Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Citation: DENG Shasa, ZHANG Fan, YIN Qiang, et al. Refined ship feature characterization method of full-polarimetric synthetic aperture radar for visual interpretation[J]. Journal of Radars, 2024, 13(2): 374–395. doi: 10.12000/JR23078

Refined Ship Feature Characterization Method of Full-polarimetric Synthetic Aperture Radar for Visual Interpretation

DOI: 10.12000/JR23078
Funds:  The National Natural Science Foundation of China (62201027, 62271034)
More Information
  • Corresponding author: YIN Qiang, yinq@buct.edu.cn
  • Received Date: 2023-05-09
  • Rev Recd Date: 2023-06-11
  • Available Online: 2023-06-16
  • Publish Date: 2023-07-10
  • With advances in satellite technology, Polarimetric Synthetic Aperture Radar (PolSAR) now have higher resolution and better data quality, providing excellent data conditions for the refined visual interpretation of artificial targets. The primary method currently used is a multicomponent decomposition, but this method can result in pixel misdivision problems. Thus, we propose a non-fixed threshold division method for achieving advanced feature ship structure characterization in full-polarimetric SAR images. Yamaguchi decomposition can effectively identify the primary scattering mechanism and characterize artificial targets. Its modified volume scattering model is more consistent with actual data. The polarization entropy can serve as the target scattering mechanism at a specified equivalent point in the weakly depolarized state, which can effectively highlight the ship structure. This paper combines the three components of the Yamaguchi decomposition algorithm with the entropy, and divides it into a nine-classification plane with a non-fixed threshold. This method reduces category randomness generated by noise at the threshold boundary for complicated threshold treatments. Furthermore, the Mixed Scattering Mechanism (MSM) which is the region where both secondary scattering and single scattering are significant, was proposed to better match the scattering types of typical structures of vessels in the experiment. The Generalized Similarity Parameter (GSP) was used to further shorten the intra-class distance and perform iterative clustering using a modified GSP-Wishart classifier. This method improves the vessel distinguishability by enhancing the secondary and mixed scattering mechanisms. Finally, this paper uses full-polarimetric SAR data from a port in Shanghai, China, for the experiment. We collected and filtered ship information and optical data from this port through the Automatic Identification System (AIS) and matched them with the ships in full-polarimetric SAR images to verify the correct characterization of each vessel’s features. The experimental results show that the proposed method can effectively distinguish three types of vessels: bulk carriers, container ships and tankers.

     

  • [1]
    张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6): 596–606. doi: 10.12000/JR16124.

    ZHANG Jie, ZHANG Xi, FAN Chenqing, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596–606. doi: 10.12000/JR16124.
    [2]
    代大海, 廖斌, 肖顺平, 等. 雷达极化信息获取与处理的研究进展[J]. 雷达学报, 2016, 5(2): 143–155. doi: 10.12000/JR15103.

    DAI Dahai, LIAO Bin, XIAO Shunping, et al. Advancements on radar polarization information acquisition and processing[J]. Journal of Radars, 2016, 5(2): 143–155. doi: 10.12000/JR15103.
    [3]
    赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5(6): 620–638. doi: 10.12000/JR16092.

    ZHAO Chunlei, WANG Yaliang, YANG Yunlong, et al. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6): 620–638. doi: 10.12000/JR16092.
    [4]
    SATO A, YAMAGUCHI Y, SINGH G, et al. Four-component scattering power decomposition with extended volume scattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 166–170. doi: 10.1109/LGRS.2011.2162935.
    [5]
    CHEN Siwei, WANG Xuesong, XIAO Shunping, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843–1855. doi: 10.1109/TGRS.2013.2255615.
    [6]
    XI Yuyang, LANG Haitao, TAO Yunhong, et al. Four-component model-based decomposition for ship targets using PolSAR data[J]. Remote Sensing, 2017, 9(6): 621. doi: 10.3390/rs9060621.
    [7]
    SINGH G and YAMAGUCHI Y. Model-based six-component scattering matrix power decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5687–5704. doi: 10.1109/TGRS.2018.2824322.
    [8]
    SINGH G, MALIK R, MOHANTY S, et al. Seven-component scattering power decomposition of POLSAR coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8371–8382. doi: 10.1109/TGRS.2019.2920762.
    [9]
    PAN Xueli, WU Zhenhua, YANG Lixia, et al. Ship detection method based on scattering contribution for PolSAR image[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503205. doi: 10.1109/LGRS.2021.3138796.
    [10]
    全斯农, 范晖, 代大海, 等. 一种基于精细极化目标分解的舰船箔条云识别方法[J]. 雷达学报, 2021, 10(1): 61–73. doi: 10.12000/JR20123.

    QUAN Sinong, FAN Hui, DAI Dahai, et al. Recognition of ships and chaff clouds based on sophisticated polarimetric target decomposition[J]. Journal of Radars, 2021, 10(1): 61–73. doi: 10.12000/JR20123.
    [11]
    LIU Dongsheng and HAN Ling. Integration of fine model-based decomposition and guard filter for ship detection in PolSAR images[J]. Sensors, 2021, 21(13): 4295. doi: 10.3390/s21134295.
    [12]
    QUAN Sinong, ZHANG Tao, WANG Wei, et al. Exploring fine polarimetric decomposition technique for built-up area monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204719. doi: 10.1109/TGRS.2023.3257773.
    [13]
    CUI Xingchao, SU Yi, and CHEN Siwei. A saliency detector for polarimetric SAR ship detection using similarity test[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3423–3433. doi: 10.1109/JSTARS.2019.2925833.
    [14]
    LIN Huiping, WANG Hongmiao, WANG Jing, et al. A novel ship detection method via generalized polarization relative entropy for PolSAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4001205. doi: 10.1109/LGRS.2020.3019196.
    [15]
    殷君君, 彭嘉耀, 杨健, 等. 基于局部竞争策略的极化SAR图像精细分类[J]. 雷达科学与技术, 2021, 19(5): 499–508, 516. doi: 10.3969/j.issn.1672-2337.2021.05.005.

    YIN Junjun, PENG Jiayao, YANG Jian, et al. Refined polarimetric SAR image classification based on localized competition[J]. Radar Science and Technology, 2021, 19(5): 499–508, 516. doi: 10.3969/j.issn.1672-2337.2021.05.005.
    [16]
    XING Xiangwei, JI Kefeng, ZOU Huanxin, et al. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1562–1566. doi: 10.1109/LGRS.2013.2262073.
    [17]
    张晰, 张杰, 纪永刚, 等. 基于结构特征的SAR船只类型识别能力分析[J]. 海洋学报, 2010, 32(1): 146–152.

    ZHANG Xi, ZHANG Jie, JI Yonggang, et al. The capability analysis of ship classification by structure feature using SAR images[J]. Acta Oceanologica Sinica, 2010, 32(1): 146–152.
    [18]
    LANG Haitao, ZHANG Jie, ZHANG Xi, et al. Ship classification in SAR image by joint feature and classifier selection[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 212–216. doi: 10.1109/LGRS.2015.2506570.
    [19]
    WANG Juan, HUANG Weigen, YANG Jingsong, et al. Polarization scattering characteristics of some ships using polarimetric SAR images[C]. SPIE 8179, SAR Image Analysis, Modeling, and Techniques XI, Prague, Czech Republic, 2011: 265–271.
    [20]
    LUO M R, CUI G, and RIGG B. The development of the CIE 2000 colour-difference formula: CIEDE2000[J]. Color Research &Application, 2001, 26(5): 340–350. doi: 10.1002/col.1049.
    [21]
    CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935.
    [22]
    YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699–1706. doi: 10.1109/TGRS.2005.852084.
    [23]
    AN Wentao, ZHANG Weijie, YANG Jian, et al. On the similarity parameter between two targets for the case of multi-look polarimetric SAR[J]. Chinese Journal of Electronics, 2009, 18(3): 545–550. doi: 10.23919/CJE.2009.10138264.
    [24]
    张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049.

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049.
    [25]
    周伟, 孙艳丽, 许成斌, 等. 一种多极化SAR舰船目标与方位向模糊鉴别方法[J]. 雷达学报, 2015, 4(1): 84–92. doi: 10.12000/JR14147.

    ZHOU Wei, SUN Yanli, XU Chengbin, et al. A method for discrimination of ship target and azimuth ambiguity in multi-polarimetric SAR imagery[J]. Journal of Radars, 2015, 4(1): 84–92. doi: 10.12000/JR14147.
  • Relative Articles

    [1]WAN Hao, LIANG Jing. HRRP Unsupervised Target Feature Extraction Method Based on Multiple Contrastive Loss in Radar Sensor Networks[J]. Journal of Radars. doi: 10.12000/JR24200
    [2]WANG Binglu, JIN Yang, ZHANG Lei, ZHENG Le, ZHOU Tianfei. Collaborative Perception Method Based on Multisensor Fusion[J]. Journal of Radars, 2024, 13(1): 87-96. doi: 10.12000/JR23184
    [3]ZHANG Xuqi, ZHOU Bin, LIU Haiqi, LIAO Ji, LIU Yongxu, YANG Guang. A Scalable Method for Group Target Tracking Using Multisensor with Limited Field of Views[J]. Journal of Radars, 2024, 13(6): 1220-1238. doi: 10.12000/JR24054
    [4]WANG Zengfu, SHAO Yi, QI Dengliang, JIN Shuling. Consistency-based Air Target Height Estimation and Location in Distributed Space-based Radar Network[J]. Journal of Radars, 2023, 12(6): 1249-1262. doi: 10.12000/JR23157
    [5]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [6]DA Kai, YANG Ye, ZHU Yongfeng, FU Qiang. Multitarget Tracking Using Distributed Radar with Partially Overlapping Fields of Views[J]. Journal of Radars, 2022, 11(3): 459-468. doi: 10.12000/JR21183
    [7]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [8]XUE Cewen, FENG Xuan, LI Xiaotian, LIANG Wenjing, ZHOU Haoqiu, WANG Ying. Multi-polarization Data Fusion Analysis of Full-Polarimetric Ground Penetrating Radar[J]. Journal of Radars, 2021, 10(1): 74-85. doi: 10.12000/JR20104
    [9]JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088
    [10]FANG Linlin, ZHOU Chao, WANG Rui, HU Cheng. RCS Feature-aided Insect Target Tracking Algorithm[J]. Journal of Radars, 2019, 8(5): 598-605. doi: 10.12000/JR19067
    [11]Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
    [12]Ge Jianjun, Li Chunxia. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy[J]. Journal of Radars, 2017, 6(6): 587-593. doi: 10.12000/JR17081
    [13]Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
    [14]Yang Wei, Chen Jie, Li Chun-sheng. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction[J]. Journal of Radars, 2015, 4(1): 29-37. doi: 10.12000/JR15017
    [15]Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
    [16]Qi Lin, Wang Hai-peng, Liu Yu. Track segment association algorithm based on statistical binary thresholds[J]. Journal of Radars, 2015, 4(3): 301-308. doi: 10.12000/JR14077
    [17]Zhu Hong-wei, Tang Xiao-ming, He You. Observability Analysis of Sensor Bias Based on the Track-independent Model[J]. Journal of Radars, 2013, 2(4): 454-460. doi: 10.3724/SP.J.1300.2013.13068
    [18]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
    [19]Yuan Ding-bo, Meng Cang-zhen, Xu Jia, Peng Ying-ning. Target Association of Heterogeneous Sensors Based on Nearest-neighbor and Topology[J]. Journal of Radars, 2012, 1(4): 393-398. doi: 10.3724/SP.J.1300.2012.20083
    [20]Meng Cang-zhen, Yuan Ding-bo, Xu Jia, Peng Shi-bao, Wang Xiao-jun. A New Target-correlation Algorithm for Heterogeneous Sensors Based on Neural Network Classification[J]. Journal of Radars, 2012, 1(4): 399-405. doi: 10.3724/SP.J.1300.2012.20087
  • Cited by

    Periodical cited type(4)

    1. 王进,冷祥光,孙忠镇,马晓杰,杨阳,计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究. 系统工程与电子技术. 2024(07): 2237-2255 .
    2. 曹晔,闫海鹏,张剑琦,师亚辉,张振华. 高动态条件下舰船目标SAR成像算法研究. 遥测遥控. 2019(04): 40-48 .
    3. 魏翔飞,王小青,种劲松. 一种基于局域中心频率的SAR图像舰船方位向速度估计方法. 电子与信息学报. 2018(09): 2242-2249 .
    4. 杨传安,齐向阳,李宁. 一种基于参数估计的运动舰船SAR成像方法. 国外电子测量技术. 2017(05): 30-36 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 76.3 %META: 76.3 %PDF: 12.5 %PDF: 12.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.4 %其他: 0.4 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.0 %Central District: 0.0 %China: 0.7 %China: 0.7 %Herndon: 0.5 %Herndon: 0.5 %India: 0.1 %India: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.0 %上海: 1.0 %东京: 0.0 %东京: 0.0 %东莞: 0.3 %东莞: 0.3 %九江: 0.1 %九江: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.1 %包头: 0.1 %北京: 16.3 %北京: 16.3 %北京市: 0.0 %北京市: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.7 %南京: 0.7 %南昌: 0.8 %南昌: 0.8 %南昌市: 0.1 %南昌市: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.5 %大连: 0.5 %天津: 0.3 %天津: 0.3 %太原: 0.3 %太原: 0.3 %宣城: 0.2 %宣城: 0.2 %巴中: 0.0 %巴中: 0.0 %布里斯班: 0.1 %布里斯班: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.3 %广州: 0.3 %广州市天河区: 0.1 %广州市天河区: 0.1 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %张家口: 1.2 %张家口: 1.2 %德阳: 0.1 %德阳: 0.1 %成都: 1.2 %成都: 1.2 %新乡: 0.1 %新乡: 0.1 %无锡: 0.0 %无锡: 0.0 %昆明: 0.0 %昆明: 0.0 %杭州: 1.4 %杭州: 1.4 %桂林: 0.3 %桂林: 0.3 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.0 %沈阳: 0.0 %泰安: 0.1 %泰安: 0.1 %泰州: 0.1 %泰州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.0 %济南: 0.0 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.3 %渭南: 0.3 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %珠海: 0.0 %珠海: 0.0 %石家庄: 0.7 %石家庄: 0.7 %石家庄市: 0.0 %石家庄市: 0.0 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.3 %绵阳: 0.3 %聊城: 0.1 %聊城: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 0.9 %芝加哥: 0.9 %莫斯科: 0.0 %莫斯科: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.0 %衡水: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 32.2 %西宁: 32.2 %西安: 2.0 %西安: 2.0 %运城: 0.1 %运城: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.5 %重庆: 0.5 %金华: 0.0 %金华: 0.0 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %香港: 0.0 %香港: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他AbseconCentral DistrictChinaHerndonIndia[]上海东京东莞九江伊利诺伊州佛山兰州兰辛包头北京北京市华盛顿州南京南昌南昌市台北台州合肥哈尔滨嘉兴夏尔迦大庆大连天津太原宣城巴中布里斯班常州常德广州广州市天河区库比蒂诺张家口德阳成都新乡无锡昆明杭州桂林武汉沈阳泰安泰州洛阳济南深圳温州渭南湖州湘潭漯河漳州烟台珠海石家庄石家庄市纽约绍兴绵阳聊城舟山芒廷维尤芝加哥莫斯科蚌埠衡水衢州西宁西安运城郑州鄂州重庆金华长沙青岛香港齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1318) PDF downloads(383) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint