| Citation: | WU Shangrong, ZHAO Rongkun, CAO Hong, et al. Research progress on SAR inversion of crop and soil parameters based on microwave scattering theory[J]. Journal of Radars, 2025, 14(3): 735–753. doi: 10.12000/JR24260 | 
	                | [1] | 
					 吴素霞, 毛任钊, 李红军, 等. 中国农作物长势遥感监测研究综述[J]. 中国农学通报, 2005, 21(3): 319–322, 345. doi:  10.3969/j.issn.1000-6850.2005.03.091. 
					WU Suxia, MAO Renzhao, LI Hongjun, et al. Review of crop condition monitoring using remote sensing in China[J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 319–322, 345. doi:  10.3969/j.issn.1000-6850.2005.03.091. 
						
					 | 
			
| [2] | 
					 赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277–293. doi:  10.6041/j.issn.1000-1298.2014.12.041. 
					ZHAO Chunjiang. Advances of research and application in remote sensing for agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 277–293. doi:  10.6041/j.issn.1000-1298.2014.12.041. 
						
					 | 
			
| [3] | 
					 程志强, 蒙继华. 作物单产估算模型研究进展与展望[J]. 中国生态农业学报, 2015, 23(4): 402–415. doi:  10.13930/j.cnki.cjea.141218. 
					CHENG Zhiqiang and MENG Jihua. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402–415. doi:  10.13930/j.cnki.cjea.141218. 
						
					 | 
			
| [4] | 
					 王福民, 李嘉乐, 段四波, 等. 农业遥感技术发展新需求与新挑战[J]. 中国农业信息, 2023, 35(6): 9–21. doi:  10.12105/j.issn.1672-0423.20230602. 
					WANG Fumin, LI Jiale, DUAN Sibo, et al. New demands and challenges for the development of agricultural remote sensing[J]. China Agricultural Information, 2023, 35(6): 9–21. doi:  10.12105/j.issn.1672-0423.20230602. 
						
					 | 
			
| [5] | 
					 赵龙才, 李粉玲, 常庆瑞. 农作物遥感识别与单产估算研究综述[J]. 农业机械学报, 2023, 54(2): 1–19. doi:  10.6041/j.issn.1000-1298.2023.02.001. 
					ZHAO Longcai, LI Fenling, and CHANG Qingrui. Review on crop type identification and yield forecasting using remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 1–19. doi:  10.6041/j.issn.1000-1298.2023.02.001. 
						
					 | 
			
| [6] | 
					 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748–767. doi:  10.11834/jrs.20166214. 
					CHEN Zhongxin, REN Jianqiang, TANG Huajun, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748–767. doi:  10.11834/jrs.20166214. 
						
					 | 
			
| [7] | 
					 尹高飞, 车伟, 于慧男. 植被生物物理参数的光学遥感反演方法综述[J]. 测绘, 2023, 46(5): 195–198. doi:  10.3969/j.issn.1674-5019.2023.05.001. 
					YIN Gaofei, CHE Wei, and YU Huinan. Review of optical remote sensing retrieval of vegetation biophysical parameters[J]. Surveying and Mapping, 2023, 46(5): 195–198. doi:  10.3969/j.issn.1674-5019.2023.05.001. 
						
					 | 
			
| [8] | 
					 何泽, 李世华. 水稻雷达遥感监测研究进展[J]. 遥感学报, 2023, 27(10): 2363–2382. doi:  10.11834/jrs.20221701. 
					HE Ze and LI Shihua. Research progress on radar remote sensing for rice growth monitoring[J]. National Remote Sensing Bulletin, 2023, 27(10): 2363–2382. doi:  10.11834/jrs.20221701. 
						
					 | 
			
| [9] | 
					 洪玉娇, 张硕, 李俐. 基于合成孔径雷达数据的农作物长势监测研究进展[J]. 智慧农业(中英文), 2024, 6(1): 46–62. doi:  10.12133/j.smartag.SA202308019. 
					HONG Yujiao, ZHANG Shuo, and LI Li. Research progresses of crop growth monitoring based on synthetic aperture radar data[J]. Smart Agriculture, 2024, 6(1): 46–62. doi:  10.12133/j.smartag.SA202308019. 
						
					 | 
			
| [10] | 
					 李平湘, 赵伶俐, 任烨仙. 合成孔径雷达在农业监测中的应用和展望[J]. 地理空间信息, 2017, 15(3): 1–4. doi:  10.3969/j.issn.1672-4623.2017.03.001. 
					LI Pingxiang, ZHAO Lingli, and REN Yexian. Outlook and application of the synthetic aperture radar in agriculture monitoring[J]. Geospatial Information, 2017, 15(3): 1–4. doi:  10.3969/j.issn.1672-4623.2017.03.001. 
						
					 | 
			
| [11] | 
					 张王菲, 陈尔学, 李增元, 等. 雷达遥感农业应用综述[J]. 雷达学报, 2020, 9(3): 444–461. doi:  10.12000/JR20051. 
					ZHANG Wangfei, CHEN Erxue, LI Zengyuan, et al. Review of applications of radar remote sensing in agriculture[J]. Journal of Radars, 2020, 9(3): 444–461. doi:  10.12000/JR20051. 
						
					 | 
			
| [12] | 
					 张亚红, 吴娇娇, 胥喆, 等. 合成孔径雷达在农作物长势监测中的应用[J]. 安徽农业科学, 2016, 44(27): 220–222, 244. doi:  10.13989/j.cnki.0517-6611.2016.27.074. 
					ZHANG Yahong, WU Jiaojiao, XU Zhe, et al. Application of synthetic aperture radar in crop growth monitoring[J]. Journal of Anhui Agricultural Sciences, 2016, 44(27): 220–222, 244. doi:  10.13989/j.cnki.0517-6611.2016.27.074. 
						
					 | 
			
| [13] | 
					 周兴霞, 王颖洁, 杨攀. 基于光学与雷达遥感影像协作的多云雾区域农作物信息提取研究[J]. 遥感技术与应用, 2024, 39(2): 362–372. doi:  10.11873/j.issn.1004-0323.2024.2.0362. 
					ZHOU Xingxia, WANG Yingjie, and YANG Pan. Extraction of crop information in cloudy areas based on optical and radar remote sensing images[J]. Remote Sensing Technology and Application, 2024, 39(2): 362–372. doi:  10.11873/j.issn.1004-0323.2024.2.0362. 
						
					 | 
			
| [14] | 
					 李俐, 王荻, 潘彩霞, 等. 土壤水分反演中的主动微波散射模型[J]. 国土资源遥感, 2016, 28(4): 1–9. doi:  10.6046/gtzyyg.2016.04.01. 
					LI Li, WANG Di, PAN Caixai, et al. Active microwave scattering models used in soil moisture retrieval[J]. Remote Sensing for Land & Resources, 2016, 28(4): 1–9. doi:  10.6046/gtzyyg.2016.04.01. 
						
					 | 
			
| [15] | 
					 李俐, 王荻, 王鹏新, 等. 合成孔径雷达土壤水分反演研究进展[J]. 资源科学, 2015, 37(10): 1929–1940. 
					LI Li, WANG Di, WANG Pengxin, et al. Progress on monitoring soil moisture using SAR data[J]. Resources Science, 2015, 37(10): 1929–1940. 
						
					 | 
			
| [16] | 
					 覃湘栋, 庞治国, 江威, 等. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10): 1728–1742. doi:  10.12082/dqxxkx.2021.210104. 
					QIN Xiangdong, PANG Zhiguo, JIANG Wei, et al. Progress and development trend of soil moisture microwave remote sensing retrieval method[J]. Journal of Geo-Information Science, 2021, 23(10): 1728–1742. doi:  10.12082/dqxxkx.2021.210104. 
						
					 | 
			
| [17] | 
					 徐嘉昕, 李璇, 朱永超, 等. 地表土壤水分的卫星遥感反演方法研究进展[J]. 气象科技进展, 2019, 9(2): 17–23. doi:  10.3969/j.issn.2095-1973.2019.02.003. 
					XU Jiaxin, LI Xuan, ZHU Yongchao, et al. Progress of the methods of remote sensing monitoring the soil moisture[J]. Advances in Meteorological Science and Technology, 2019, 9(2): 17–23. doi:  10.3969/j.issn.2095-1973.2019.02.003. 
						
					 | 
			
| [18] | 
					 张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011, 34(4): 671–678. doi:  10.13826/j.cnki.cn65-1103/x.2011.04.015. 
					ZHANG Ying, DING Jianli, and ZHOU Peng. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions[J]. Arid Land Geography, 2011, 34(4): 671–678. doi:  10.13826/j.cnki.cn65-1103/x.2011.04.015. 
						
					 | 
			
| [19] | 
					 赵少华, 秦其明, 沈心一, 等. 微波遥感技术监测土壤湿度的研究[J]. 微波学报, 2010, 26(2): 90–96. doi:  10.14183/j.cnki.1005-6122.2010.02.023. 
					ZHAO Shaohua, QIN Qiming, SHEN Xinyi, et al. Review of microwave remote sensing on soil moisture monitoring[J]. Journal of Microwaves, 2010, 26(2): 90–96. doi:  10.14183/j.cnki.1005-6122.2010.02.023. 
						
					 | 
			
| [20] | 
					 钟雪, 杨明龙, 唐秀娟, 等. 土壤水分卫星遥感反演方法研究进展[J]. 干旱气象, 2024, 42(4): 637–648. doi:  10.11755/j.issn.1006-7639(2024)-04-0637. 
					ZHONG Xue, YANG Minglong, TANG Xiujuan, et al. Progress of satellite remote sensing inversion method for soil moisture[J]. Journal of Arid Meteorology, 2024, 42(4): 637–648. doi:  10.11755/j.issn.1006-7639(2024)-04-0637. 
						
					 | 
			
| [21] | 
					 朱逸青, 吴尚蓉, 王迪. 土壤水分雷达遥感反演研究[J]. 中国农业信息, 2024, 36(3): 45–62. doi:  10.12105/j.issn.1672-0423.20240304. 
					ZHU Yiqing, WU Shangrong, and WANG Di. Soil moisture retrieval by radar remote sensing[J]. China Agricultural Information, 2024, 36(3): 45–62. doi:  10.12105/j.issn.1672-0423.20240304. 
						
					 | 
			
| [22] | 
					 许涛, 廖静娟, 沈国状, 等. 植被微波散射模型研究综述[J]. 遥感信息, 2015, 30(5): 3–13. doi:  10.3969/j.issn.1000-3177.2015.05.001. 
					XU Tao, LIAO Jingjuan, SHEN Guozhuang, et al. Progresses on microwave scattering model of vegetation[J]. Remote Sensing Information, 2015, 30(5): 3–13. doi:  10.3969/j.issn.1000-3177.2015.05.001. 
						
					 | 
			
| [23] | 
					 BOUMAN B A M. Crop parameter estimation from ground-based X-band (3-cm wave) radar backscattering data[J]. Remote Sensing of Environment, 1991, 37(3): 193–205. doi:  10.1016/0034-4257(91)90081-G. 
						
					 | 
			
| [24] | 
					 张晓倩, 郭琳, 马尚杰, 等. 利用时序合成孔径雷达数据监测水稻叶面积指数[J]. 农业工程学报, 2014, 30(13): 185–193. doi:  10.3969/j.issn.1002-6819.2014.13.023. 
					ZHANG Xiaoqian, GUO Lin, MA Shangjie, et al. Monitoring rice leaf area index using time-series SAR data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 185–193. doi:  10.3969/j.issn.1002-6819.2014.13.023. 
						
					 | 
			
| [25] | 
					 KARTHIKEYAN L, PAN Ming, WANDERS N, et al. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[J]. Advances in Water Resources, 2017, 109: 106–120. doi:  10.1016/j.advwatres.2017.09.006. 
						
					 | 
			
| [26] | 
					 张琳琳, 雷志斌, 王莉萍, 等. 基于高分三号卫星合成孔径雷达数据的农田土壤水分反演[J]. 浙江大学学报: 农业与生命科学版, 2024, 50(2): 209–220. doi:  10.3785/j.issn.1008-9209.2023.12.183. 
					ZHANG Linlin, LEI Zhibin, WANG Liping, et al. Retrieval of soil moisture based on Gaofen-3 (GF-3) satellite synthetic aperture radar data over agricultural fields[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2024, 50(2): 209–220. doi:  10.3785/j.issn.1008-9209.2023.12.183. 
						
					 | 
			
| [27] | 
					 ATTEMA E P W and ULABY F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357–364. doi:  10.1029/RS013i002p00357. 
						
					 | 
			
| [28] | 
					 ULABY F T, ALLEN C T, EGER III G, et al. Relating the microwave backscattering coefficient to leaf area index[J]. Remote Sensing of Environment, 1984, 14(1/3): 113–133. doi:  10.1016/0034-4257(84)90010-5. 
						
					 | 
			
| [29] | 
					 陶亮亮, 李京, 蒋金豹, 等. 利用RADARSAT-2雷达数据与改进的水云模型反演冬小麦叶面积指数[J]. 麦类作物学报, 2016, 36(2): 236–242. doi:  10.7606/j.issn.1009-1041.2016.02.15. 
					TAO Liangliang, LI Jing, JIANG Jinbao, et al. Leaf area index inversion of winter wheat using RADARSAT-2 data and modified water-cloud model[J]. Journal of Triticeae Crops, 2016, 36(2): 236–242. doi:  10.7606/j.issn.1009-1041.2016.02.15. 
						
					 | 
			
| [30] | 
					 KARAM M A and FUNG A K. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation[J]. International Journal of Remote Sensing, 1988, 9(6): 1109–1134. doi:  10.1080/01431168808954918. 
						
					 | 
			
| [31] | 
					 ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7): 1223–1253. doi:  10.1080/01431169008955090. 
						
					 | 
			
| [32] | 
					 KARAM M A, FUNG A K, LANG R H, et al. A microwave scattering model for layered vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 767–784. doi:  10.1109/36.158872. 
						
					 | 
			
| [33] | 
					 KARAM M A, AMAR F, FUNG A K, et al. A microwave polarimetric scattering model for forest canopies based on vector radiative transfer theory[J]. Remote Sensing of Environment, 1995, 53(1): 16–30. doi:  10.1016/0034-4257(95)00048-6. 
						
					 | 
			
| [34] | 
					 DE ROO R D, DU Yang, ULABY F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 864–872. doi:  10.1109/36.917912. 
						
					 | 
			
| [35] | 
					 WANG Cuizhen, WU Jiaping, ZHANG Yuan, et al. Characterizing L-band scattering of paddy rice in southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 988–998. doi:  10.1109/TGRS.2008.2008309. 
						
					 | 
			
| [36] | 
					 LIU Yu, CHEN Kunshan, XU Peng, et al. Modeling and characteristics of microwave backscattering from rice canopy over growth stages[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6757–6770. doi:  10.1109/TGRS.2016.2590439. 
						
					 | 
			
| [37] | 
					 WU Shangrong, YANG Peng, REN Jianqiang, et al. Winter wheat LAI inversion considering morphological characteristics at different growth stages coupled with microwave scattering model and canopy simulation model[J]. Remote Sensing of Environment, 2020, 240: 111681. doi:  10.1016/j.rse.2020.111681. 
						
					 | 
			
| [38] | 
					 VALENZUELA G. Depolarization of EM waves by slightly rough surfaces[J]. IEEE Transactions on Antennas and Propagation, 1967, 15(4): 552–557. doi:  10.1109/TAP.1967.1138962. 
						
					 | 
			
| [39] | 
					 SHEN J and MARADUDIN A A. Multiple scattering of waves from random rough surfaces[J]. Physical Review B, 1980, 22(9): 4234–4240. doi:  10.1103/PhysRevB.22.4234. 
						
					 | 
			
| [40] | 
					 BAHAR E. Full-wave solutions for the depolarization of the scattered radiation fields by rough surfaces of arbitrary slope[J]. IEEE Transactions on Antennas and Propagation, 1981, 29(3): 443–454. doi:  10.1109/TAP.1981.1142604. 
						
					 | 
			
| [41] | 
					 MICHAELI A. Equivalent edge currents for arbitrary aspects of observation[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3): 252–258. doi:  10.1109/TAP.1984.1143303. 
						
					 | 
			
| [42] | 
					 LI Xiaowen and STRAHLER A H. Geometric-optical modeling of a conifer forest canopy[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(5): 705–721. doi:  10.1109/TGRS.1985.289389. 
						
					 | 
			
| [43] | 
					 MILDER D M. An improved formalism for wave scattering from rough surfaces[J]. The Journal of the Acoustical Society of America, 1991, 89(2): 529–541. doi:  10.1121/1.400377. 
						
					 | 
			
| [44] | 
					 FUNG A K, LI Zongqian, and CHEN Kunshan. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356–369. doi:  10.1109/36.134085. 
						
					 | 
			
| [45] | 
					 HSIEH C Y, FUNG A K, NESTI G, et al. A further study of the IEM surface scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4): 901–909. doi:  10.1109/36.602532. 
						
					 | 
			
| [46] | 
					 ÁLVAREZ-PÉREZ J L. An extension of the IEM/IEMM surface scattering model[J]. Waves in Random Media, 2001, 11(3): 307–329. doi:  10.1088/0959-7174/11/3/308. 
						
					 | 
			
| [47] | 
					 CHEN Kunshan, WU T D, TSANG L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 90–101. doi:  10.1109/TGRS.2002.807587. 
						
					 | 
			
| [48] | 
					 WU T D and CHEN Kunshan. A reappraisal of the validity of the IEM model for backscattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 743–753. doi:  10.1109/TGRS.2003.815405. 
						
					 | 
			
| [49] | 
					 DU Yang. A new bistatic model for electromagnetic scattering from randomly rough surfaces[J]. Waves in Random and Complex Media, 2008, 18(1): 109–128. doi:  10.1080/17455030701459902. 
						
					 | 
			
| [50] | 
					 OH Y, SARABANDI K, and ULABY F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 370–381. doi:  10.1109/36.134086. 
						
					 | 
			
| [51] | 
					 DUBOIS P C, VAN ZYL J, and ENGMAN T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 915–926. doi:  10.1109/36.406677. 
						
					 | 
			
| [52] | 
					 CHEN Kunshan, YEN S K, and HUANG Wenpin. A simple model for retrieving bare soil moisture from radar-scattering coefficients[J]. Remote Sensing of Environment, 1995, 54(2): 121–126. doi:  10.1016/0034-4257(95)00129-O. 
						
					 | 
			
| [53] | 
					 SHI Jiancheng, WANG J, HSU A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254–1266. doi:  10.1109/36.628792. 
						
					 | 
			
| [54] | 
					 OH Y, SARABANDI K, and ULABY F T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1348–1355. doi:  10.1109/TGRS.2002.800232. 
						
					 | 
			
| [55] | 
					 OH Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 596–601. doi:  10.1109/TGRS.2003.821065. 
						
					 | 
			
| [56] | 
					 LOEW A and MAUSER W. A semiempirical surface backscattering model for bare soil surfaces based on a generalized power law spectrum approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 1022–1035. doi:  10.1109/TGRS.2005.862501. 
						
					 | 
			
| [57] | 
					 闫文佳. 基于微波散射模型与支持向量机算法的麦田参数反演研究[D]. [硕士论文], 华东师范大学, 2019. 
					YAN Wenjia. Synergy of microwave scattering simulation and SVM algorithm for retrieval of biophysical parameters in wheat fields[D]. [Master dissertation], East China Normal University, 2019. 
						
					 | 
			
| [58] | 
					 KATZIN M. The scattering of electromagnetic waves from rough surfaces[J]. Proceedings of the IEEE, 1964, 52(11): 1389–1390. doi:  10.1109/PROC.1964.3413. 
						
					 | 
			
| [59] | 
					 RICE S O. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 1951, 4(2/3): 351–378. doi:  10.1002/cpa.3160040206. 
						
					 | 
			
| [60] | 
					 何宜军. 海浪微波散射理论模式[J]. 海洋与湖沼, 2000, 31(2): 178–185. doi:  10.3321/j.issn:0029-814X.2000.02.010. 
					HE Yijun. An ocean wave microwave backscattering model[J]. Oceanologia et Limnologia Sinica, 2000, 31(2): 178–185. doi:  10.3321/j.issn:0029-814X.2000.02.010. 
						
					 | 
			
| [61] | 
					 PLANT W J. A stochastic, multiscale model of microwave backscatter from the ocean[J]. Journal of Geophysical Research: Oceans, 2002, 107(C9): 3120. doi:  10.1029/2001JC000909. 
						
					 | 
			
| [62] | 
					 HUANG Shaowu, TSANG L, NJOKU E G, et al. Backscattering coefficients, coherent reflectivities, and emissivities of randomly rough soil surfaces at L-Band for SMAP applications based on numerical solutions of maxwell equations in three-dimensional simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2557–2568. doi:  10.1109/TGRS.2010.2040748. 
						
					 | 
			
| [63] | 
					 WOLF E. New theory of radiative energy transfer in free electromagnetic fields[J]. Physical Review D, 1976, 13(4): 869–886. doi:  10.1103/PhysRevD.13.869. 
						
					 | 
			
| [64] | 
					 KARAM M A and FUNG A K. Leaf-shape effects in electromagnetic wave scattering from vegetation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(6): 687–697. doi:  10.1109/TGRS.1989.1398241. 
						
					 | 
			
| [65] | 
					 ZHANG Yuan, LIU Xiaohui, SU Shiliang, et al. Retrieving canopy height and density of paddy rice from Radarsat-2 images with a canopy scattering model[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 28: 170–180. doi:  10.1016/j.jag.2013.12.005. 
						
					 | 
			
| [66] | 
					 齐震. 水稻的微波散射模型[J]. 中国科学院研究生院学报, 1999, 16(2): 177–184. 
					QI Zhen. The microwave backscattering model of rice[J]. Journal of University of Chinese Academy of Sciences, 1999, 16(2): 177–184. 
						
					 | 
			
| [67] | 
					 王芳, 陶建军, 姜良美. 农作物覆盖地表微波遥感模型研究进展[J]. 遥感技术与应用, 2011, 26(2): 255–262. doi:  10.11873/j.issn.1004-0323.2011.2.255. 
					WANG Fang, TAO Jianjun, and JIANG Liangmei. Review of microwave remote sensing models of agricultural field[J]. Remote Sensing Technology and Application, 2011, 26(2): 255–262. doi:  10.11873/j.issn.1004-0323.2011.2.255. 
						
					 | 
			
| [68] | 
					 曹培, 王道伟, 林明壮, 等. 冬小麦覆被农田地表多层非均质混合电磁散射模型研究[J]. 农业机械学报, 2023, 54(11): 169–179, 285. doi:  10.6041/j.issn.1000-1298.2023.11.016. 
					CAO Pei, WANG Daowei, LIN Mingzhuang, et al. Electromagnetic scattering model of farmland surface covered with winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(11): 169–179, 285. doi:  10.6041/j.issn.1000-1298.2023.11.016. 
						
					 | 
			
| [69] | 
					 王芳, 张立新, 李丽英. 基于微波植被离散散射模型的小麦双站散射和辐射特征研究[J]. 遥感信息, 2008, 30(3): 7–14. doi:  10.3969/j.issn.1000-3177.2008.03.002. 
					WANG Fang, ZHANG Lixin, and LI Liying. Discrete scatter model for microwave bistatic scattering and emission from wheat field[J]. Remote Sensing Information, 2008, 30(3): 7–14. doi:  10.3969/j.issn.1000-3177.2008.03.002. 
						
					 | 
			
| [70] | 
					 WIGNERON J P, FERRAZZOLI P, OLIOSO A, et al. A simple approach to monitor crop biomass from C-band radar data[J]. Remote Sensing of Environment, 1999, 69(2): 179–188. doi:  10.1016/s0034-4257(99)00011-5. 
						
					 | 
			
| [71] | 
					 TOURE A, THOMSON K P B, EDWARDS G, et al. Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 47–61. doi:  10.1109/36.285188. 
						
					 | 
			
| [72] | 
					 戈建军, 王超. 冬小麦微波散射特性研究[J]. 遥感信息, 2002, 24(3): 7–10, 47. doi:  10.3969/j.issn.1000-3177.2002.03.002. 
					GE Jianjun and WANG Chao. Winter wheat microwave scattering characteristics research[J]. Remote Sensing Information, 2002, 24(3): 7–10, 47. doi:  10.3969/j.issn.1000-3177.2002.03.002. 
						
					 | 
			
| [73] | 
					 蔡爱民, 邵芸, 李坤, 等. 冬小麦不同生长期雷达后向散射特征分析与应用[J]. 农业工程学报, 2010, 26(7): 205–212. doi:  10.3969/j.issn.1002-6819.2010.07.036. 
					CAI Aimin, SHAO Yun, LI Kun, et al. Analysis of backscattering characters of winter wheat in different phenophase and its applications[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 205–212. doi:  10.3969/j.issn.1002-6819.2010.07.036. 
						
					 | 
			
| [74] | 
					 王芳. 玉米地微波相干和非相干散射模型比较分析[J]. 安徽农业科学, 2012, 40(10): 6309–6312. doi:  10.13989/j.cnki.0517-6611.2012.10.177. 
					WANG Fang. Comparisons between microwave coherent and incoherent scattering models in corn field[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10): 6309–6312. doi:  10.13989/j.cnki.0517-6611.2012.10.177. 
						
					 | 
			
| [75] | 
					 贾明权. 水稻微波散射特性研究及参数反演[D]. [博士论文], 电子科技大学, 2013. 
					JIA Mingquan. Research on rice microwave scattering mechanism and parameter inversion[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2013. 
						
					 | 
			
| [76] | 
					 MAITY S, PATNAIK C, CHAKRABORTY M, et al. Analysis of temporal backscattering of cotton crops using a semiempirical model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 577–587. doi:  10.1109/TGRS.2003.821888. 
						
					 | 
			
| [77] | 
					 BRACAGLIA M, FERRAZZOLI P, and GUERRIERO L. A fully polarimetric multiple scattering model for crops[J]. Remote Sensing of Environment, 1995, 54(3): 170–179. doi:  10.1016/0034-4257(95)00151-4. 
						
					 | 
			
| [78] | 
					 PRÉVOT L, CHAMPION I, and GUYOT G. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer[J]. Remote Sensing of Environment, 1993, 46(3): 331–339. doi:  10.1016/0034-4257(93)90053-Z. 
						
					 | 
			
| [79] | 
					 MORAN M S, VIDAL A, TROUFLEAU D, et al. Ku- and C-band SAR for discriminating agricultural crop and soil conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 265–272. doi:  10.1109/36.655335. 
						
					 | 
			
| [80] | 
					 INOUE Y, KUROSU T, MAENO H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote Sensing of Environment, 2002, 81(2/3): 194–204. doi:  10.1016/S0034-4257(01)00343-1. 
						
					 | 
			
| [81] | 
					 PRASAD R. Retrieval of crop variables with field-based X-band microwave remote sensing of ladyfinger[J]. Advances in Space Research, 2009, 43(9): 1356–1363. doi:  10.1016/j.asr.2008.12.017. 
						
					 | 
			
| [82] | 
					 PRASAD R. Estimation of kidney bean crop variables using ground-based scatterometer data at 9.89 GHz[J]. International Journal of Remote Sensing, 2011, 32(1): 31–48. doi:  10.1080/01431160903439866. 
						
					 | 
			
| [83] | 
					 BÉRIAUX E, WALDNER F, COLLIENNE F, et al. Maize leaf area index retrieval from synthetic quad pol SAR time series using the water cloud model[J]. Remote Sensing, 2015, 7(12): 16204–16225. doi:  10.3390/rs71215818. 
						
					 | 
			
| [84] | 
					 HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote Sensing of Environment, 2015, 170: 77–89. doi:  10.1016/j.rse.2015.09.002. 
						
					 | 
			
| [85] | 
					 TAN Longfei, CHEN Yan, JIA Mingquan, et al. Rice biomass retrieval from advanced synthetic aperture radar image based on radar backscattering measurement[J]. Journal of Applied Remote Sensing, 2015, 9(1): 097091. doi:  10.1117/1.JRS.9.097091. 
						
					 | 
			
| [86] | 
					 CHAUHAN S, SRIVASTAVA H S, and PATEL P. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data[J]. Remote Sensing of Environment, 2018, 216: 28–43. doi:  10.1016/j.rse.2018.06.014. 
						
					 | 
			
| [87] | 
					 CHAUHAN S, SRIVASTAVA H S, and PATEL P. Crop height estimation using RISAT-1 hybrid-polarized synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(8): 2928–2933. doi:  10.1109/JSTARS.2019.2919604. 
						
					 | 
			
| [88] | 
					 HOSSEINI M, MCNAIRN H, MITCHELL S, et al. Synthetic aperture radar and optical satellite data for estimating the biomass of corn[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101933. doi:  10.1016/j.jag.2019.101933. 
						
					 | 
			
| [89] | 
					 MANDAL D, KUMAR V, MCNAIRN H, et al. Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 79: 24–34. doi:  10.1016/j.jag.2019.02.007. 
						
					 | 
			
| [90] | 
					 MANDAL D, KUMAR V, LOPEZ-SANCHEZ J M, et al. Crop biophysical parameter retrieval from Sentinel-1 SAR data with a multi-target inversion of Water Cloud Model[J]. International Journal of Remote Sensing, 2020, 41(14): 5503–5524. doi:  10.1080/01431161.2020.1734261. 
						
					 | 
			
| [91] | 
					 张亚红, 张王菲, 姬永杰, 等. 油菜简缩极化参数响应及其长势参数反演[J]. 江苏农业科学, 2018, 46(15): 170–175. doi:  10.15889/j.issn.1002-1302.2018.15.046. 
					ZHANG Yahong, ZHANG Wangfei, JI Yongjie, et al. Reduced polarization parameter response of rapeseed and its inversion of growth parameters[J]. Jiangsu Agricultural Sciences, 2018, 46(15): 170–175. doi:  10.15889/j.issn.1002-1302.2018.15.046. 
						
					 | 
			
| [92] | 
					 CHAUHAN S, DARVISHZADEH R, BOSCHETTI M, et al. Estimation of crop angle of inclination for lodged wheat using multi-sensor SAR data[J]. Remote Sensing of Environment, 2020, 236: 111488. doi:  10.1016/j.rse.2019.111488. 
						
					 | 
			
| [93] | 
					 JIAO Xianfeng, MCNAIRN H, SHANG Jiali, et al. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index[J]. Canadian Journal of Remote Sensing, 2011, 37(1): 69–81. doi:  10.5589/m11-023. 
						
					 | 
			
| [94] | 
					 KUMAR V, KUMARI M, and SAHA S K. Leaf area index estimation of lowland rice using semi-empirical backscattering model[J]. Journal of Applied Remote Sensing, 2013, 7(1): 073474. doi:  10.1117/1.JRS.7.073474. 
						
					 | 
			
| [95] | 
					 MANDAL D, KUMAR V, BHATTACHARYA A, et al. A multi-year cross-validation experiment for estimating rice plant area index (PAI) over the JECAM-India test site from simulated RADARSAT constellation mission (RCM) compact polarimetric SAR data[J]. International Journal of Remote Sensing, 2021, 42(24): 9490–9522. doi:  10.1080/01431161.2021.1999528. 
						
					 | 
			
| [96] | 
					 YANG Zhi, LI Kun, SHAO Yun, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote Sensing, 2016, 8(10): 878. doi:  10.3390/rs8100878. 
						
					 | 
			
| [97] | 
					 TAO Liangliang, LI Jing, JIANG Jinbao, et al. Leaf area index inversion of winter wheat using modified water-cloud model[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 816–820. doi:  10.1109/LGRS.2016.2546945. 
						
					 | 
			
| [98] | 
					 YADAV S A, PRASAD R, VISHWAKARMA A K, et al. Optimization of dual-polarized bistatic specular scatterometer for studying microwave scattering response and vegetation growth parameters retrieval of paddy crop using a machine learning algorithm[J]. Computers and Electronics in Agriculture, 2020, 175: 105592. doi:  10.1016/j.compag.2020.105592. 
						
					 | 
			
| [99] | 
					 YADAV V P, PRASAD R, and BALA R. Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data[J]. Geocarto International, 2021, 36(7): 791–802. doi:  10.1080/10106049.2019.1624984. 
						
					 | 
			
| [100] | 
					 CHEN Jinsong, LIN Hui, LIU Aixia, et al. A semi-empirical backscattering model for estimation of leaf area index (LAI) of rice in southern China[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 2007: 3667–3680. doi:  10.1109/IGARSS.2007.4423641. 
						
					 | 
			
| [101] | 
					 KUMAR P, PRASAD R, GUPTA D K, et al. Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data[J]. Geocarto International, 2018, 33(9): 942–956. doi:  10.1080/10106049.2017.1316781. 
						
					 | 
			
| [102] | 
					 SINGH D. Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band[J]. International Journal of Remote Sensing, 2006, 27(19): 4101–4115. doi:  10.1080/01431160600735988. 
						
					 | 
			
| [103] | 
					 KWEON S K and OH Y. A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2802–2809. doi:  10.1109/TGRS.2014.2364914. 
						
					 | 
			
| [104] | 
					 AHMADIAN N, ULLMANN T, VERRELST J, et al. Biomass assessment of agricultural crops using multi-temporal dual-polarimetric TerraSAR-X data[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2019, 87(4): 159–175. doi:  10.1007/s41064-019-00076-x. 
						
					 | 
			
| [105] | 
					 HOSSEINI M, MCNAIRN H, MITCHELL S, et al. A comparison between support vector machine and water cloud model for estimating crop leaf area index[J]. Remote Sensing, 2021, 13(7): 1348. doi:  10.3390/rs13071348. 
						
					 | 
			
| [106] | 
					 SONG Kaijun, ZHOU Xiaobing, and FAN Yong. Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1662–1672. doi:  10.1109/TGRS.2008.2009061. 
						
					 | 
			
| [107] | 
					 VORONOVICH A G. Small-slope approximation in wave scattering by rough surfaces[J]. Journal of Experimental and Theoretical Physics, 1985, 62(1): 65–70. 
						
					 | 
			
| [108] | 
					 YANG Huan, SONG Jiarui, TENG Yunhe, et al. Coupling model-driven and data-driven methods for estimating soil moisture over bare surfaces with Sentinel-1A dual-polarized data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4820–4832. doi:  10.1109/JSTARS.2023.3275995. 
						
					 | 
			
| [109] | 
					 BOUCHAT J, TRONQUO E, ORBAN A, et al. Green area index and soil moisture retrieval in maize fields using multi-polarized C- and L-Band SAR data and the water cloud model[J]. Remote Sensing, 2022, 14(10): 2496. doi:  10.3390/rs14102496. 
						
					 | 
			
| [110] | 
					 WANG Zhen, ZHAO Tianjie, QIU Jianxiu, et al. Microwave-based vegetation descriptors in the parameterization of water cloud model at L-band for soil moisture retrieval over croplands[J]. GIScience & Remote Sensing, 2021, 58(1): 48–67. doi:  10.1080/15481603.2020.1857123. 
						
					 | 
			
| [111] | 
					 SARADJIAN M R and HOSSEINI M. Soil moisture estimation by using multipolarization SAR image[J]. Advances in Space Research, 2011, 48(2): 278–286. doi:  10.1016/j.asr.2011.03.029. 
						
					 | 
			
| [112] | 
					 何媛, 文军, 张堂堂, 等. 卫星微波遥感结合可见光遥感估算黄河源区土壤湿度研究[J]. 遥感技术与应用, 2013, 28(2): 300–308. doi:  10.11873/j.issn.1004-0323.2013.2.300. 
					HE Yuan, WEN Jun, ZHANG Tangtang, et al. A study on estimating soil moisture using microwave remote sensing combined with optical over the source region of the Yellow River[J]. Remote Sensing Technology and Application, 2013, 28(2): 300–308. doi:  10.11873/j.issn.1004-0323.2013.2.300. 
						
					 | 
			
| [113] | 
					 DONG Zhe, GAO Maofang, and KARNIELI A. Soil moisture retrieval in the northeast China plain’s agricultural fields using single-temporal L-Band SAR and the coupled MWCM-Oh model[J]. Remote Sensing, 2025, 17(3): 478. doi:  10.3390/rs17030478. 
						
					 | 
			
| [114] | 
					 ZHANG Rui, BAO Xin, HONG Ruikai, et al. Soil moisture retrieval over croplands using novel dual-polarization SAR vegetation index[J]. Agricultural Water Management, 2024, 306: 109159. doi:  10.1016/j.agwat.2024.109159. 
						
					 | 
			
| [115] | 
					 夏米西努尔·马逊江, 侯君英. 基于NDVI估算植被体散射的土壤水分反演研究[J]. 安徽农业科学, 2013, 41(29): 11652–11653, 11657. doi:  10.13989/j.cnki.0517-6611.2013.29.048. 
					MAXUNJIANG Xianmixinuer and HOU Junying. Inversion study of estimation of soil moisture of vegetation scattering based on NDVI[J]. Journal of Anhui Agricultural Sciences, 2013, 41(29): 11652–11653, 11657. doi:  10.13989/j.cnki.0517-6611.2013.29.048. 
						
					 | 
			
| [116] | 
					 NARIN O G, BAYIK C, SEKERTEKIN A, et al. Crop height estimation of wheat using sentinel-1 satellite imagery: Preliminary results[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, XLVIII-4/W9-2024: 267–273. doi:  10.5194/isprs-archives-XLVIII-4-W9-2024-267-2024. 
						
					 | 
			
| [117] | 
					 WANG Xiaoxuan, LU Xiaoping, and YANG Zenan. A MWCMLAI-Net method for LAI inversion in maize and rice using GF-3 and Lutan radar data[J]. International Journal of Digital Earth, 2024, 17(1): 2341128. doi:  10.1080/17538947.2024.2341128. 
						
					 | 
			
| [118] | 
					 LV Changchang, XIE Qinghua, PENG Xing, et al. Soil moisture retrieval over agricultural fields with machine learning: A comparison of quad-, compact-, and dual-polarimetric time-series SAR data[J]. Journal of Hydrology, 2024, 644: 132093. doi:  10.1016/j.jhydrol.2024.132093. 
						
					 | 
			
| [119] | 
					 谢永强. 集成多源数据与XGBoost算法京津冀地区土壤水分空间反演[J]. 地理空间信息, 2024, 22(12): 20–24, 29. doi:  10.3969/j.issn.1672-4623.2024.12.005. 
					XIE Yongqiang. Spatial inversion of soil moisture in the beijing-tianjin-hebei region using integrated multi-source data and XGBoost algorithm[J]. Geospatial Information, 2024, 22(12): 20–24, 29. doi:  10.3969/j.issn.1672-4623.2024.12.005. 
						
					 | 
			
| [120] | 
					 段潘, 赵天杰, 郎姝燕, 等. 中法海洋卫星微波散射计青藏高原土壤水分反演研究[J]. 海洋气象学报, 2024, 44(4): 54–63. doi:  10.19513/j.cnki.hyqxxb.20240514002. 
					DUAN Pan, ZHAO Tianjie, LANG Shuyan, et al. Study on CSCAT soil moisture retrieval in the Qinghai-Tibet Plateau[J]. Journal of Marine Meteorology, 2024, 44(4): 54–63. doi:  10.19513/j.cnki.hyqxxb.20240514002. 
						
					 | 
			
| [121] | 
					 时洪涛. 时序极化SAR土壤湿度及农作物生物物理参数估计方法研究[D]. [博士论文], 武汉大学, 2021. doi:  10.27379/d.cnki.gwhdu.2021.000142. 
					SHI Hongtao. Soil moisture and crop biophysical parameters estimation from time series of PolSAR imageries[D]. [Ph.D. dissertation], Wuhan University, 2021. doi:  10.27379/d.cnki.gwhdu.2021.000142. 
						
					 | 
			
| [122] | 
					 王然, 赵建辉, 杨会巾, 等. 基于RIME-CNN-SVR模型的麦田土壤水分反演[J]. 农业工程学报, 2024, 40(15): 94–102. doi:  10.11975/j.issn.1002-6819.202312157. 
					WANG Ran, ZHAO Jianhui, YANG Huijin, et al. Inversion of soil moisture in wheat farmlands using the RIME-CNN-SVR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(15): 94–102. doi:  10.11975/j.issn.1002-6819.202312157. 
						
					 | 
			
| [123] | 
					 刘昀昊, 李雪冬, 费龙, 等. 基于特征选择与遗传神经网络的土壤水分反演[J]. 中国农业气象, 2024, 45(10): 1095–1108. doi:  10.3969/j.issn.1000-6362.2024.10.001. 
					LIU Yunhao, LI Xuedong, FEI Long, et al. Retrieving soil moisture based on feature selection and genetic neural network[J]. Chinese Journal of Agrometeorology, 2024, 45(10): 1095–1108. doi:  10.3969/j.issn.1000-6362.2024.10.001. 
						
					 | 
			
| [124] | 
					 WANG Hongquan, MAGAGI R, and GOÏTA K. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields[J]. Remote Sensing of Environment, 2018, 217: 38–51. doi:  10.1016/j.rse.2018.08.003. 
						
					 | 
			
| [125] | 
					 HUANG Xiaodong, WANG Jinfei, and SHANG Jiali. An integrated surface parameter inversion scheme over agricultural fields at early growing stages by means of C-Band polarimetric RADARSAT-2 imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2510–2528. doi:  10.1109/TGRS.2015.2502600. 
						
					 | 
			
| [126] | 
					 XIAO Tengfei, XING Minfeng, HE Binbin, et al. Retrieving soil moisture over soybean fields during growing season through polarimetric decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1132–1145. doi:  10.1109/JSTARS.2020.3041828. 
						
					 | 
			
| [127] | 
					 HAN Dong, WANG Pengxin, TANSEY K, et al. Combining Sentinel-1 and -3 imagery for retrievals of regional multitemporal biophysical parameters under a deep learning framework[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6985–6998. doi:  10.1109/JSTARS.2022.3200735. 
						
					 | 
			
| [128] | 
					 KUSHWAHA A, DAVE R, KUMAR G, et al. Assessment of rice crop biophysical parameters using Sentinel-1 C-band SAR data[J]. Advances in Space Research, 2022, 70(12): 3833–3844. doi:  10.1016/j.asr.2022.02.021. 
						
					 | 
			
| [129] | 
					 GURURAJ P, UMESH P, and SHETTY A. Evaluation of surface soil moisture models over heterogeneous agricultural plots using L-band SAR observations[J]. Geocarto International, 2022, 37(25): 10301–10319. doi:  10.1080/10106049.2022.2032398. 
						
					 | 
			
| [130] | 
					 BRUNELLI B and MANCINI F. Comparative analysis of SAOCOM and Sentinel-1 data for surface soil moisture retrieval using a change detection method in a semiarid region (Douro River’s basin, Spain)[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 129: 103874. doi:  10.1016/j.jag.2024.103874. 
						
					 | 
			
| [131] | 
					 石家豪, 杨欢, 王富强, 等. 基于多源遥感数据的夏玉米覆盖地表土壤水分协同反演研究[J]. 中国农村水利水电, 2024(8): 136–143. doi:  10.12396/znsd.231854. 
					SHI Jiahao, YANG Huan, WANG Fuqiang, et al. Collaborative inversion of soil moisture over summer maize covered surfaces based on multi-source remote sensing data[J]. China Rural Water and Hydropower, 2024(8): 136–143. doi:  10.12396/znsd.231854. 
						
					 | 
			
| [132] | 
					 BETBEDER J, FIEUZAL R, and BAUP F. Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2540–2553. doi:  10.1109/JSTARS.2016.2541169. 
						
					 | 
			
| [133] | 
					 ALLIES A, ROUMIGUIÉ A, DEJOUX J F, et al. Evaluation of multiorbital SAR and multisensor optical data for empirical estimation of rapeseed biophysical parameters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7268–7283. doi:  10.1109/JSTARS.2021.3095537. 
						
					 | 
			
| [134] | 
					 李小文, 赵红蕊, 张颢, 等. 全球变化与地表参数的定量遥感[J]. 地学前缘, 2002, 9(2): 365–370. doi:  10.3321/j.issn:1005-2321.2002.02.015. 
					LI Xiaowen, ZHAO Hongrui, ZHANG Hao, et al. Global change study and quantitative remote sensing for land surface parameters[J]. Earth Science Frontiers, 2002, 9(2): 365–370. doi:  10.3321/j.issn:1005-2321.2002.02.015. 
						
					 | 
			
| [135] | 
					 SEDIGHI A, HAMZEH S, ALAVIPANAH S K, et al. Ensembles of multiple models for soil moisture retrieval from remote sensing data over agricultural areas: A deep learning-based framework[J]. Remote Sensing Applications: Society and Environment, 2024, 35: 101243. doi:  10.1016/j.rsase.2024.101243. 
						
					 |