the tomographic imaging mode. A joint multidomain direct wave estimation algorithm is then proposed to achieve the suppression of multipath interference and precise estimation of direct wave signals. Additionally, a projection matrix adaptive correction algebraic reconstruction algorithm with total variation constraints is proposed, which enhances building layout inversion quality under limited data scenarios. Finally, electromagnetic simulation and experimental results demonstrate the effectiveness of the proposed building layout tomography method, with structural similarity indices of 91.2% and 81.7% for the reconstructed results, significantly outperforming existing building layout tomography methods.

     

  • [1]
    金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [2]
    AHMAD F and AMIN M G. Noncoherent approach to through-the-wall radar localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1405–1419. doi: 10.1109/TAES.2006.314581.
    [3]
    崔国龙. 超宽带穿墙雷达合成孔径成像算法研究与实现[D]. [硕士论文], 电子科技大学, 2008: 6–16.

    CUI Guolong. Research and implementation of synthetic aperture imaging algorithm for ultra-wideband through-the-wall radar[D]. [Master dissertation], University of Electronic Science and Technology of China, 2008: 6–16.
    [4]
    NKWARI P K M, SINHA S, and FERREIRA H C. Through-the-wall radar imaging: A review[J]. IETE Technical Review, 2018, 35(6): 631–639. doi: 10.1080/02564602.2017.1364146.
    [5]
    GUO Shisheng, CUI Guolong, KONG Lingjiang, et al. An imaging dictionary based multipath suppression algorithm for through-wall radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 269–283. doi: 10.1109/TAES.2017.2756298.
    [6]
    CHEN Jiahui, GUO Shisheng, LUO Haolan, et al. Non-line-of-sight multi-target localization algorithm for driver-assistance radar system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5332–5337. doi: 10.1109/TVT.2022.3227971.
    [7]
    CHEN Jiahui, LI Nian, GUO Shisheng, et al. Enhanced 3-D building layout tomographic imaging via tensor approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5105614. doi: 10.1109/TGRS.2024.3391282.
    [8]
    LI Nian, CHEN Jiahui, GUO Shisheng, et al. Building layout tomographic imaging based on MIMO-UWB radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5108713. doi: 10.1109/TGRS.2024.3435831.
    [9]
    NGUYEN L, RESSLER M, and SICHINA J. Sensing through the wall imaging using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) radar[C]. SPIE 6947, Radar Sensor Technology XII, Orlando, USA, 2008: 69470B. doi: 10.1117/12.776869.
    [10]
    LE C, DOGARU T, NGUYEN L, et al. Ultrawideband (UWB) radar imaging of building interior: Measurements and predictions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1409–1420. doi: 10.1109/TGRS.2009.2016653.
    [11]
    金添, 宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报, 2018, 7(3): 275–284. doi: 10.12000/JR18031.

    JIN Tian and SONG Yongping. Sparse imaging of building layouts in ultra-wideband radar[J]. Journal of Radars, 2018, 7(3): 275–284. doi: 10.12000/JR18031.
    [12]
    ZHANG Yang, CHEN Jiahui, GUO Shisheng, et al. Building layout tomographic reconstruction via commercial WiFi signals[J]. IEEE Internet of Things Journal, 2021, 8(20): 15500–15511. doi: 10.1109/JIOT.2021.3073912.
    [13]
    MOSTOFI Y. Cooperative wireless-based obstacle/object mapping and see-through capabilities in robotic networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(5): 817–829. doi: 10.1109/TMC.2012.32.
    [14]
    DEPATLA S, BUCKLAND L, and MOSTOFI Y. X-ray vision with only WiFi power measurements using Rytov wave models[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1376–1387. doi: 10.1109/TVT.2015.2397446.
    [15]
    DEPATLA S, KARANAM C R, and MOSTOFI Y. Robotic through-wall imaging: Radio-frequency imaging possibilities with unmanned vehicles[J]. IEEE Antennas and Propagation Magazine, 2017, 59(5): 47–60. doi: 10.1109/MAP.2017.2731302.
    [16]
    KARANAM C R and MOSTOFI Y. 3D through-wall imaging with unmanned aerial vehicles using WiFi[C]. The 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, Pittsburgh, USA, 2017: 131–142. doi: 10.1145/3055031.3055084.
    [17]
    张扬. 建筑布局结构透视微波层析成像理论与方法[D]. [博士论文], 电子科技大学, 2022: 20–82.

    ZHANG Yang. Theory and method of perspective microwave tomography of building layout structure[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2022: 20–82.
    [18]
    GUO Qichang, LI Yanlei, LIANG Xingdong, et al. A novel CT-mode through-the-wall imaging method based on time delay estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1381–1385. doi: 10.1109/LGRS.2020.3000423.
    [19]
    CHEN Jiahui, ZHANG Yang, LI Huquan, et al. Ultrawideband tomographic imaging in multipath-rich environment[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8016305. doi: 10.1109/LGRS.2021.30961830.
    [20]
    YASWANTH K, BHATTACHARYA S, and KHANKHOJE U K. Algebraic reconstruction techniques for inverse imaging[C]. 2016 International Conference on Electromagnetics in Advanced Applications, Cairns, Australia, 2016: 756–759. doi: 10.1109/ICEAA.2016.7731509.
    [21]
    ANDREU F, CASELLES V, DÍAZ J I, et al. Some qualitative properties for the total variation flow[J]. Journal of Functional Analysis, 2002, 188(2): 516–547. doi: 10.1006/jfan.2001.3829.
    [22]
    LI Nian, ZHAN Yang, CHEN Jiahui, et al. Building layout tomographic imaging method with sparse scan angles[C]. The 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 2128–2132. doi: 10.1109/ICCC56324.2022.10066042.
    [23]
    GOLDSTEIN T and OSHER S. The split bregman method for l1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323–343. doi: 10.1137/080725891.
    [24]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076.
    [25]
    WARREN C, GIANNOPOULOS A, and GIANNAKIS I. GprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020.
    [26]
    HAMILTON B R, MA Xiaoli, BAXLEY R J, et al. Radio frequency tomography in mobile networks[C]. 2012 IEEE Statistical Signal Processing Workshop, Ann Arbor, USA, 2012: 508–511. doi: 10.1109/SSP.2012.6319745.
    [27]
    CHEN Jiahui, GUO Shisheng, CUI Guolong, et al. Building layout reconstruction with transmissive and reflective signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5116612. doi: 10.1109/TGRS.2022.3199270.
    [28]
    ZHAO Jifang, JIN Liangnian, and LIU Qinghua. Through-the-wall radar sparse imaging for building walls[J]. The Journal of Engineering, 2019, 2019(21): 7403–7405. doi: 10.1049/joe.2019.0541.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [3]LIU Tao, YANG Ziyuan, JIANG Yanni, GAO Gui. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)[J]. Journal of Radars, 2021, 10(1): 1-19. doi: 10.12000/JR20155
    [4]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [5]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [6]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [7]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [8]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [9]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [10]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [13]Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133
    [14]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [15]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [16]Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124
    [17]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [18]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [19]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 71.8 %META: 71.8 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.7 %其他: 0.7 %Canada: 0.1 %Canada: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Netherlands: 0.0 %Netherlands: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %XX: 0.1 %XX: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 15.1 %北京: 15.1 %北京市: 0.0 %北京市: 0.0 %北海: 0.1 %北海: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南通: 0.0 %南通: 0.0 %印度: 0.5 %印度: 0.5 %古吉拉特: 0.2 %古吉拉特: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宿迁: 0.2 %宿迁: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广元: 0.1 %广元: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 2.4 %张家口: 2.4 %张家口市: 0.1 %张家口市: 0.1 %徐州: 0.0 %徐州: 0.0 %德黑兰: 0.1 %德黑兰: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.0 %扬州: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河池: 0.1 %河池: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %荷兰北布拉班特省: 0.1 %荷兰北布拉班特省: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 35.8 %西宁: 35.8 %西安: 1.0 %西安: 1.0 %西雅图: 0.0 %西雅图: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %车士活: 0.0 %车士活: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他CanadaChinaIndiaNetherlandsTaiwan, ChinaXX[]上海上海市东莞东营丹东伊利诺伊州佛山保定兰辛凤凰城包头北京北京市北海南京南宁南通印度古吉拉特台州合肥呼和浩特咸宁哈尔滨哥伦布大庆大连天津宁波安康宿迁常州常德广元广州库比蒂诺开封张家口张家口市徐州德黑兰成都扬州新乡无锡日照昆明杭州梅州武汉永州沈阳河池泰安济南淮南淮安深圳温州渭南湖州湘潭漯河潍坊烟台玉林盐城石家庄石家庄市纽约芒廷维尤芝加哥苏州荷兰北布拉班特省莫斯科葫芦岛衡阳襄阳西宁西安西雅图贵港贵阳车士活运城连云港郑州重庆铁岭长春长沙长治阳泉青岛鞍山韶关香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(229) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint