Volume 13 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
LIU Kang, WU Hongxuan, YI Jun, et al. Research on direct detection method and performance of single-photon counting terahertz radar[J]. Journal of Radars, 2024, 13(4): 904–916. doi: 10.12000/JR24012
Citation: LIU Kang, WU Hongxuan, YI Jun, et al. Research on direct detection method and performance of single-photon counting terahertz radar[J]. Journal of Radars, 2024, 13(4): 904–916. doi: 10.12000/JR24012

Research on Direct Detection Method and Performance of Single-photon Counting Terahertz Radar

DOI: 10.12000/JR24012
Funds:  The National Natural Science Foundation of China (62035014, 62105356, 61921001)
More Information
  • Corresponding author: YI Jun, Junyi_nudt@163.com
  • Received Date: 2024-01-27
  • Rev Recd Date: 2024-04-27
  • Available Online: 2024-05-17
  • Publish Date: 2024-05-30
  • The conventional terahertz radar suffers from limited operation range for long-distance, noncooperative target detection due to the low transmitter power and atmospheric attenuation effect, both of which pose a hindrance in meeting the requirements of warning detection applications. To improve the radar detection capability, this paper studies an ultrasensitive target detection method based on single-photon detectors to replace traditional radar receivers. The method is expected to considerably expand the operation range of terahertz radars. First, the statistical law of the number of echo photons of a terahertz single-photon radar system is analyzed, and the echo characteristics of the target are expounded from a microscopic perspective. Furthermore, a terahertz single-photon target detection model, incorporating the characteristics of a quantum capacitor detector, is established. In addition, the mathematical expression of the target detection performance is derived, and the performance is evaluated via simulations. Further, a target detection performance curve is obtained. Finally, a time-resolved terahertz photon-counting mechanism experiment is performed, wherein we realize high-precision ranging by counting echo pulses. This work can provide support for the research and development of ultrasensitive target detection technologies and single-photon radar systems in the terahertz band.

     

  • loading
  • [1]
    王宏强, 罗成高, 邓彬, 等. 太赫兹雷达前沿探测成像技术[J]. 遥测遥控, 2021, 42(4): 1–17. doi: 10.12347/j.ycyk.20210419001.

    WANG Hongqiang, LUO Chenggao, DENG Bin, et al. Advanced detecting and imaging technology for terahertz radar[J]. Journal of Telemetry, Tracking and Command, 2021, 42(4): 1–17. doi: 10.12347/j.ycyk.20210419001.
    [2]
    ASTAFIEV O, KOMIYAMA S, KUTSUWA T, et al. Single-photon detector in the microwave range[J]. Applied Physics Letters, 2002, 80(22): 4250–4252. doi: 10.1063/1.1482787.
    [3]
    KOMIYAMA S, ASTAFIEV O, ANTONOV V, et al. A single-photon detector in the far-infrared range[J]. Nature, 2000, 403(6768): 405–407. doi: 10.1038/35000166.
    [4]
    ASTAFIEV O, KOMIYAMA S, and KUTSUWA T. Double quantum dots as a high sensitive submillimeter-wave detector[J]. Applied Physics Letters, 2001, 79(8): 1199–1201. doi: 10.1063/1.1396628.
    [5]
    HASHIBA H, ANTONOV V, KULIK L, et al. Sensing individual terahertz photons[J]. Nanotechnology, 2010, 21(16): 165203. doi: 10.1088/0957-4484/21/16/165203.
    [6]
    AN Zhenghua, CHEN J C, UEDA T, et al. Infrared phototransistor using capacitively coupled two-dimensional electron gas layers[J]. Applied Physics Letters, 2005, 86(17): 172106. doi: 10.1063/1.1920425.
    [7]
    WANG Zhihai, NAKAJIMA T, MATSUDA S, et al. A new scheme for sensitive detection of terahertz photons[J]. Nanotechnology, 2013, 24(2): 025205. doi: 10.1088/0957-4484/24/2/025205.
    [8]
    KAJIHARA Y, NAKAJIMA T, WANG Zhihai, et al. Terahertz single-photon detectors based on quantum wells[J]. Journal of Applied Physics, 2013, 113(13): 136506. doi: 10.1063/1.4795517.
    [9]
    KIM S, KOMIYAMA S, UEDA T, et al. Two-color detection with charge sensitive infrared phototransistors[J]. Applied Physics Letters, 2015, 107(18): 182106. doi: 10.1063/1.4935256.
    [10]
    ECHTERNACH P M, PEPPER B J, RECK T, et al. Single photon detection of 1.5 THz radiation with the quantum capacitance detector[J]. Nature Astronomy, 2018, 2(1): 90–97. doi: 10.1038/s41550-017-0294-y.
    [11]
    SHAW M D, BUENO J, DAY P, et al. Quantum capacitance detector: A pair-breaking radiation detector based on the single cooper-pair box[J]. Physical Review B, 2009, 79(14): 144511. doi: 10.1103/PhysRevB.79.144511.
    [12]
    STONE K J, MEGERIAN K G, DAY P K, et al. Real time quasiparticle tunneling measurements on an illuminated quantum capacitance detector[J]. Applied Physics Letters, 2012, 100(26): 263509. doi: 10.1063/1.4731880.
    [13]
    ECHTERNACH P M, STONE K J, BRADFORD C M, et al. Photon shot noise limited detection of terahertz radiation using a quantum capacitance detector[J]. Applied Physics Letters, 2013, 103(5): 053510. doi: 10.1063/1.4817585.
    [14]
    ECHTERNACH P M, BEYER A D, and BRADFORD C M. Large array of low-frequency readout quantum capacitance detectors[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(1): 011003. doi: 10.1117/1.JATIS.7.1.011003.
    [15]
    OH M S, KONG H J, KIM T H, et al. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system[J]. Journal of the Optical Society of America A, 2011, 28(5): 759–765. doi: 10.1364/JOSAA.28.000759.
    [16]
    LI Zhengping, HUANG Xin, JIANG Pengyu, et al. Super-resolution single-photon imaging at 8.2 kilometers[J]. Optics Express, 2020, 28(3): 4076–4087. doi: 10.1364/OE.383456.
    [17]
    DU Bingcheng, PANG Chengkai, WU Di, et al. High-speed photon-counting laser ranging for broad range of distances[J]. Scientific Reports, 2018, 8(1): 4198. doi: 10.1038/s41598-018-22675-1.
    [18]
    LI Liangsheng, LIU Maoxin, YOU Wenlong, et al. Optimizing single-photon quantum radar detection through partially postselected filtering[J]. Physical Review A, 2024, 109(3): 033704. doi: 10.1103/PhysRevA.109.033704.
    [19]
    MARKUS T, NEUMANN T, MARTINO A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260–273. doi: 10.1016/j.rse.2016.12.029.
    [20]
    KOSTAMOVAARA J, HUIKARI J, HALLMAN L, et al. On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques[J]. IEEE Photonics Journal, 2015, 7(2): 7800215. doi: 10.1109/JPHOT.2015.2402129.
    [21]
    TAN Zhiyong, WANG Hongyu, WAN Wenjian, et al. Dual-beam terahertz quantum cascade laser with >1 W effective output power[J]. Electronics Letters, 2020, 56(22): 1204–1206. doi: 10.1049/el.2020.1376.
    [22]
    TANG Longhuang, XU Degang, WANG Yuye, et al. Injection pulse-seeded terahertz-wave parametric generator with gain enhancement in wide frequency range[J]. Optics Express, 2019, 27(16): 22808–22818. doi: 10.1364/OE.27.022808.
    [23]
    BOSCO L, FRANCKIÉ M, SCALARI G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K[J]. Applied Physics Letters, 2019, 115(1): 010601. doi: 10.1063/1.5110305.
    [24]
    WAN W J, LI Hua, and CAO J C. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation[J]. Optics Express, 2018, 26(2): 980–989. doi: 10.1364/OE.26.000980.
    [25]
    ECHTERNACH P M, VAN BERKEL S, BEYER A D, et al. Large array of single-photon counting quantum capacitance detectors[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12(2): 211–216. doi: 10.1109/TTHZ.2021.3126542.
    [26]
    石粒力, 吴敬波, 涂学凑, 等. 太赫兹单光子探测器[J]. 中国科学: 物理学 力学 天文学, 2021, 51(5): 054203. doi: 10.1360/SSPMA-2020-0274.

    SHI Lili, WU Jingbo, TU Xuecou, et al. Terahertz single photon detectors[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(5): 054203. doi: 10.1360/SSPMA-2020-0274.
    [27]
    罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学: 物理学 力学 天文学, 2021, 51(5): 054202. doi: 10.1360/SSPMA-2020-0255.

    LUO Chenggao, LIU Kang, WANG Hongqiang, et al. Terahertz single-photon radar detection technology[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(5): 054202. doi: 10.1360/SSPMA-2020-0255.
    [28]
    LIU Kang, LUO Chenggao, YI Jun, et al. Target detection method using heterodyne single-photon radar at terahertz frequencies[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3505605. doi: 10.1109/LGRS.2021.3070546.
    [29]
    PANG Shuang, ZENG Yang, YANG Qi, et al. Study on terahertz RCS scaled measurements for metal plates of rough surfaces[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42(7): 813–827. doi: 10.1007/s10762-021-00813-7.
    [30]
    GOODMAN J W. Some effects of target-induced scintillation on optical radar performance[J]. Proceedings of the IEEE, 1965, 53(11): 1688–1700. doi: 10.1109/PROC.1965.4341.
    [31]
    MANDEL L. Fluctuations of photon beams: The distribution of the photo-electrons[J]. Proceedings of the Physical Society, 1959, 74(3): 233–243. doi: 10.1088/0370-1328/74/3/301.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(585) PDF downloads(135) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint