Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
Citation: CHEN Shiqiang and HONG Wen. Analysis on the transmit distortion of the circular polarized wave based on the axial ratio parameter [J]. Journal of Radars, 2020, 9(2): 343–353. doi: 10.12000/JR19063

Analysis on the Transmit Distortion of the Circular Polarized Wave Based on the Axial Ratio Parameter

DOI: 10.12000/JR19063
Funds:  The National Natural Science Foundation of China (61431018)
More Information
  • Corresponding author: HONG Wen, whong@mail.ie.ac.cn
  • Received Date: 2019-06-27
  • Rev Recd Date: 2019-09-04
  • Available Online: 2019-09-29
  • Publish Date: 2020-04-01
  • Compact Polarimetric (CP) mode is a new dual-pol mode introduced in the last decade. The main current CP mode transmits circular polarized waves. Data in the form of Stokes parameters obtained by this mode has rotational invariance. In real engineering applications, transmit distortions in all dual-pol modes, including the CP mode, cannot be directly compensated with external calibration methods. Therefore, it is necessary to analysis the influences caused by transmit distortions. Until now, the Maximum Normalized Error (MNE) parameter has already been proposed by existing researches to analyze polarimetric quality of the Polarimetric SAR (PolSAR) system. This paper has proposed an analysis method to analysis the influence of transmit distortions in polarimetric modes with circular polarimetric wave in transmission, based on the Axial Ratio (AR) parameter of real transmitted wave. Firstly, this paper has analyzed the influence of different transmit distortion sources to AR parameter with simulations. Meanwhile, this part has also demonstrated the influence of same distortion sources to the MNE parameter. Through comparison of this two results, this paper has concluded three advantages of the AR parameter over the MNE parameter. At last, the effectiveness of the proposed evaluation method has been verified using real measured GF-3 distortion data and test data obtained by experimental system, which transmit circular polarized waves.

     

  • [1]
    MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [2]
    CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 79–89. doi: 10.1109/MSP.2014.2312099
    [3]
    CHARBONNEAU F J, BRISCO B, RANEY R K, et al. Compact polarimetry overview and applications assessment[J]. Canadian Journal of Remote Sensing, 2010, 36(Suppl 2): S298–S315. doi: 10.5589/M10-062
    [4]
    SOUYRIS J C, IMBO P, FJØRTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The π /4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634–646. doi: 10.1109/TGRS.2004.842486
    [5]
    STACY N and PREISS M. Compact polarimetric analysis of X-band SAR data[C]. The 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.
    [6]
    RANEY R K. Hybrid-polarity SAR architecture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3397–3404. doi: 10.1109/TGRS.2007.895883
    [7]
    洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074

    HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications (in Chinese and in English)[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074
    [8]
    RANEY R K. Comparing compact and quadrature polarimetric SAR performance[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 861–864. doi: 10.1109/LGRS.2016.2550863
    [9]
    RANEY R K, SPUDIS P D, BUSSEY B, et al. The lunar mini-RF radars: Hybrid polarimetric architecture and initial results[J]. Proceedings of the IEEE, 2011, 99(5): 808–823. doi: 10.1109/JPROC.2010.2084970
    [10]
    MISRA T and KIRANKUMAR A S. RISAT-1: Configuration and performance evaluation[C]. 2014 XXXIth URSI General Assembly and Scientific Symposium, Beijing, China, 2014: 1–4. doi: 10.1109/URSIGASS.2014.6929612.
    [11]
    KANKAKU Y, OSAWA Y, SUZUKI S, et al. The overview of the L-band SAR onboard ALOS-2[C]. The Progress in Electromagnetics Research Symposium, Moscow, Russia, 2009: 735–738.
    [12]
    TOUZI R and CHARBONNEAU F. Requirements on the calibration of hybrid-compact SAR[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1109–1112. doi: 10.1109/IGARSS.2014.6946623
    [13]
    THOMPSON A A. Overview of the RADARSAT constellation mission[J]. Canadian Journal of Remote Sensing, 2015, 41(5): 401–407. doi: 10.1080/07038992.2015.1104633
    [14]
    WANG Yanting, AINSWORTH T L, and LEE J S. Assessment of system polarization quality for polarimetric SAR imagery and target decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1755–1771. doi: 10.1109/TGRS.2010.2087342
    [15]
    GUO Shenglong, ZHANG Jingjing, LI Yang, et al. Effects of polarization distortion at transmission and faraday rotation on compact polarimetric SAR system and H/ α¯ decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1700–1704. doi: 10.1109/LGRS.2015.2420116
    [16]
    LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC press, 2009.
    [17]
    陈琳, 张晶晶, 李洋, 等. 单发双收SAR系统通用极化定标算法[J]. 雷达学报, 2012, 1(3): 323–328. doi: 10.3724/SP.J.1300.2012.20062

    CHEN Lin, ZHANG Jingjing, LI Yang, et al. General calibration algorithm for single-transmitting-dual-receiving polarimetric SAR system[J]. Journal of Radars, 2012, 1(3): 323–328. doi: 10.3724/SP.J.1300.2012.20062
    [18]
    JIANG Sha, QIU Xiaolan, HAN Bing, et al. Error source analysis and correction of GF-3 polarimetric data[J]. Remote Sensing, 2018, 10(11): 1685. doi: 10.3390/rs10111685
    [19]
    WRIGHT P A, QUEGAN S, WHEADON N S, et al. Faraday rotation effects on L-band spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2735–2744. doi: 10.1109/TGRS.2003.815399
    [20]
    FREEMAN A and SAATCHI S S. On the detection of faraday rotation in linearly polarized L-band SAR backscatter signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1607–1616. doi: 10.1109/TGRS.2004.830163
    [21]
    LIANG Weibin, JIA Zengzeng, QIU Xiaolan, et al. Polarimetric calibration of the GaoFen-3 mission using active radar calibrators and the applicable conditions of system model for radar polarimeters[J]. Remote Sensing, 2019, 11(2): 176. doi: 10.3390/rs11020176
    [22]
    MCKERRACHER P L, JENSEN J R, SEQUEIRA H B, et al. Mini-RF calibration, a unique approach to on-orbit synthetic aperture radar system calibration[C]. The 41st Lunar and Planetary Science Conference, The Woodlands, USA, 2010: 2352.
  • Relative Articles

    [1]LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001
    [2]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [3]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [4]DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002
    [5]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [6]GONG Zhihua, LI Kaiming, DUAN Pengwei, CHEN Chunjiang. Attitude and Orbital Coupled Modeling and Micro-Doppler Characteristics Analysis of the Projectile with Initial Disturbances[J]. Journal of Radars, 2023, 12(4): 793-803. doi: 10.12000/JR23026
    [7]TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033
    [8]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [9]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [10]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [11]CHEN Xiaolong, CHEN Weishi, RAO Yunhua, HUANG Yong, GUAN Jian, DONG Yunlong. Progress and Prospects of Radar Target Detection and Recognition Technology for Flying Birds and Unmanned Aerial Vehicles (in English)[J]. Journal of Radars, 2020, 9(5): 803-827. doi: 10.12000/JR20068
    [12]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [13]CHEN Huiyuan, LIU Zeyu, GUO Weiwei, ZHANG Zenghui, YU Wenxian. Fast Detection of Ship Targets for Large-scale Remote Sensing Image Based on a Cascade Convolutional Neural Network[J]. Journal of Radars, 2019, 8(3): 413-424. doi: 10.12000/JR19041
    [14]DING Hao, LIU Ningbo, DONG Yunlong, CHEN Xiaolong, GUAN Jian. Overview and Prospects of Radar Sea Clutter Measurement Experiments[J]. Journal of Radars, 2019, 8(3): 281-302. doi: 10.12000/JR19006
    [15]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [16]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
    [17]Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009
    [18]Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110
    [19]Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [20]Chen Xiao-lng, Guan jian, He You. Applications and Prospect of Micro-motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102
  • Cited by

    Periodical cited type(1)

    1. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 62.7 %META: 62.7 %PDF: 10.1 %PDF: 10.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.8 %其他: 16.8 %其他: 0.9 %其他: 0.9 %Absecon: 0.1 %Absecon: 0.1 %China: 0.5 %China: 0.5 %Germany: 0.0 %Germany: 0.0 %India: 0.1 %India: 0.1 %Japan: 0.2 %Japan: 0.2 %Malvern: 0.2 %Malvern: 0.2 %Netherlands: 0.1 %Netherlands: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.4 %[]: 0.4 %上海: 0.9 %上海: 0.9 %上海市: 0.0 %上海市: 0.0 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %云浮: 0.0 %云浮: 0.0 %佛山: 0.1 %佛山: 0.1 %兰辛: 0.0 %兰辛: 0.0 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %加州: 0.1 %加州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 12.3 %北京: 12.3 %南京: 0.6 %南京: 0.6 %南宁: 0.0 %南宁: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %坦佩: 0.1 %坦佩: 0.1 %大田广域: 0.1 %大田广域: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %宜春: 0.0 %宜春: 0.0 %常州: 0.0 %常州: 0.0 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.3 %广州: 0.3 %广州市: 0.0 %广州市: 0.0 %开封: 0.1 %开封: 0.1 %弗雷瑞斯: 0.3 %弗雷瑞斯: 0.3 %张家口: 0.3 %张家口: 0.3 %张家口市: 0.0 %张家口市: 0.0 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德宏: 0.1 %德宏: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.7 %成都: 0.7 %扬州: 0.2 %扬州: 0.2 %斯德哥尔摩: 0.0 %斯德哥尔摩: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.1 %沈阳: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.1 %济南: 0.1 %深圳: 0.9 %深圳: 0.9 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.4 %漯河: 0.4 %焦作: 0.0 %焦作: 0.0 %珠海: 0.0 %珠海: 0.0 %瑟普赖斯: 0.1 %瑟普赖斯: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 17.0 %芒廷维尤: 17.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.4 %苏州: 0.4 %西宁: 34.8 %西宁: 34.8 %西安: 1.4 %西安: 1.4 %贵阳: 0.0 %贵阳: 0.0 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %运城: 0.1 %运城: 0.1 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.0 %重庆: 0.0 %长沙: 0.7 %长沙: 0.7 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %青岛: 0.2 %青岛: 0.2 %首尔: 0.1 %首尔: 0.1 %首尔特别: 0.3 %首尔特别: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他AbseconChinaGermanyIndiaJapanMalvernNetherlandsUnited States[]上海上海市东莞中卫临汾云浮佛山兰辛加利福尼亚州加州包头北京南京南宁台北台州合肥吉林呼和浩特嘉兴坦佩大田广域大连天津宁波宜春常州平顶山广州广州市开封弗雷瑞斯张家口张家口市张家界徐州德宏惠州成都扬州斯德哥尔摩新乡无锡昆明杭州枣庄格兰特县武汉沈阳洛杉矶洛阳济南深圳渭南湖州湘潭漯河焦作珠海瑟普赖斯盐城石家庄石家庄市纽约绍兴绵阳罗马美国伊利诺斯芝加哥芒廷维尤芝加哥苏州西宁西安贵阳赫尔辛基运城连云港邯郸郑州重庆长沙阿姆斯特丹青岛首尔首尔特别鹰潭齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3351) PDF downloads(482) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint