Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
Citation: Zhao Chunlei, Wang Yaliang, Yang Yunlong, Mao Xingpeng, Yu Changjun. Review of Radar Polarization Information Acquisition and Polarimetric Signal Processing Techniques[J]. Journal of Radars, 2016, 5(6): 620-638. doi: 10.12000/JR16092

Review of Radar Polarization Information Acquisition and Polarimetric Signal Processing Techniques

DOI: 10.12000/JR16092
Funds:

The National Natural Science Foundation of China (61171180,61571159),The Fundamental Research Funds for theCentral Universities (HIT.MKSTISP.2016 13,HIT.MKSTISP.2016 26)

  • Received Date: 2016-09-12
  • Rev Recd Date: 2016-11-14
  • Publish Date: 2016-12-28
  • As one of the topical research area in the field of radar, polarimetric signal processing techniques gradually receive the attention of scholars worldwide and have been widely applied in various fields.The basis of polarimetric signal processing is to acquire polarization information.In this paper, the research statuses of several relevant key aspects are reviewed, including polarization information acquisition, polarization diversity and coding, polarization anti-interference/clutter, polarization detection, and classification and identification of targets.Finally, the problems faced by radar polarimetry techniques are concluded, and the prospects of future development of the techniques are discussed.

     

  • 目标的振动、转动等微动产生的微多普勒效应包含了目标的结构和运动信息,常用于目标的分类和识别[13]。目前,基于外辐射源雷达微多普勒效应目标分类和识别的研究还处于起步状态。外辐射源雷达是一种利用非合作照射源进行目标探测和分类识别的新体制雷达系统,其自身不辐射电磁能量,具有节约频谱资源,隐蔽性好,设备规模小,易于部署和组网等特点[46]。在微多普勒效应目标分类和识别方面,外辐射源雷达表现出得天独厚的优势:(1)收发分置可实现空间分集,有效避免探测盲区。(2)第三方辐射源多为连续波,长时间相干积累可记录多个连续的回波闪烁,同时有利于提高对低雷达散射截面积(Radar Cross-Section, RCS)微动目标的探测与分类识别能力。(3)对微多普勒特征的提取不要求高距离分辨率,参数估计不受第三方辐射源带宽的限制[7,8]

    针对微多普勒效应参数估计问题。文献[9,10]中依据微动目标正弦特征曲线,利用 Hough变换,在参数域中进行多维搜索提取出微动曲线进行参数估计。文献[11,12]通过正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法进行稀疏逼近实现了微动目标参量的估计。上述方法均具有较好的鲁棒性,但由于估计参量维数较高导致计算量巨大。文献[13]利用微动目标在时频域的周期性,采用循环相关系数方法,实现了目标微动周期的估计,但信号周期较长时计算量急剧增加。文献[14]计算了信号的高阶矩函数,通过检测在不同时延下,高阶虚函数部分傅里叶变换累计结果的峰值位置,快速获得目标的旋转速率,相比于图像处理方法和OMP分解方法,计算复杂度较小,但抗噪性能差。而外辐射源雷达所利用的第三方辐射源多为连续波信号,其发射波形不可控,信号能量主要覆盖地面,杂波环境复杂且对空中目标增益低,利用长时间相干积累来提高处理增益会带来数据量巨大的挑战。上述因素决定了外辐射源雷达参数估计方法需要有良好的抗噪性能且计算量要小。

    直升机旋翼旋转时对雷达信号产生周期性调制,当叶片发生镜面反射时,旋翼回波出现峰值,即回波闪烁。闪烁信号在时频图像中表现为一定宽度的频率带,且闪烁时间、闪烁间隔与直升机旋翼微动参数密切相关。针对外辐射源雷达参数估计问题,本文结合上述时频域中闪烁信号的特点,通过时频分析和正交匹配追踪算法实现了直升机旋翼微动参数的估计。本文首先给出了外辐射源雷达直升机旋翼微动信号模型,其次介绍了如何在时频图中提取出闪烁信号参数及正交匹配追踪算法对直升机旋翼微动参数的估计,最后仿真和实测证明了本文方法的有效性。

    直升机旋转叶片与外辐射源雷达的位置关系如图1所示。以直升机旋转叶片的中心点为原点 o ,旋转叶片平面为 xy 面, x 轴平行于发射站与接收站所在直线,建立空间坐标系 (x,y,z) 。直升机相对于发射站和接收站距离为 rT, rR ,方位角为 γ, α ,仰角为 βT, βR (cosβTcosβR=cosβ) 。叶片上某一散射点 p 到原点 o 距离为 lP ,方位角为 φt

    图  1  外辐射源雷达直升机旋翼回波模型
    Figure  1.  Model of helicopter rotors echo for passive radar

    假设直升机平动得到补偿。在 t 时刻,从发射站经散射点 p 到接收站的距离为:

    rP(t)=||RT RP(t)||+||RRRP(t)|| (1)

    其中 RT, RR, RP(t) 分别为发射站、接收站、散射点 p 在坐标系 xyz 中的位置矢量。

    参考文献[1]中单基地直升机建模,将叶片看作线模型,外辐射源雷达直升机旋翼回波可表示为:

    s(t)=Lexp{j2πλ(rR+rT)}Nk=1sinc{ϕk(t)}exp{jϕk(t)} (2)

    其中,

    ϕk(t)=4πλL2cosβcos(αγ2)cos(φk(t)) (3)
    φk(t)=2πfrt+φ0+(k1)2π/Nα+γ2 (4)

    fr 为叶片转速, L 为叶片长度, N 为叶片数量,整数 k (0<kN) 表示第 k 个叶片, φ0 为叶片初相, λ 为照射源信号波长。

    由式(3)得第 k 个叶片引起的瞬时多普勒频移为:

    fk(t)=2πfrLλcosβcos(αγ2)sin(φk(t)) (5)

    由式(2)可知时域信号幅值受 sinc 函数调制,结合式(3)知当 φk(t) 满足式(6)时, ϕk(t)=0 ,时域信号幅值最大,此刻即时域闪烁。

    φk(t)=±π2+2πn (6)

    由式(2)知连续两个闪烁之间的时间间隔为:

    Δt={12Nfr,N1Nfr, N (7)

    直升机旋翼回波的微多普勒呈非线性变化,通过对目标回波信号进行时频分析能够揭示信号频率的时变特性。短时傅里叶变化(Short-Time Fourier Transform, STFT)计算简单,且不产生交叉项。对直升机旋翼回波信号 s(t) 进行STFT到时频域

    TF(t,f)=s(τ)w(τt)ej2πfτdτ (8)

    其中, w(t) 为窗函数。旋翼微多普勒效应特征曲线为正弦曲线,对应时域闪烁出现的时刻出现垂直于时间横轴的频率带,即时频域“闪烁”[15]

    图2为直升机旋翼回波的时频图。当直升机旋翼的叶片数为奇数时(图2(a)),时频域中正负多普勒“闪烁”交替出现;若旋翼叶片数为偶数(图2(b)),则是同时出现。

    图  2  旋翼回波信号时频分析
    Figure  2.  Time-frequency analysis of rotors echo

    设时频域中正频率“闪烁”发生的时间为 t0 ,由式(5)和式(6)知 t0 满足:

    φk(t0)=π2+2πn(n) (9)

    由式(4)和式(9)得第 k 个叶片初相与叶片数量的关系:

    φ0={πt0Δt1N2π(k1)1N+φ1, N2πt0Δt1N2π(k1)1N+φ1,N (10)

    其中

    φ1=α+γ2+2πn+π2(0φ0<2π) (11)

    由于时频图像中闪烁信号频率带垂直于时间横轴,对正频率轴数据幅值进行累加计算,并判断累加后数据局部峰值点,可得到时频域中正频率“闪烁”发生的时间。同样,对负频率轴数据幅值进行累加计算得到时频域中负频率“闪烁”发生的时间。相应的也可得到闪烁间隔。

    由式(7)知,闪烁间隔与旋翼转速、叶片数量密切相关。由式(10)知,闪烁发生的时间与叶片初相、叶片数量、整数 k 密切相关。因此,可根据得到的闪烁间隔,用叶片数量表示出旋翼转速。根据得到的闪烁时间,用叶片数量、整数 k 表示出第 k 个叶片初相。

    由式(2)知时域回波信号可分解为:

    s(t)=Mm=1cmgm(t;Λ)=Dα (12)

    其中, gm 为第 m 个原子, D 为以原子为列张成的字典矩阵 D=[g1 g2 g3···gM] CNt×M, M 为原子个数, Nt 为时间 t 离散后的取值个数, Λ 为要估计的参量, cm 为原子系数, αCM 为系数矢量,是稀疏的。可转化最优 l0 范数问题进行稀疏向量求解。OMP常用于求解此类问题,通过构建字典矩阵,不断选定与信号最匹配的原子进行稀疏逼近[16]。OMP将字典矩阵中原子正交化保证了迭代的最优性。

    由式(2)知直升机旋翼回波信号由参数 (fr,L,φ0,N,k) 确定。利用叶片数量 N 、整数 k (0<kN) 与旋翼转速和叶片初相的关系式(7)和式(10),时域回波可转化为参数 (L,N,k) 来表示。设时间采样点数 Nt ,目标回波为 Nt×1 的矩阵。确定待估参数的取值范围并离散化,叶片长度取值: L(L1,···,Lr,···,LNL) ,叶片数量 N 的可能取值为: N(N1,···,Np,···,NNN) ,整数 k 的取值为 k(1,···,kq,···,kNq) (kNqNNN)

    由OMP算法原理可知,字典中的原子可按照待分解信号的内在特性来构造[16]。根据微动目标的时域回波表达式(2),第 m 个原子可表示为:

    a(m)=sinc(ϕ(Lr,Np,kq))exp{jϕ(Lr,Np,kq)} (13)

    其中

    m=rpq (14)

    并对原子集里的每个原子进行能量归一化:

    a(m)a(m)/a(m)F (15)

    其中, F 表示矩阵的F范数。

    将5参量 (fr,L,φ0,N,k) 的估计转换为3参量 (L,N,k) 估计, NL, NN, Nk 分别为 L, N, k 的取值个数,由于常见直升机主旋翼叶片数量为:3片、5片、7片(奇数),2片、4片、8片(偶数), NN, Nk 较小,降低字典维数为: NL×Nk×NN ,可达到降低计算量的目的。

    直升机旋翼参数估计具体步骤如下:

    步骤1 对直升机旋翼信号进行短时傅里叶变换,得到时频图像 TF(t,f)

    步骤2 对时频图中正频率轴数据幅值进行累加计算,并判断累加后数据局部峰值点,对应时频域正频率“闪烁”发生的时间。同样,对负频率轴数据幅值进行累加计算得到时频域中负频率“闪烁”发生的时间。

    步骤3 根据步骤2中正负频率“闪烁”发生的时间,判别时频域中正负多普勒“闪烁”是否交替出现。若是,则旋翼叶片数为奇数,否则,旋翼叶片数为偶数。

    步骤4 读取某一正频率闪烁发生的时间 t0 及闪烁间隔 Δt 。依据式(7)用叶片数量 N 表示出旋翼转速,依据式(10)和式(11)用叶片数量 N 及整数 k 表示出第 k 个叶片初相。

    步骤5 确定 (L,N,k) 的取值范围并离散化: L(L1,···,Lr,···,LNL) , N(N1,···,Np,···,NNN) , k(1,···,kq,···,kNq) (kNqNNN) 。利用步骤4中表示出的旋翼转速及初相,依据式(13)和式(15)构建字典矩阵。

    步骤6 利用OMP算法寻找叶片数量,叶片长度的最优值,代入式(7)计算出旋翼转速,代入式(10)和式(11)计算出叶片初相。

    结合上述模型对直升机旋翼回波信号进行仿真,仿真参数设置如表1所示。

    表  1  外辐射源雷达直升机旋翼回波模型仿真参数
    Table  1.  Simulation parameters of helicopter rotor echo model for passive radar
    信号载频 叶片数 叶片长度 旋转速率 发射站方位角 接收站方位角 发射站仰角 接收站仰角 SNR
    658 MHz 3 5 m 200 rpm 33° 76° 23° 23° –5 dB
    下载: 导出CSV 
    | 显示表格

    图3(a)显示了信号的联合时频域特征,可看出闪烁信号及噪声严重影响直升机旋翼微多普勒特征曲线的检测,使微多普勒特征曲线提取困难。

    分别对时频图像中正负频率轴数据幅值进行累加计算,得到时频域中正负多普勒“闪烁”时间,如图3(b)所示,图中正负多普勒“闪烁”等间隔交替出现,则旋翼叶片数为奇数。读取闪烁信号时间间隔为0.05 s,根据式(7)表示出旋翼转速为:

    fr=10/N (16)

    读取某一正频率闪烁信号对应时刻为0.066 s(此处选择了图3(b)中的第1个正频率闪烁信号),根据式(10)和式(11)表示出第 k 个叶片初相为:

    φ0=4.14/N6.28×(k1)/N+2.52 (17)

    图3(c)为利用OMP方法对 (L,N,k) 的估计结果,得到叶片数为3片,图中给出了其对应的切面图,3叶片长度分别4.99 m, 5.00 m, 4.98 m,均值4.99 m,与理论基本一致,代入式(17)得3叶片初相分别为1.14 rad, 3.24 rad, 5.34 rad,代入式(16)得旋翼转速为200 rpm,与理论值一致,本文方法准确实现了直升机旋翼参数估计。

    图  3  本文方法参数估计结果
    Figure  3.  Parameter estimation by this article method

    图4为利用常规Hough变换,通过微多普勒曲线 f=fmax 检测对参数 ({f\!_r},{\varphi _0},L) 的估计结果。其中 {f_{\max }} 为最大频移。

    {f_{\max }} = \frac{{4{{π}} {f\!_r}L}}{\lambda }\cos\beta \cos\left( \frac{{\alpha - \gamma }}{2}\right) (18)

    图4中给出了参数空间中局部峰值点中心位置。可得到直升机旋翼转速为200 rpm。3叶片最大频移分别为385.6 Hz, 393.9 Hz, 389.8 Hz,平均值为390.0 Hz,由式(18)计算得叶片长度为4.96 m,与理论值基本一致。3叶片初相分别为0.91 rad, 3.16 rad, 5.24 rad,利用式(4)对初相进行修正,得到3叶片初相位为1.86 rad, 4.11 rad, 6.19 rad,存在较大的误差,是由于STFT受不确定原理的限制,时频图像中时频分辨率受限使参数空间中的局部峰值点扩展范围较大,只能大致估计局部峰值点的位置,估计结果精度较低。

    图  4  常规Hough变换参数估计结果
    Figure  4.  Parameter estimation by traditional Hough transform

    设待处理的时频图像大小为 {N_t} \times {N_f} 像素, {N_f} \approx {N_t} ,利用常规的Hough变换对微多普勒曲线 f = {f_{\max }}\sin(2{{π}} {f\!_r}t{\rm{ + }}{\varphi _0}) 进行检测,参数 ({f\!_r},{\varphi _0},L) 分别量化为 {N_{f_{r}}} , {N_{{\varphi _0}}} , {N_L} 份。乘法次数可近似表示为: 2{N_{f_{r}}}{N_{{\varphi _0}}}{N_L}{N_t}^{\!2}

    直接使用OMP进行参数 ({f\!_r},{\varphi _0},L) 估计时,设迭代次数为K,乘法次数近似表示为: K{N_{f\!_{r}}}{N_{{\varphi _0}}} {N_L}{N_t}^{\!2}

    本文方法计算量集中在OMP阶段,根据提取的时频域中的闪烁时间,依据式(7)和式(10),最终转化为对参数 (L,N,k) 的估计,常见直升机的叶片数只有若干个取值,且由3.1节方法可判断出叶片数量的奇偶性, {N_N}{N_k} 远小于 {N_{f_{r}}}{N_{{\varphi _0}}} 。本文方法乘法次数近似表示为: K{N_N}{N_k}{N_L}{N_t}^{\!2}

    在对直升机旋翼微动参数估计时,一般 {N_N}{N_k} 取值量级为101~102,迭代次数K的取值量级为 {10^0} {\text ~} {10^1} ,当初相 {\varphi _0} 的估计精度为7°时, 2{N_{{\varphi _0}}} 取值量级为102,当转速 {f_r} 的估计精度为10 rpm时, {N_{f_{r}}} 的取值量级为 {10^1} ,在乘法次数上,常规 Hough变换参数估计方法为本文方法 {10^0}{\text ~} {10^2} 倍,当进一步提高 {f_r}, {\varphi _0} 的估计精度时,算法之间的计算量差距将进一步变大。本文在相同的配置环境下,利用Matlab仿真平台,常规Hough变换方法运行时长13006 s,而本文方法运行总时长只有145 s。

    武汉大学电波传播实验室对EC_120B直升机进行了微多普勒效应探究外场实验,EC_120B直升机主旋翼3叶片,叶片长度5 m,额定转速406 rpm,实验中以武汉龟山电视塔数字电视信号为照射源,信号中心频率为658 MHz,带宽8 MHz,接收站位于武汉大学电波传播实验室楼顶,距离发射站7.56 km,实验场景如图5所示。本组实测数据相干积累时间0.8 s,可近似认为目标在这段时间位置不变,直升机旋翼转速为常量。

    图  5  实验场景图
    Figure  5.  Experimental scene map

    图6(a)为去除目标主体影响后,对直升机旋翼回波信号进行短时傅里叶变换后的时频图像。可以观察到闪烁信号,但微多普勒特征曲线已观察不到。分别对时频图像中正负频率轴数据幅值进行累加计算,得到时频域中正负多普勒“闪烁”时间,如图6(b)所示,图中正负多普勒“闪烁”等间隔交替出现,则旋翼叶片数为奇数。

    图  6  本文方法参数估计结果
    Figure  6.  Parameter estimation by this article method

    读取闪烁信号时间间隔为26.2 ms,根据式(7)用 N 表示出旋翼转速。读取某一正频率闪烁时间对应时间为0.25 s,利用式(10)和式(11)表示出第 k 个叶片初相,图6(c)为利用OMP方法对 (L,N,k) 的估计结果,得到叶片数量为3片,3叶片长度分别为4.93 m, 5.00 m, 4.66 m,均值4.86 m,存在较小的误差,与仰角,方位角估计不精确有关,由式(7)知旋翼转速均为382 rpm,符合实际情况。

    本文根据外辐射源雷达直升机旋翼微动信号模型,充分利用时频域中闪烁信号特征和微动信号内在特性进行了参数估计。通过时频分析和正交匹配追踪算法,估计出了旋翼转速、叶片长度、叶片数量和初相。同时开展了外场实验。仿真数据和实测数据处理都表明本文方法对外辐射源雷达直升机旋翼参数估计的可行性。

  • [1]
    Sinclair G.The transmission and reception of elliptically polarized waves[J].Proceedings of the IRE,1950,38(2):148-151.代大海,廖斌,肖顺平,等.雷达极化信息获取与处理的研究进展[J].雷达学报,2016,5(2):143-155.
    [2]
    Dai Da-hai,Liao Bin,Xiao Shun-ping,et al..Advancements on radar polarization information acquisition and processing[J].Journal of Radars,2016,5(2):143-155.
    [3]
    Mott H.Polarization in Antennas and Radar[M].New York:Wiley-Interscience,1986.
    [4]
    王雪松.雷达极化技术研究现状与展望[J].雷达学报,2016,5(2):119-131.Wang Xue-song.Status and prospects of radar polarimetry techniques[J].Journal of Radars,2016,5(2):119-131.
    [5]
    庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].北京:国防工业出版社,1999.Zhuang Zhao-wen,Xiao Shun-ping,and Wang Xue-song.Radar Polarization Information Processing and Application[M].Beijing:Beijing Institute of Technology Press,1999.
    [6]
    李永祯,李棉全,程旭,等.雷达极化测量体制研究综述[J].系统工程与电子技术,2013,35(9):1873-1877.Li Yong-zhen,Li Mian-quan,Cheng Xu,et al..Summarization of radar polarization measurement mode[J].Systems Engineering and Electronics,2013,35(9):1873-1877.
    [7]
    McCormick G C.On the completeness of polarization diversity measurements[J].Radio Science,1989,24(4):511-518.
    [8]
    Arthur J S,Henry J C,Pettengill G H,et al..The millstone radar in satellite and missile tracking[J].Planetary and Space Science,1961,7:81-93.
    [9]
    Tsunoda R T,Baron M J,and Owen J.ALTAIR:An incoherent scatter radar for equatorial spread-F studies[R].SRI International Menlo Park CA,1978.
    [10]
    Huynen J R.Measurement of the target scattering matrix[J].Proceedings of the IEEE,1965,53(8):936-946.
    [11]
    Santalla V and Antar Y M M.A comparison between different polarimetric measurement schemes[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(5):1007-1017.
    [12]
    常宇亮.瞬态极化雷达测量、检测与抗干扰技术研究[D].[博士论文],国防科学技术大学,2010.Chang Yu-liang.Study on measurement,detection and interference suppression technologies of instantaneous polarimetric radar[D].[Ph.D.dissertation],National University of Defense Technology,2010.
    [13]
    Gao S,Sambell A,and Zhong S S.Polarization-agile antennas[J].IEEE Antennas and Propagation Magazine,2006,48(3):28-37.
    [14]
    Karabey O H,Bildik S,Bausch S,et al..Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines[J].IEEE Transactions on Antennas and Propagation,2013,61(1):70-76.
    [15]
    Row J S and Shih C J.Polarization-diversity ring slot antenna with frequency agility[J].IEEE Transactions on Antennas and Propagation,2012,60(8):3953-3957.
    [16]
    Ho K M J and Rebeiz G M.A 0.9~1.5 GHz microstrip antenna with full polarization diversity and frequency agility[J].IEEE Transactions on Antennas and Propagation,2014,62(5):2398-2406.
    [17]
    Sachidananda M and Zrnic D S.Characteristics of echoes from alternately polarized transmission[R].Cooperative Institute for Mesoscale Meteorological Studies,1986.
    [18]
    Giuli D,Facheris L,Fossi M,et al..Simultaneous scattering matrix measurement through signal coding[C].IEEE International Radar Conference,1990:258-262.
    [19]
    Howard S D,Calderbank A R,and Moran W.A simple signal processing architecture for instantaneous radar polarimetry[J].IEEE Transactions on Information Theory,2007,53(4):1282-1289.
    [20]
    Nord M E,Ainsworth T L,Lee J S,et al..Comparison of compact polarimetric synthetic aperture radar modes[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(1):174-188.
    [21]
    杨汝良,戴博伟,李海英.极化合成孔径雷达极化层次和系统工作方式[J].雷达学报,2016,5(2):132-142.Yang Ru-liang,Dai Bo-wei,and Li Hai-ying.Polarization hierarchy and system operating architecture for polarimetric synthetic aperture radar[J].Journal of Radars,2016,5(2):132-142.
    [22]
    Souyris J C,Imbo P,Fjortoft R,et al..Compact polarimetry based on symmetry properties of geophysical media:The p/4 mode[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):634-646.
    [23]
    Raney R K.Hybrid-polarity SAR architecture[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3397-3404.
    [24]
    Spudis P,Nozette S,Bussey B,et al..Mini-SAR:An imaging radar experiment for the Chandrayaan-1 mission to the Moon[J].Current Science,2009,96(4):533-539.
    [25]
    Raney R K,Spudis P D,Bussey B,et al..The lunar mini-RF radars:Hybrid polarimetric architecture and initial results[J].Proceedings of the IEEE,2011,99(5):808-823.
    [26]
    Giuli D,Fossi M,and Facheris L.Radar target scattering matrix measurement through orthogonal signals[J].IEE Proceedings F-Radar and Signal Processing,1993,140(4):233-242.
    [27]
    王雪松,王剑,王涛,等.雷达目标极化散射矩阵的瞬时测量方法[J].电子学报,2006,34(6):1020-1025.Wang Xue-song,Wang Jian,Wang Tao,et al..Instantaneous measurement of radar target polarization scattering matrix[J].Acta Electronica Sinica,2006,34(6):1020-1025.
    [28]
    Chang Y L,Wang X S,Li Y Z,et al..The signal selection and processing method for polarization measurement radar[J].Science in China Series F:Information Sciences,2009,52(10):1926-1935.
    [29]
    刘勇.动态目标极化特性测量与极化雷达抗干扰新方法研究[D].[博士论文],国防科学技术大学,2011.Liu Yong.Study on moving target polarization characteristic measurement and polarization radar anti-jamming techniques[D].[Ph.D.dissertation],National University of Defense Technology,2011.
    [30]
    何密.同时极化测量体制雷达的校准方法研究[D].[博士论文],国防科学技术大学,2012.He Mi.Study on calibration methods for simultaneous measurement polarimetric radar[D].[Ph.D.dissertation],National University of Defense Technology,2012.
    [31]
    陶利,曲圣杰,陈曦.简述极化SAR定标处理技术研究进展[J].遥感技术与应用,2016,31(3):459-467.Tao Li,Qu Sheng-jie,and Chen Xi.The progress on research of polarimetric SAR calibration[J].Remote Sensing Technology and Application,2016,31(3):459-467.
    [32]
    Van Zyl J J.Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):337-348.
    [33]
    Whitt M W,Ulaby F T,Polatin P,et al..A general polarimetric radar calibration technique[J].IEEE Transactions on Antennas and Propagation,1991,39(1):62-67.
    [34]
    Klein J D.Calibration of complex polarimetric SAR imagery using backscatter correlations[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):183-194.
    [35]
    Quegan S.A unified algorithm for phase and cross-talk calibration of polarimetric data-theory and observations[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(1):89-99.
    [36]
    Ainsworth T L,Ferro-Famil L,and Lee J S.Orientation angle preserving a posteriori polarimetric SAR calibration[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(4):994-1003.
    [37]
    Fore A G,Chapman B D,Hawkins B P,et al..UAVSAR polarimetric calibration[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(6):3481-3491.
    [38]
    Freeman A.Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1617-1624.
    [39]
    Shimada M,Isoguchi O,Tadono T,et al..PALSAR radiometric and geometric calibration[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):3915-3932.
    [40]
    Fujita M and Murakami C.Polarimetric radar calibration method using polarization-preserving and polarization-selective reflectors[J].IEICE Transactions on Communications,2005,88(8):3428-3435.
    [41]
    Villa A,Iannini L,Giudici D,et al..Calibration of SAR polarimetric images by means of a covariance matching approach[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(2):674-686.
    [42]
    Quegan S and Lomas M R.The interaction between Faraday rotation and system effects in synthetic aperture radar measurements of backscatter and biomass[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(8):4299-4312.
    [43]
    Novak L M,Sechtin M B,and Cardullo M J.Studies of target detection algorithms that use polarimetric radar data[J].IEEE Transactions on Aerospace and Electronic Systems,1989,25(2):150-165.
    [44]
    章力强,陈信,李相平,等.参数估计误差对极化滤波性能影响分析[J].雷达科学与技术,2012,10(2):198-202.Zhang Li-qiang,Chen Xin,Li Xiang-ping,et al..Impact of parameter estimation error on polarization filtering performance[J].Radar Science and Technology,2012,10(2):198-202.
    [45]
    张国毅,刘永坦.高频地波雷达的三维极化滤波[J].电子学报,2000,28(9):114-116.Zhang Guo-yi and Liu Yong-tan.Three dimension polarization filtering of HF ground wave radar[J].Acta Electronica Sinica,2000,28(9):114-116.
    [46]
    刘爱军,毛兴鹏,杨俊炜,等.基于FrFT的高频雷达信号极化状态估计方法[J].电波科学学报,2010,25(5):815-822.Liu Ai-jun,Mao Xin-peng,Yang Jun-wei,et al..Polarized state estimation methods based on FrFT for HF radar[J].Chinese Journal of Radio Science,2010,25(5):815-822.
    [47]
    Wong K T and Zoltowski M D.Uni-vector-sensor ESPRIT for multisource azimuth,elevation,and polarization estimation[J].IEEE Transactions on Antennas and Propagation,1997,45(10):1467-1474.
    [48]
    Yuan X.Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor[J].IEEE Transactions on Signal Processing,2012,60(3):1270-1282.
    [49]
    Wong K T and Zoltowski M D.Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace[J].IEEE Transactions on Antennas and Propagation,2000,48(8):1235-1245.
    [50]
    Xu Y,Liu Z,Wong K T,et al..Virtual-manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2008,44(4):1291-1308.
    [51]
    Hua Y.A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles[J].IEEE Transactions on Antennas and Propagation,1993,41(3):370-376.
    [52]
    Li J and Compton Jr R T.Angle and polarization estimation using ESPRIT with a polarization sensitive array[J].IEEE Transactions on Antennas and Propagation,1991,39(9):1376-1383.
    [53]
    徐友根,刘志文.基于累积量的极化敏感阵列信号DOA和极化参数的同时估计[J].电子学报,2004,32(12):1962-1966.Xu You-gen and Liu Zhi-wen.Cumulant-based two-dimensional DOA and polarization estimation with a polarization sensitive array comprising a spatially stretched tripole[J].Acta Electronica Sinica,2004,32(12):1962-1966.
    [54]
    Miron S,Le Bihan N,and Mars J I.Quaternion-MUSIC for vector-sensor array processing[J].IEEE Transactions on Signal Processing,2006,54(4):1218-1229.
    [55]
    赵继超,陶海红,计茹,等.基于三分量电磁矢量传感器的波达角和极化参数估计[J].电波科学学报,2016,31(1):39-46.Zhao Ji-chao,Tao Ji-hong,Ji Ru,et al..Joint DOA and polarization parameters estimation based on three-component electromagnetic vector sensor[J].Chinese Journal of Radio Science,2016,31(1):39-46.
    [56]
    Xiao H K,Zou L,Xu B G,et al..Direction and polarization estimation with modified quad-quaternion music for vector sensor arrays[C].IEEE International Conference on Signal Processing,2014:352-357.
    [57]
    Miron S,Le Bihan N,and Mars J I.Vector-sensor MUSIC for polarized seismic sources localization[J].EURASIP Journal on Advances in Signal Processing,2005(1):1-11.
    [58]
    Gong X F,Liu Z W,and Xu Y G.Regularised parallel factor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor[J].IET Signal Processing,2011,5(4):390-396.
    [59]
    Tian Y,Sun X,and Zhao S.Sparse-reconstruction-based direction of arrival,polarisation and power estimation using a cross-dipole array[J].IET Radar,SonarNavigation,2015,9(6):727-731.
    [60]
    张国毅,刘永坦.三维极化滤波及其参数估计[J].现代雷达,2000,22(3):39-43.Zhang Guo-yi and Liu Yong-tan.Three dimension polarization filtering and its parameter estimation[J].Modern Radar,2000,22(3):39-43.
    [61]
    Wong K T.Direction finding/polarization estimation-dipole and/or loop triad (s)[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):679-684.
    [62]
    Lundback J and Nordobo S.On polarization estimation using tripole arrays[C].IEEE Antennas and Propagation Society International Symposium,2003,1:65-68.
    [63]
    Xu Y and Liu Z.Adaptive quasi-cross-product algorithm for uni-tripole tracking of moving source[C].IEEE International Conference on Communication Technology,2006:1-4.
    [64]
    Yuan X.Diversely polarized antenna-array signal processing[D].[Ph.D.dissertation],The Hong Kong Polytechnic University,2012.
    [65]
    孙杰,张晓娟,方广有.近地面三阵子天线估计电磁波到达角和极化参数[J].物理学报,2013,62(19):1-5.Sun Jie,Zhang Xiao-juan,and Fang Guang-you.Direction of arrival of EMW and polarization parameter estimation using tripole near the earth surface[J].Acta Physica Sinica,2013,62(19):1-5.
    [66]
    Zou L,Lasenby J,and He Z.Direction and polarisation estimation using polarised cylindrical conformal arrays[J].IET Signal Processing,2012,6(5):395-403.
    [67]
    刘帅,闫锋刚,金铭,等.基于四元数MUSIC的锥面共形阵列极化-DOA联合估计[J].系统工程与电子技术,2016,38(1):1-7.Liu Shuai,Yan Feng-gang,Jin Ming,et al..Joint polarization-DOA estimation for conical conformal array based on quaternion MUSIC[J].Systems Engineering and Electronics,2016,38(1):1-7.
    [68]
    齐子森,郭英,王布宏,等.共形阵列天线信源方位与极化状态的联合估计算法[J].电子学报,2012,40(12):2562-2566.Qi Zi-sen,Guo Ying,Wang Bu-hong,et al..Joint DOA and polarization estimation algorithm for conformal array antenna[J].Acta Electronica Sinica,2012,40(12):2562-2566.
    [69]
    Fang Q,Han Y,Jin M,et al..Joint DOA and polarization estimation for unequal power sources[J].International Journal of Antennas and Propagation,2015:1-9.
    [70]
    Li J and Compton R T.Angle and polarization estimation in a coherent signal environment[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(3):706-716.
    [71]
    Li J and Stoica P.Efficient parameter estimation of partially polarized electromagnetic waves[J].IEEE Transactions on Signal Processing,1994,42(11):3114-3125.
    [72]
    Ho K C,Tan K C,and Tan B T G.Efficient method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors[J].IEEE Transactions on Signal Processing,1997,45(10):2485-2498.
    [73]
    Tao J W,Liu L,and Lin Z Y.Joint DOA,range,and polarization estimation in the fresnel region[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(4):2657-2672.
    [74]
    Costa M,Richter A,and Koivunen V.Unified array manifold decomposition based on spherical harmonics and 2-D Fourier basis[J].IEEE Transactions on Signal Processing,2010,58(9):4634-4645.
    [75]
    Costa M,Richter A,and Koivunen V.DoA and polarization estimation for arbitrary array configurations[J].IEEE Transactions on Signal Processing,2012,60(5):2330-2343.
    [76]
    Van Wambeck S H and Ross A H.Performance of diversity receiving systems[J].Proceedings of the IRE,1951,39(3):256-264.
    [77]
    Alamouti S M.A simple transmit diversity technique for wireless communications[J].IEEE Journal on Selected Areas in Communications,1998,16(8):1451-1458.
    [78]
    Gesbert D,Shafi M,Shiu D,et al..From theory to practice:An overview of MIMO space-time coded wireless systems[J].IEEE Journal on Selected Areas in Communications,2003,21(3):281-302.
    [79]
    Giuli D.Polarization diversity in radars[J].Proceedings of the IEEE,1986,74(2):245-269.
    [80]
    Holt A R and Tan J.Separation of differential propagation phase and differential backscatter phase in polarisation diversity radar[J].Electronics Letters,1992,28(10):943-944.
    [81]
    Antar Y,Hendry A,Schlesak J,et al..Measurements of ice depolarization at 28.56 GHz using the COMSTAR beacon simultaneously with a 16.5 GHz polarization diversity radar[J].IEEE Transactions on Antennas and Propagation,1982,30(5):858-866.
    [82]
    Da Silveira R B and Holt A R.An automatic identification of clutter and anomalous propagation in polarization-diversity weather radar data using neural networks[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1777-1788.
    [83]
    Wang Y and Saillard J.Characterization of the scattering centers of a radar target with polarization diversity using polynomial rooting[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,2001,5:2893-2896.
    [84]
    Salman R,Willms I,Reichardt L,et al..On polarization diversity gain in short range UWB-Radar object imaging[C].IEEE International Conference on Ultra-Wideband,2012:402-406.
    [85]
    Holt A R,Humphries R G,and McGuinness R.Some advantages of using Polarisation Diversity illustrated through the analysis of radar data from a storm in central Alberta[C].IEEE Geoscience and Remote Sensing Symposium,1988,1:237-240.
    [86]
    Vaughan R G.Polarization diversity in mobile communications[J].IEEE Transactions on Vehicular Technology,1990,39(3):177-186.
    [87]
    Akhoondzadeh-Asl L,Khan I,and Hall P S.Polarisation diversity performance for on-body communication applications[J].IET Microwaves,AntennasPropagation,2011,5(2):232-236.
    [88]
    Ndao P M,Erhel Y,Lemur D,et al..Test of HF (3-30 MHz) MIMO communication system based on polarisation diversity[J].Electronics Letters,2012,48(1):50-51.
    [89]
    Cohen M N and Sjoberg E S.Intrapulse polarization agile radar[C].Radar-82,1982:7-11.
    [90]
    Cohen M N,Perry,and Baden M.Analysis of IPAR field performance[C].13th European Microwave Conference,1983:133-141.
    [91]
    Efurd R,Cohen M,and Sjoberg E.Advanced intrapulse polarization agile radar nears deployment[J].Microwave System News,1984,14(2):67-76.
    [92]
    乔晓林,宋立众,谢新华.极化编码脉压雷达信号的相关检测[J].系统工程与电子技术,2003,25(5):550-553.Qiao Xiao-lin,Song Li-zhong,and Xie Xin-hua.Correlative detection of pulse-compression radar signal based on polarization coding[J].Systems Engineering and Electronics,2003,25(5):550-553.
    [93]
    宋立众,乔晓林,孟宪德.圆极化捷变LFM脉冲压缩信号分析[J].现代雷达,2005,27(2):43-46.Song Li-zhong,Qiao Xiao-lin,and Meng Xian-de.Analysis of LFM pulse compression signal with circular polarization agility[J].Modern Radar,2005,27(2):43-46.
    [94]
    Song Li-zhong and Wang Miao.Study on a nonlinear frequency modulation signal with polarization-coded modulation[C].IEEE International Conference on Microwave and Millimeter Wave Technology,2007:1-4.
    [95]
    宋立众,吴群.一种极化和频率捷变主动雷达信号处理技术[J].南京理工大学学报(自然科学版),2010,34(5):668-674.Song Li-zhong and Wu Qun.Signal processing technique for active radar with polarization and frequency agility[J].Journal of Nanjing University of Science and Technology (Natural Science),2010,34(5):668-674.
    [96]
    罗金亮,党立坤.极化编码跳频信号在雷达中的应用[J].兵工自动化,2008,27(5):29-30.Luo Jin-liang and Dang Li-kun.Application of polarize code frequency hopping signal in radar[J].Ordnance Industry Automation,2008,27(5):29-30.
    [97]
    陈歆炜,赵建中,吴文.基于极化捷变编码技术的雷达抗欺骗干扰研究[J].南京理工大学学报(自然科学版),2011,35(5):642-645.Chen Xin-wei,Zhao Jian-zhong,and Wu Wen.Radar anti-deception based on polarization agile coding technology[J].Journal of Nanjing University of Science and Technology (Natural Science),2011,35(5):642-645.
    [98]
    Nathanson F E.Adaptive circular polarization[C].International Radar Conference,1975,1:221-225.
    [99]
    庄钊文,徐振海,肖顺平,等.极化敏感阵列信号处理[M].北京:国防工业出版社,2005.Zhuang Zhao-wen,Xu Zhen-hai,Xiao Shun-ping,et al..Signal Processing Based on Polarization Sensitive Array[M].Beijing:Beijing Institute of Technology Press,2005.
    [100]
    施龙飞,任博,马佳智,等.雷达极化抗干扰技术进展[J].现代雷达,2016,38(4):1-7.Shi Long-fei,Ren Bo,Ma Jia-zhi,et al..Recent developments of radar anti-interference techniques with polarimetry[J].Modern Radar,2016,38(4):1-7.
    [101]
    Poelman A J.Virtual polarisation adaptation a method of increasing the detection capability of a radar system through polarisation-vector processing[J].IEE Proceedings F Communications,Radar and Signal Processing,1981,128(5):261-270.
    [102]
    Poelman A J and Guy J R F.Multinotch logic-product polarisation suppression filters:A typical design example and its performance in a rain clutter environment[J].IEE Proceedings F Communications,Radar and Signal Processing,1984,131(4):383-396.
    [103]
    Poelman A J and Guy J R F.Nonlinear polarisation-vector translation in radar systems[J].IEE Proceedings F Communications,Radar and Signal Processing,1984,131(5):451-465.
    [104]
    张国毅,刘永坦.实数加权极化变换法[J].电子学报,2000,28(3):69-72.Zhang Guo-yi and Liu Yong-tan.Real weighting polarization vector translation[J].Acta Electronica Sinica,2000,28(3):69-72.
    [105]
    Giuli D,Fossi M,and Gherardelli M.A technique for adaptive polarization filtering in radars[C].International Radar Conference,1985,1:213-219.
    [106]
    Gherardelli M,Giuli D,and Fossi M.Suboptimum adative polarisation cancellers for dual-polarisation radars[J].IEE Proceedings F Communications,Radar and Signal Processing,1988,135(1):60-72.
    [107]
    Poelman A J and Hilgers C J.Effectiveness of multinotch logic-product polarisation filters in radar for countering rain clutter[J].IEE Proceedings F-Radar and Signal Processing,1991,138(5):427-437.
    [108]
    Unal C M H and Moisseev D N.Combined Doppler and polarimetric radar measurements:Correction for spectrum aliasing and nonsimultaneous polarimetric measurements[J].Journal of Atmospheric and Oceanic Technology,2004,21(3):443-456.
    [109]
    Moisseev D N and Chandrasekar V.Polarimetric spectral filter for adaptive clutter and noise suppression[J].Journal of Atmospheric and Oceanic Technology,2009,26(2):215-228.
    [110]
    王雪松.宽带极化信息处理的研究[D].[博士论文],国防科学技术大学,1999.Wang Xue-song.Study on wideband polarization information processing[D].[Ph.D.dissertation],National University of Defense Technology,1999.
    [111]
    徐振海.极化敏感阵列信号处理的研究[D].[博士论文],国防科学技术大学,2004.Xu Zhen-hai.Signal processing based on polarization sensitive array[D].[Ph.D.dissertation],National University of Defense Technology,2004.
    [112]
    王雪松,庄钊文,肖顺平,等.极化信号的优化接收理论:完全极化情形[J].电子学报,1998,26(6):42-46.Wang Xue-song,Zhuang Zhao-wen,Xiao Shun-ping,et al..The theory of optimal reception of polarized signals:The purley polarized case[J].Acta Electronica Sinica,1998,26(6):42-46.
    [113]
    王雪松,庄钊文,肖顺平,等.极化信号的优化接收理论:部分极化情形[J].电子科学学刊,1998,20(4):468-473.Wang Xue-song,Zhuang Zhao-wen,Xiao Shun-ping,et al..The theory of optimal reception of polarized signals:The partially polarized case[J].Journal of Electronics,1998,20(4):468-473.
    [114]
    毛兴鹏,刘永坦.极化滤波技术的有效性研究[J].哈尔滨工业大学学报,2002,34(4):577-580.Mao Xing-peng and Liu Yong-tan.Validity of polarization filtering technique[J].Journal of Harbin Institute of Technology,2002,34(4):577-580.
    [115]
    张国毅,刘永坦.高频地波超视距雷达的极化滤波技术研究[J].系统工程与电子技术,2000,22(3):55-57.Zhang Guo-yi and Liu Yong-tan.Study of the polarization filtering technique of HF ground wave radar[J].Systems Engineering and Electronics,2000,22(3):55-57.
    [116]
    Xingpeng M,Yongtan L,and Weibo D.Radio disturbance of high frequency surface wave radar[J].Electronics Letters,2004,40(3):202-203.
    [117]
    毛兴鹏,刘永坦,邓维波,等.零相移瞬时极化滤波器[J].电子学报,2004,32(9):1495-1498.Mao Xing-peng,Liu Yong-tan,Deng Wei-bo,et al..Null phase-shift instantaneous polarization filter[J].Acta Electronica Sinica,2004,32(9):1495-1498.
    [118]
    Mao X P and Liu Y T.Null phase-shift polarization filtering for high-frequency radar[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1397-1408.
    [119]
    毛兴鹏,刘永坦,邓维波.频域零相移多凹口极化滤波器[J].电子学报,2008,36(3):537-542.Mao Xing-peng,Liu Yong-tan,and Deng Wei-bo.Frequency domain null phase-shift multinotch polarization filter[J].Acta Electronica Sinica,2008,36(3):537-542.
    [120]
    毛兴鹏,刘爱军,邓维波,等.斜投影极化滤波器[J].电子学报,2010,38(9):2003-2008.Mao Xing-peng,Liu Ai-jun,Deng Wei-bo,et al..An oblique projecting polarization filter[J].Acta Electronica Sinica,2010,38(9):2003-2008.
    [121]
    Mao X P,Liu A J,Hou H J,et al..Oblique projection polarisation filtering for interference suppression in high-frequency surface wave radar[J].IET Radar,SonarNavigation,2012,6(2):71-80.
    [122]
    Mao X,Hong H,Deng W,et al..Research on polarization cancellation of nonstationary ionosphere clutter in HF radar system[J].International Journal of Antennas and Propagation,2015:1-12.
    [123]
    Nehorai A,Ho K C,and Tan B T G.Minimum-noise-variance beamformer with an electromagnetic vector sensor[J].IEEE Transactions on Signal Processing,1999,47(3):601-618.
    [124]
    张国毅,刘永坦.三维瞬时极化滤波器[J].系统工程与电子技术,2000,22(5):55-57.Zhang Guo-yi and Liu Yong-tan.Three dimension instantaneous polarization filter[J].Systems Engineering and Electronics,2000,22(5):55-57.
    [125]
    Guoyi Z,Zhongji T,and Jiantao W.Modification of polarization filtering technique in HF ground wave radar[J].Journal of Systems Engineering and Electronics,2006,17(4):737-742.
    [126]
    刘爱军,宋立众,王季刚,等.斜投影三维极化滤波[J].哈尔滨工业大学学报,2012,44(3):75-80.Liu Ai-jun,Song Li-zhong,Wang Ji-gang,et al..Three-dimensions polarization filtering based on oblique projection[J].Journal of Harbin Institute of Technology,2012,44(3):75-80.
    [127]
    罗佳.天线空域极化特性及应用[D].[博士论文],国防科学技术大学,2008.Luo Jia.Application and analysis of spatial polarization characteristics for antenna[D].[Ph.D.dissertation],National University of Defense Technology,2008.
    [128]
    Dai H,Wang X,Luo J,et al..A new polarimetric method by using spatial polarization characteristics of scanning antenna[J].IEEE Transactions on Antennas and Propagation,2012,60(3):1653-1656.
    [129]
    Dai H,Wang X,and Li Y.Novel discrimination method of digital deceptive jamming in mono-pulse radar[J].Journal of Systems Engineering and Electronics,2011,22(6):910-916.
    [130]
    Dai H,Wang X,Li Y,et al..Main-lobe jamming suppression method of using spatial polarization characteristics of antennas[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(3):2167-2179.
    [131]
    Park H R,Li J,and Wang H.Polarization-space-time domain generalized likelihood ratio detection of radar targets[J].Signal Processing,1995,41(2):153-164.
    [132]
    Showman G A,Melvin W L,and Belenkii M.Performance evaluation of two polarimetric STAP architectures[C].IEEE Radar Conference,2003:59-65.
    [133]
    Park H R and Wang H.Adaptive polarisation-space-time domain radar target detection in inhomogeneous clutter environments[J].IEE Proceedings-Radar,Sonar and Navigation,2006,153(1):35-43.
    [134]
    吴迪军.机载雷达极化空时自适应处理技术研究[D].[博士论文],国防科学技术大学,2012.Wu Di-jun.Study on polarization space time adaptive processing for airborne radar[D].[Ph.D.dissertation],National University of Defense Technology,2012.
    [135]
    Tao J W and Chang W X.A novel combined beamformer based on hypercomplex processes[J].IEEE Transactions on Aerospace and Electronic Systems,2013,49(2):1276-1289.
    [136]
    Tao J W.Performance analysis for interference and noise canceller based on hypercomplex and spatio-temporal-polarisation processes[J].IET Radar,SonarNavigation,2013,7(3):277-286.
    [137]
    文才,王彤,吴亿锋,等.极化-空域联合抗机载雷达欺骗式主瓣干扰[J].电子与信息学报,2014,36(7):1552-1559.Wen Cai,Wang Tong,Wu Yi-feng,et al..Deceptive mainlobe jamming suppression for airborne radar based on joint processing in polarizational and spatial domains[J].Journal of ElectronicsInformation Technology,2014,36(7):1552-1559.
    [138]
    郭玉华,常青美,余道杰,等.一种改进的极化域-空域联合的自适应波束形成算法[J].电子学报,2012,40(6):1279-1283.Guo Yu-hua,Chang Qing-mei,Yu Dao-jie,et al..An improved polarization-space adaptive beamforming algorithm[J].Acta Electronica Sinica,2012,40(6):1279-1283.
    [139]
    罗章凯,王华力,张翼鹏,等.极化阵列抗主瓣干扰性能研究[J].电波科学学报,2015,30(3):504-509.Luo Zhang-kai,Wang Hua-li,Zhang Yi-peng,et al..Mainlobe anti-jamming performance of the polarization sensitive array[J].Chinese Journal of Radio Science,2015,30(3):504-509.
    [140]
    刘爱军.基于极化信息的高频地波雷达干扰抑制方法研究[D].[博士论文],哈尔滨工业大学,2011.Liu Ai-jun.Research on interference mitigation methods based on polarization information for high frequency surface wave radar[D].[Ph.D.dissertation],Harbin Institute of Technology,2011.
    [141]
    Hong H,Mao X,Hu C,et al..Joint filtering of space-frequency-polarization domain based on vector sensitive array[C].IEEE International Conference on Instrumentation,Measurement,Computer,Communication and Control,2011:670-673.
    [142]
    Hong H,Mao X P,and Hu C.A multi-domain collaborative filter for HFSWR based on oblique projection[C].IEEE Radar Conference,2012:907-912.
    [143]
    洪泓.高频地波雷达多域协同抗电离层杂波干扰方法研究[D].[博士论文],哈尔滨工业大学,2014.Hong Hong.Research on multidomain collaborative ionosphere clutter mitigation methods for high frequency surface wave radar[D].[Ph.D.dissertation],Harbin Institute of Technology,2014.
    [144]
    Mao X and Deng W.A multi-domain collaborative filter for interference suppressing[J].IET Signal Processing,2016.
    [145]
    邵春生.相控阵雷达研究现状与发展趋势[J].现代雷达,2016,38(6):1-4.Shao Chun-sheng.Study status and development trend of phased array radar[J].Modern Radar,2016,38(6):1-4.
    [146]
    Yamaguchi Y,Boerner W M,Eom H J,et al..On characteristic polarization states in the cross-polarized radar channel[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):1078-1080.
    [147]
    Chaney R D,Burl M C,and Novak L M.On the performance of polarimetric target detection algorithms[C].IEEE International Radar Conference,1990:520-525.
    [148]
    Wicks M C,Annicola V C,Stiefvater K C,et al..Polarization radar processing technology[C].IEEE International Radar Conference,1990:409-416.
    [149]
    De Maio A and Ricci G.A polarimetric adaptive matched filter[J].Signal Processing,2001,81(12):2583-2589.
    [150]
    Calderbank R,Howard S D,and Moran B.Waveform diversity in radar signal processing[J].IEEE Signal Processing Magazine,2009,26(1):32-41.
    [151]
    Wang J and Nehorai A.Adaptive polarimetry design for a target in compound-Gaussian clutter[J].Signal Processing,2009,89(6):1061-1069.
    [152]
    Xiao J J and Nehorai A.Joint transmitter and receiver polarization optimization for scattering estimation in clutter[J].IEEE Transactions on Signal Processing,2009,57(10):4142-4147.
    [153]
    Lei S,Zhao Z,Nie Z,et al..Adaptive polarimetric detection method for target in partially homogeneous background[J].Signal Processing,2015,106:301-311.
    [154]
    Younsi A,Greco M,Gini F,et al..Performance of the adaptive generalised matched subspace constant false alarm rate detector in non-Gaussian noise:An experimental analysis[J].IET Radar,SonarNavigation,2009,3(3):195-202.
    [155]
    刘立东,吴顺君,孙晓闻.复合高斯杂波中相干雷达极化自适应检测算法研究[J].电子与信息学报,2006,28(2):326-329.Liu Li-dong,Wu Shun-Jun,and Sun Xiao-wen.Polarimetric adaptive detection algorithm in compound-Gaussian clutter with coherent radar[J].Journal of ElectronicsInformation Technology,2006,28(2):326-329.
    [156]
    Alfano G,De Maio A,and Conte E.Polarization diversity detection of distributed targets in compound-Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):755-765.
    [157]
    李发宗,毛兴鹏,常维国.利用极化信息的高频地波雷达TBD检测算法[J].哈尔滨工业大学学报,2016,48(5):36-42.Li Fa-zong,Mao Xing-peng,and Chang Wei-guo.TBD algorithm based on polarization information of high frequency surface wave radar[J].Journal of Harbin Institute of Technology,2016,48(5):36-42.
    [158]
    Liu T and Lampropoulos G.A new polarimetric CFAR ship detection system[C].IEEE International Symposium on Geoscience and Remote Sensing,2006:137-140.
    [159]
    Zhao Y Q,Gong P,and Pan Q.Object detection by spectropolarimeteric imagery fusion[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):3337-3345.
    [160]
    Souyris J C,Henry C,and Adragna F.On the use of complex SAR image spectral analysis for target detection:Assessment of polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2725-2734.
    [161]
    Touzi R,Charbonneau F,Hawkins R K,et al..Ship-sea contrast optimization when using polarimetric SARs[C].IEEE Geoscience and Remote Sensing Symposium,2001,1:426-428.
    [162]
    Chaoyang N,Debao M,Xiangfeng Z,et al..Target detection and recognition based on polar decomposition and haugh transform[C].IEEE International Geoscience and Remote Sensing Symposium,2005,7:4712-4714.
    [163]
    周晓光.极化SAR图像分类方法研究[D].[博士论文],国防科学技术大学,2008.Zhou Xiao-guang.Polarimetric SAR image classification[D].[Ph.D.dissertation],National University of Defense Technology,2008.
    [164]
    Bickel S H.Some invariant properties of the polarization scattering matrix[J].Proceedings of the IEEE,1965,53(8):1070-1072.
    [165]
    Karnychev V,Valery A K,Leo P L,et al..Algorithms for estimating the complete group of polarization invariants of the Scattering Matrix (SM) based on measuring all SM elements[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(3):529-539.
    [166]
    Huynen J R.Phenomenological theory of radar targets[D].[Ph.D.dissertation],TU Delft,Delft University of Technology,1970.
    [167]
    王涛.弹道中段目标极化域特征提取与识别[D].[博士论文],国防科学技术大学,2006.Wang Tao.Feature extraction and recognition of targets in ballistic midcourse in polarization-domain[D].[Ph.D.dissertation],National University of Defense Technology,2006.
    [168]
    Chamberlain N E,Walton E K,and Garber F D.Radar target identification of aircraft using polarization-diverse features[J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(1):58-67.
    [169]
    Ferrazzoli P,Guerriero L,and Schiavon G.Experimental and model investigation on radar classification capability[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):960-968.
    [170]
    曾勇虎.极化雷达时频分析与目标识别的研究[D].[博士论文],国防科学技术大学,2004.Zeng Yong-hu.Studies on time-frequency analysis and target recognition with polarimetric radar[D].[Ph.D.dissertation],National University of Defense Technology,2004.
    [171]
    肖顺平.宽带极化雷达目标识别的理论与应用[D].[博士论文],国防科学技术大学,1995.Xiao Shun-ping.Study on wideband polarimetric radar target recognition[D].[Ph.D.dissertation],National University of Defense Technology,1995.
    [172]
    Cloude S R and Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518.
    [173]
    Cloude S R and Pottier E.Concept of polarization entropy in optical scattering[J].Optical Engineering,1995,34(6):1599-1610.
    [174]
    Frery A C,Cintra R J,and Nascimento A D C.Entropy-based statistical analysis of PolSAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(6):3733-3743.
    [175]
    Cameron W L,Youssef N N,and Leung L K.Simulated polarimetric signatures of primitive geometrical shapes[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(3):793-803.
    [176]
    Lee J S,Grunes M R,Ainsworth T L,et al..Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2249-2258.
    [177]
    Lee J S,Grunes M R,and Kwok R.Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J].International Journal of Remote Sensing,1994,15(11):2299-2311.
    [178]
    Krogager E.New decomposition of the radar target scattering matrix[J].Electronics Letters,1990,26(18):1525-1527.
    [179]
    Touzi R and Charbonneau F.Characterization of target symmetric scattering using polarimetric SARs[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2507-2516.
    [180]
    Yang J,Peng Y,Yamaguchi Y,et al..On Huynen's decomposition of a Kennaugh matrix[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):369-372.
    [181]
    Freeman A and Durden S L.A three-component scattering model for polarimetric SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973.
    [182]
    Yamaguchi Y,Moriyama T,Ishido M,et al..Four-component scattering model for polarimetric SAR image decomposition[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(8):1699-1706.
    [183]
    An W,Cui Y,and Yang J.Three-component model-based decomposition for polarimetric SAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2732-2739.
    [184]
    Yamaguchi Y,Yajima Y,and Yamada H.A four-component decomposition of POLSAR images based on the coherency matrix[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):292-296.
    [185]
    Cloude S R and Pottier E.An entropy based classification scheme for land applications of polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
    [186]
    Ferro-Famil L,Pottier E,and Lee J S.Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2332-2342.
    [187]
    Lardeux C,Frison P L,Tison C,et al..Support vector machine for multifrequency SAR polarimetric data classification[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):4143-4152.
    [188]
    Kersten P R,Lee J S,and Ainsworth T L.Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):519-527.
    [189]
    Ersahin K,Cumming I G,and Ward R K.Segmentation and classification of polarimetric SAR data using spectral graph partitioning[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(1):164-174.
    [190]
    Fukuda S and Hirosawa H.A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2282-2286.
    [191]
    He C,Li S,Liao Z,et al..Texture classification of PolSAR data based on sparse coding of wavelet polarization textons[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(8):4576-4590.
    [192]
    Chen C T,Chen K S,and Lee J S.The use of fully polarimetric information for the fuzzy neural classification of SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2089-2100.
    [193]
    Nezry E,Lopes A,Ducrot-Gambart D,et al..Supervised classification of K-distributed SAR images of natural targets and probability of error estimation[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(5):1233-1242.
    [194]
    Kouskoulas Y,Ulaby F T,and Pierce L E.The Bayesian Hierarchical Classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(2):469-477.
    [195]
    Fjortoft R,Delignon Y,Pieczynski W,et al..Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(3):675-686.
    [196]
    Li H J and Lane R Y.Utilization of multiple polarization data for aerospace target identification[J].IEEE Transactions on Antennas and Propagation,1995,43(12):1436-1440.
    [197]
    Jones G and Bhanu B.Recognizing occluded objects in SAR images[J].IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):316-328.
    [198]
    马林.雷达目标识别技术综述[J].现代雷达,2011,33(6):1-7.Ma Lin.Review of radar automatic target recognition[J].Modern Radar,2011,33(6):1-7.
    [199]
    李丽亚.宽带雷达目标识别技术研究[D].[博士论文],西安电子科技大学,2009.Li Li-ya.Study on wideband radar target recognition[D].[Ph.D.dissertation],Xidian University,2009.
    [200]
    Novak L M and Burl M C.Optimal speckle reduction in polarimetric SAR imagery[J].IEEE Transactions on Aerospace and Electronic Systems,1990,26(2):293-305.
    [201]
    Lopes A and Sry F.Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):632-647.
    [202]
    Lee J S,Ainsworth T L,Wang Y,et al..Polarimetric SAR speckle filtering and the extended sigma filter[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(3):1150-1160.
    [203]
    Kostinski A and Boerner W.On the polarimetric contrast optimization[J].IEEE Transactions on Antennas and Propagation,1987,35(8):988-991.
    [204]
    Yang J,Dong G,Peng Y,et al..Generalized optimization of polarimetric contrast enhancement[J].IEEE Geoscience and Remote Sensing Letters,2004,1(3):171-174.
    [205]
    Potter L C and Moses R L.Attributed scattering centers for SAR ATR[J].IEEE Transactions on Image Processing,1997,6(1):79-91.
    [206]
    Papathanassiou K P.Polarimetric SAR interferometry[D].[Ph.D.dissertation],Technical University GRAZ,1999.
    [207]
    Cloude S R and Papathanassiou K P.Polarimetric SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1551-1565.
    [208]
    Sagues L,Lopez-Sanchez J M,Fortuny J,et al..Indoor experiments on polarimetric SAR interferometry[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):671-684.
    [209]
    Lee J S,Cloude S R,Papathanassiou K P,et al..Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2254-2263.
    [210]
    Schneider R Z,Papathanassiou K P,Hajnsek I,et al..Polarimetric and interferometric characterization of coherent scatterers in urban areas[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(4):971-984.
    [211]
    Cloude S R,Corr D G,and Williams M L.Target detection beneath foliage using polarimetric synthetic aperture radar interferometry[J].Waves in Random Media,2004,14(2):S393-S414.
    [212]
    Margarit G,Mallorqui J J,and Fabregas X.Single-pass polarimetric SAR interferometry for vessel classification[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3494-3502.
    [213]
    Xing S,Li Y,Dai D,et al..Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(6):3694-3705.
    [214]
    Fornaro G,Pauciullo A,Reale D,et al..Multilook SAR tomography for 3-D reconstruction and monitoring of single structures applied to COSMO-SKYMED data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(7):2776-2785.
    [215]
    熊涛.极化干涉合成孔径雷达应用的关键技术研究[D].[博士论文],清华大学,2009.Xiong Tao.Study on the key techniques of polarimetric synthetic aperture radar interferometry[D].[Ph.D.dissertation],Tsinghua University,2009.
    [216]
    卢红喜.极化干涉合成孔径雷达与层析成像技术研究[D].[博士论文],西安电子科技大学,2014.Lu Hong-xi.Study on polarimetric synthetic aperture radar interferometry and tomography[D].[Ph.D.dissertation],Xidian University,2014.
    [217]
    Zhu X X and Bamler R.Tomographic SAR inversion by L1-norm regularization-The compressive sensing approach[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(10):3839-3846.
    [218]
    Huang Y,Ferro-Famil L,and Reigber A.Under-foliage object imaging using SAR tomography and polarimetric spectral estimators[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(6):2213-2225.
    [219]
    Lavalle M,Solimini D,Pottier E,et al..Compact polarimetric SAR interferometry[J].IET Radar,SonarNavigation,2010,4(3):449-456.
    [220]
    Tan L,Huang P,Liu A,et al..Investigation on unsupervised classification of compact PolInSAR data[C].European Conference on Synthetic Aperture Radar,2012:517-520.
    [221]
    Guo S,Li Y,Yin Q,et al..Applying the Freeman-Durden decomposition tocompact polarimetric SAR Interferometry[C].IEEE Geoscience and Remote Sensing Symposium,2014:3486-3489.
    [222]
    Rousseau P R,Pathak P H,and Chou H T.A time domain formulation of the uniform geometrical theory of diffraction for scattering from a smooth convex surface[J].IEEE Transactions on Antennas and Propagation,2007,55(6):1522-1534.
    [223]
    Ergul and Gurel L.Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems[J].IEEE Transactions on Antennas and Propagation,2008,56(8):2335-2345.
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [3]TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033
    [4]CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140
    [5]DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002
    [6]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [7]HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165
    [8]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [9]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [10]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [11]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [12]LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [13]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [14]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [15]Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048
    [16]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [17]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [18]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [19]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(3)

    1. 张佳辉,苗洪利,杨忠昊,刘昆池. 基于SAR子孔径分解的海表面二维流场反演. 海洋学报. 2023(08): 24-30 .
    2. 李志远,郭嘉逸,张月婷,黄丽佳,李洁,吴一戎. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法. 雷达学报. 2022(01): 83-94 . 本站查看
    3. 雷禹,冷祥光,孙忠镇,计科峰. 宽幅SAR海上大型运动舰船目标数据集构建及识别性能分析. 雷达学报. 2022(03): 347-362 . 本站查看

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4565) PDF downloads(2033) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表  1  外辐射源雷达直升机旋翼回波模型仿真参数
      Table  1.  Simulation parameters of helicopter rotor echo model for passive radar
      信号载频 叶片数 叶片长度 旋转速率 发射站方位角 接收站方位角 发射站仰角 接收站仰角 SNR
      658 MHz 3 5 m 200 rpm 33° 76° 23° 23° –5 dB
      下载: 导出CSV 
      | 显示表格