Processing math: 100%
TAN Pengyuan, ZHU Jianjun, FU Haiqiang, et al. Inversion of forest height based on ALOS-2 PARSAR-2 multi-baseline polarimetric SAR interferometry data[J]. Journal of Radars, 2020, 9(3): 569–577. doi: 10.12000/JR20030
Citation: Dai Da-hai, Liao Bin, Xiao Shun-ping, Wang Xue-song. Advancements on Radar Polarization Information Acquisition and Processing[J]. Journal of Radars, 2016, 5(2): 143-155. doi: 10.12000/JR15103

Advancements on Radar Polarization Information Acquisition and Processing

DOI: 10.12000/JR15103
Funds:

The National Natural Science Foundation of China (61302143, 61501473, 61490693), Nation High-Tech RD Program of China (2013AA122202)

  • Received Date: 2015-09-13
  • Rev Recd Date: 2015-11-06
  • Publish Date: 2016-04-28
  • The study on radar polarization information acquisition and processing has currently been one important part of radar techniques. The development of the polarization theory is simply reviewed firstly. Subsequently, some key techniques which include polarization measurement, polarization anti-jamming, polarization recognition, imaging and parameters inversion using radar polarimetry are emphatically analyzed in this paper. The basic theories, the present states and the development trends of these key techniques are presented and some meaningful conclusions are derived.

     

  • 森林高度是估算森林蓄积量及生物量的重要基础数据,对于研究森林资源状况以及分析全球生态环境、气候变化具有重要意义。极化合成孔径雷达干涉测量技术(Polarimetric SAR Interferometry, PolInSAR)采用微波监测模式,其回波信号不仅记录垂直结构及其属性信息,且可以区分同一分辨单元内不同散射体高度的能力,已被视为大范围、高分辨率、高精度反演森林高度的有效手段之一[1]

    为了实现利用PolInSAR观测量准确地提取森林高度,Thrauhft等人[2]建立了随机地体二层散射模型(Random Volume over Ground, RVoG),该模型将森林散射场景抽象为两层,即由随机均匀分布的散射体组成的植被层,以及微波信号不可穿透的地表层。随后,Papathanassiou等人[3,4]进一步分析PolInSAR复相干性与RVoG模型的关联,建立了利用PolInSAR反演森林高度的框架。实质上,该框架是基于体散射去相干的模型表达来反演森林高度等参数的,并且利用不同PolInSAR数据都获得了较高的反演精度[5-7]

    由于森林场景具有显著的时变性,具有长时间间隔的星载重轨干涉SAR(如ALOS-1至少为46天,ALOS-2为14天)散射场景内介电常数变化(如降雨)和风动都会产生严重的时间去相干。因此,除了体去相干的影响,时间去相干也是星载重轨极化干涉SAR数据中不可忽略的去相干因素,决定了森林参数反演的精度,甚至是反演成败的关键。为此,Yang等人[8]在随机移动散射模型(Random Motion over Ground, RMoG)[9]和体时去相干散射模型 (Volume Temporal Decorrelation, VTD)模型[10]基础上,提出一种时间去相干半经验森林高度反演方法。该方法结合少量机载LiDAR森林高度数据辅助时间去相干半经验模型解算,利用ALOS-1 PARSAR-1 HV极化相干幅度成功实现了大尺度森林高度反演。

    然而,该方法需假设HV极化不包含地表散射回波能量贡献,事实上,L波段SAR信号具有较强的穿透性,尤其当森林高度较低或密度较小时,HV极化方式会记录显著地表回波信号。此外,该方法只适用于单基线干涉数据,尚未考虑多基线条件下,如何充分利用观测几何的多样性提升反演结果的可靠性。因此本文的目的是针对上述反演方法的限制,利用ALOS-2 PARSAR-2多基线PolInSAR数据更为准确地提取森林高度。主要思路如下:首先利用相干最大分离算法(Maximum Coherence Difference, MCD)在极化空间内寻求具有最少地面散射能量贡献的极化方式,以获得更为纯净的森林冠层散射贡献。然后利用该极化方式的相干幅度,在少量森林高度地面调查数据辅助下基于时间去相干半经验模型进行森林高度反演。在此基础之上,结合多基线数据根据PolInSAR相干集在复数平面内的几何表达,甄选最优观测干涉数据的反演结果作为森林高度反演最终结果。

    综合顾及垂直方向上散射体分布产生的体去相干、散射场景内介电特性改变和植被风动引起的时间去相干同时占主导地位,星载重轨PolInSAR复相干系数一般形式表示为[8]

    γ(ω)=eiφ0γvdγv/m+γgdμ(ω)1+μ(ω) (1)

    式中,φ0为地表相位;γvdγgd分别表示植被体层和地面层介电特性改变引起的时间去相干复因子;μ(ω)为地体幅度比,与极化方式有关;γv/m为体散射去相干和时间去相干(植被风动引起)产生的耦合去相干

    γv/m=h0exp[12(4πλ)2σ2r(z)]f(z)exp(ikzz)dzh0f(z)dz (2)

    其中,h表示森林高度;f(z)为指数形式的垂直结构函数,描述垂直方向z上散射体的分布;σr(z)为散射体沿雷达视线方向的随机运动标准差,假定与森林高度呈线性关系

    σr(z)=σrhrz (3)

    式中,σr表示在参考高度hr(根据先验信息一般设为15 m[8,9])处的运动标准差。

    为了解决上述模型过参数化问题,Yang等人[8]对散射场景做如下假设:(1) 散射场景内时间去相干与消光系数在空间上具有一致性;(2) HV极化方式具有较小地面散射能量贡献,可假定其地体幅度比μmin=0,此时对于该极化方式可忽略地面层介电常数改变引起的时间去相干;(3) 假定干涉场景为零空间基线理想情况(忽略森林垂直结构引起的体散射去相干),即垂直有效波束kz=0,此时对于式(2)适用积分第一中值定理(即对于在给定区间[a,b]有连续函数f(x)和同号可积函数g(x),区间内存在一点ε满足baf(x)g(x)dx=f(ε)bag(x)dx。因此在上述假定条件下,式(1)可简化为时间去相干半经验模型[8,11]

    γ=Ssceneexp[12(4πσrαλhr)2h2]Sscenesinc(hCscene) (4)

    其中,α为中值ε关于森林高度的比例因子,即ε=αh(0α1); Sscene, Cscene分别与植被体层介电特性改变和风动引起的时间去相干有关

    Sscene=|γvd|; Cscene=λhr2π2σrα (5)

    已有方法主要选用对森林冠层较为敏感的HV极化方式进行模型求解,但是ALOS-2 PALSAR-2发射具有较强穿透能力的L波段电磁波,HV极化方式回波信号中同样会记录显著地表回波信号。鉴于此,本文利用ALOS-2 PALSAR-2全极化数据结合极化相干最优理论,尽可能抑制地表回波信号的干扰。具体方法如下:

    在主辅极化SAR影像散射机制相同的情况下,极化干涉SAR的复相干系数表示为[12]

    γ=ωHΩ12ωωHT11ωωHT22ω (6)

    式中,自相关矩阵T11T22都是标准Hermitian相干矩阵,分别描述主辅影像的极化特性,Ω12为互相关矩阵,不仅包含极化信息,还包含了主副影像不同极化通道间的干涉相位关系。ω为归一化复投影矢量,通过转换ω可以计算极化空间内任意极化基下对应散射机制的复相干系数,组成相干集。该复相干系数集合形成的区域边界范围可以看作将相干复平面旋转任意角度,得到的实部最大和最小相干系数[13]

    Re(γeiϕ)=ωHAωωHTωA=eiϕΩ12+eiϕΩH122,T=T11+T222} (7)

    式中,ϕ为旋转相位,在[0,π)范围内等间隔采样角度。式(7)求极值可以转化为求解特征值问题即Aω=λTω,进而得到最大和最小特征值分别对应的特征向量ω1ω2,那么相干区域的一对边界点可以表示为[14]

    γ1=ωH1Ω12ω1ωH1Tω1, γ2=ωH2Ω12ω2ωH2Tω2 (8)

    相比传统InSAR技术只能获取HH, HV或VV极化方式对应的复相干系数,相干集中包含了特定极化散射机理对应的复相干系数,为寻求极化空间内具有更为纯净森林冠层散射贡献的极化方式提供了可能。相干区域范围示意如图1所示,其中在相干区域成对边界点中距离最远的一对相干系数点γA, γB(也就是相干区域长轴两端点),可以表征植被层和地表层有效相位中心的最大分离[15]。根据式(9)进一步确定体散射占优极化方式复相干γ(μmin)与地表散射占优极化方式的复相干γ(μmax)

    图  1  不同干涉对相干区域在复平面上的示意图
    Figure  1.  Coherent regions on the complex plane for different interferometric pairs
    kz>0:ifarg(γAγB)>0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγB)<0thenγ(μmin)=γB,γ(μmax)=γAkz<0:ifarg(γAγB)<0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγB)>0thenγ(μmin)=γB,γ(μmax)=γA} (9)

    其中,μmin表示具有最小地体幅度比的极化方式,对应体散射占优极化方式复相干;μmax表示具有最大地体幅度比的极化方式,对应表面散射占优极化方式复相干;kz为垂直有效波束,取决于成像相对几何关系(垂直基线B,斜距R,入射角θ和雷达波长λ)[16]

    kz=4πBλRsinθ (10)

    即便简化了模型参数和采用多基线PolInSAR数据增加了观测量,利用传统多维非线性迭代求解时间去相干半经验模型仍存在秩亏问题。因此本文采用一种外部数据辅助反演法[8],即先利用小范围真实森林高度数据辅助解算出模型参数SsceneCscene,然后代入模型中即可得到整个散射场景范围的森林高度结果。模型参数求解具体思路如下:对于给定模型参数初始值,利用训练数据中的μmin极化方式相干幅度结合式(4)可以得到反演森林高度结果hinvert,它与对应真实森林高度数据hreal确定的散点图如图2所示。理想情况下,两者数据散点应沿虚线y=x分布,但实际上在初始模型参数误差存在情况下,两者散点点阵椭圆主轴与y=x并非一致,而是存在一定的偏差。因此通过利用训练数据对其调整来寻求散射场景最佳模型参数。

    图  2  反演森林高度与真实森林高度散点点阵椭圆示意图
    Figure  2.  Scatters ellipse between invert height and real height

    主成分分析思想[17]为实现上述思路提供了契机,即通过对训练数据中hrealhinvert这两个二维数据的协方差矩阵进行特征值分解,可以确定该二维数据降维后的主轴(也就是散点点阵椭圆的长轴)斜率k

    X=[Var(hreal)Cov(hreal,hinvert)Cov(hinvert,hreal)Var(hinvert)]=[P11P12P21P22][λ100λ2][P11P12P21P22]1k=P21P11} (11)

    其中λ1λ2为按降序排列的特征值,P为特征值对应的特征向量的元素。而点阵椭圆质心与虚线y=x的偏差 b可以表示为

    b=M(hreal)M(hinvert)[M(hreal)+M(hinvert)]/2 (12)

    式中,M 表示取平均运算。

    散点点阵椭圆主轴确定后,显然可以通过建立使逼近参数k, b分别趋近于1, 0的目标函数

    (k1)2+(b0)2=min (13)

    该目标函数可以利用高斯-牛顿迭代算法进行非线性最小二乘求解,如式(14)所示

    [SsceneCscene]=(JT0J0)1JT0[1k00b0]+[Sscene0Cscene0] (14)

    式中,表示最终迭代次数;通过给定模型参数初始值Sscene0, Cscene0,结合上述主成分思想可以得到初始点相应的k0, b0以及雅克比矩阵J0

    J0=[kSscenekCscenebSscenebCscene]|Sscene0Cscene0 (15)

    然后将得到修正后的模型参数作为新的初始点进行下一次迭代,经过多次迭代后即可获得最佳模型参数Sscene, Cscene,迭代终止条件为(ε为经验阈值,本文设为106)

    |[SsceneCscene][S(1)sceneC(1)scene]|<ε (16)

    在利用训练数据求得时间去相干半经验模型参数后,对每个像元求解一元非线性方程得到整个散射场景内的森林高度结果。

    时间去相干、体去相干以及其他噪声等因素会共同影响PolInSAR复相干性在复平面单位圆上的几何表达[18]。在多基线配置下,不同干涉对在同一分辨单元内往往呈现出不同的相干区域结构(如图1所示)。而相干特性P可以作为评价相干区域结构的指标[19]

    P=|γ(μmin)γ(μmax)||γ(μmin)+γ(μmax)| (17)

    式中,γ(μmin), γ(μmax)为2.2节所述相干区域长轴的两端点,分别对应体散射极化通道与地表散射极化通道的复相干系数。|γ(μmin)γ(μmax)|即为极化相干区域的长轴,反映了不同极化相干点在复数单位圆的分离程度;|γ(μmin)+γ(μmax)|为相干区域质心到坐标原点距离的2倍,反映了相干区域整体相干性的平均水平。因此,P 值越大说明该干涉对具有更好的相干性质量与极化分离度,反演的结果更为可靠。

    通过相干特性指标P 甄选出不同干涉对在同一分辨单元内反演出的最优森林高度值作为多基线PolInSAR森林高度融合结果,多基线PolInSAR融合反演框架可表示为

    maxP1(γ1(μmin),γ1(μmax))P2(γ2(μmin),γ2(μmax))PN(γN(μmin),γN(μmax)) (18)

    式中,N 为极化干涉SAR观测基线数。

    研究区域黄丰桥国有林场(27°05—27°24 N, 113°35—113°55 E)呈带状分布,横跨湖南省攸县东西两部(如图3所示)。该林场属亚热带季风湿润性气候区,年平均气温17.8 °C,年降水量1410.8 mm,大部分降雨发生于春、夏季。林场境内森林茂盛,拥有森林蓄积量90.12×104 m3,森林覆盖率达90%。林分类型以针叶林为主,包括杉木、油松、落叶松等。

    图  3  实验区:绿线范围为黄丰桥(HFQ)林场研究区域,蓝色虚线为ALOS-2 PALSAR-2影像范围,圆点为地面实测林分样地
    Figure  3.  The test site: the green line indicates the study area of HuangFengQiao (HFQ) forestry center, the blue dotted line indicates the ALOS-2 PALSAR-2 image range, and the dots are field measurement plots

    地面实测数据由中南林业科技大学于2016年6~7月采集得到,通过在林区范围内选取60个相互独立的林分样地以确保避免空间自相关,每个林分样地规格为30×30 m。树高则基于单木测高原理利用激光测高仪测得,林分高度范围为4.60~20.20 m,平均高度为13.24 m。本文通过随机采样,将60个林分样地数据随机分为45个训练数据(图3黄点所示)和15个验证数据(图3红点所示)两组。

    多基线星载重轨PolInSAR数据是利用日本宇航局(JAXA)提供的5景覆盖研究区域的ALOS-2 PALSAR-2 L波段全极化数据。该SAR影像范围如图3蓝色虚线所示,获取时间为2016年6月至8月,获取模式为StripMap2(SM2),影像主要参数信息如表1所示。将5景SAR影像组成3个时间基线为14天的干涉影像对(BL1, BL2, BL3),然后各自进行配准处理,并进行公共带通滤波以确保去除几何去相干。相干性以11×11窗口进行估计,并应用Boxcar滤波进行平滑处理以消除斑点效应。最后利用SRTM DEM对SAR影像进行地理编码,并将其重采样至与DEM空间分辨率一致(30×30 m)。图4为3个干涉对的HV极化和μmin极化的相干性统计图,由统计图可见不同干涉对的相干性均较低,说明研究区域受时间去相干影响较为严重。

    表  1  ALOS-2 PALSAR-2参数信息
    Table  1.  Parameter information of ALOS-2 PALSAR-2
    日期(2016年)垂直有效波数(rad/m)时间基线(天)距离向/方位向分辨率(m)中心入射角 (°)极化方式
    0616—0630 (BL1)0.013~0.015
    0630—0714 (BL2)0.010~0.011142.86/2.9738.99Full
    0811—0825 (BL3)0.009~0.010
    下载: 导出CSV 
    | 显示表格
    图  4  相干性统计图
    Figure  4.  The histograms of coherence

    以选取的15个验证林分的实测森林高度(H-field)对反演结果(H-invert)进行分析评价,图5为3个干涉对利用HV极化反演得到的散点图结果,均方根误差RMSE分别为:4.20 m, 4.03 m和3.42 m。利用μmin极化方式反演的验证结果如图6所示,3个干涉对的反演精度分别提高了:20%, 17%和12%,除此之外,相关系数R2也分别有所提高。分析认为采用全极化数据结合PolInSAR相干优化算法扩展了极化空间,相比已有方法中选用的HV极化,μmin极化含有更少地表散射贡献,更贴近时间去相干半经验模型推导过程中基于“零”地体幅度比的关键假设。

    图  5  单基线InSAR反演高度与验证数据散点图
    Figure  5.  Scatterplot comparison between inversion height of single baseline InSAR and validation data
    图  6  单基线PolInSAR反演高度与验证数据散点图
    Figure  6.  Scatterplot comparison between inversion height of single baseline PolInSAR and validation data

    从上述单基线森林高度反演结果看,不同干涉对反演整体精度较为接近,但是对于同一林分在利用不同干涉对反演的结果却存在明显差异。因此,当多基线数据可用时,我们进一步在单基线PolInSAR森林高度反演结果的基础上挖掘PolInSAR数据本身特性并对其森林高度反演能力进行评判。与时间去相干相关的参数SsceneCscene共同反映了散射场景内的时间去相干影响水平,其中Sscene与植被体层介电特性变化相关,Cscene反映了植被体层随机运动引起时间去相关水平。表2即为单基线PolInSAR模型参数解算结果,对于不同干涉对,Sscene越小,表明该基线在散射场景内植被体层介电变化(降水等引起)越显著;Cscene越小,则表明植被体层随机运动(风动等引起)越强烈。从图4相干性统计图也可以看出,干涉对BL1相干性相对更低,受时间去相干的影响更为严重。因此,在不同时间去相干以及其他噪声影响下,每个干涉对在同一分辨单元内会具有不同的的相干特性,呈现出优劣不同的相干区域结构。

    表  2  单基线PolInSAR模型参数解算结果
    Table  2.  Model parameter results of single baseline PolInSAR inversion
    模型参数BL1BL2BL3
    Sscene0.690.780.78
    Cscene9.8810.0811.14
    下载: 导出CSV 
    | 显示表格

    3个干涉对在验证林分的相干特性P值、反演森林高度值以及多基线融合森林高度值如表3所示,从整体看,根据相干特性P值大小从3个单基线PolInSAR反演结果中甄选出的森林高度结果更接近于实测真实森林高度。整个实验区的多基线PolInSAR融合反演结果以及精度评定如图7所示,均方根误差RMSE为2.05 m,相比于已有的方法,本文提出的多基线PolInSAR融合反演策略精度至少提高了40%(与图5中BL3基线结果对比),同时,相关系数也提升至0.81。

    表  3  3个干涉对的相干特性P值以及森林高度值
    Table  3.  Coherence characteristic P-value and forest heights for three interferometric pairs
    林分样地编号BL1 P值 / 森林高度(m)BL2 P值 / 森林高度(m)BL3 P值 / 森林高度(m)多基线融合结果(m)实测森林高度(m)
    10.130 / 17.820.113 / 17.020.081 / 16.8917.8214.43
    20.116 / 14.380.104 / 15.300.091 / 16.5214.3814.20
    30.092 / 12.460.075 / 15.830.135 / 11.3411.349.80
    40.103 / 15.210.111 / 15.340.119 / 14.1914.1916.00
    50.106 / 6.860.106 / 7.240.131 / 8.318.3110.70
    60.110 / 12.980.083 / 14.670.118 / 11.8911.8913.50
    70.114 / 13.350.096 / 15.300.101 / 16.1013.3513.43
    80.079 / 14.290.106 / 16.150.117 / 16.2216.2216.95
    90.069 / 12.120.090 / 17.630.060 / 12.3017.6320.10
    100.104 / 12.330.089 / 13.670.102 / 11.7212.3315.60
    110.075 / 18.340.103 / 16.750.154 / 10.1610.1613.30
    120.113 / 9.080.134 / 9.460.106 / 12.699.4611.00
    130.086 / 13.760.096 / 9.070.109 / 16.0016.0016.40
    140.197 / 10.170.230 / 8.710.186 / 9.518.716.00
    150.103 / 14.590.064 / 19.170.128 / 15.4015.4014.70
    下载: 导出CSV 
    | 显示表格
    图  7  多基线PolInSAR融合反演
    Figure  7.  Multi baseline PolInSAR fusion inversion

    在多基线全极化数据可用条件下,弥补单基线InSAR观测信息不足以及几何结构单一的问题,对于反演结果整体精度提升具有重要作用。本文提出了一种星载重轨多基线PolInSAR反演森林高度的策略,对InSAR极化空间和观测几何空间进行扩展,主要结论如下:

    (1) 该方法利用MCD相干优化算法获得对体散射最为敏感的极化方式,并基于时间去相干半经验模型进行森林高度反演,使每条单基线反演精度在一定程度上都有所提高。

    (2) 利用由相干特性指标P确定的相干区域最优准则可以优选出同一分辨单元内最优的单基线森林高度反演结果。因此,相比仅利用单基线单一极化反演方法,多基线PolInSAR融合策略具有更好的稳定性,精度也更高。

  • [1]
    庄钊文, 肖顺平, 王雪松. 雷达极化信息处理及应用[M]. 北京:国防工业出版社, 1999: 1-13.Zhuang Zhao-wen, Xiao Shun-ping, and Wang Xue-song. Radar Polarization Information Processing and Application[M]. Beijing: National Defense Industry Press, 1999: 1-13.
    [2]
    代大海. 极化雷达成像及目标特征提取研究[D]. [博士论文], 国防科学技术大学, 2008.Dai Da-hai. Study on polarimetric radar imaging and target feature extraction[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    [3]
    Boerner W M. Direct and Inverse Methods in Radar Polarimetry[M]. Netherlands: Kluwer Academic Publishers, 1992.
    [4]
    Giuli D. Polarisation diversity in radars[J]. Proceedings of IEEE, 1986, 74(2): 245-269.
    [5]
    王被德. 近三年来雷达极化研究的进展[J]. 现代雷达, 1996, 18(2): 1-14.Wang Bei-de. Advances on radar polarimetry research in recent three years[J]. Modern Radar, 1996, 18(2): 1-14.
    [6]
    肖顺平. 宽带极化雷达目标识别的理论与应用[D]. [博士论文], 国防科学技术大学, 1995.Xiao Shun-ping. Study on wideband polarimetric radar target recognition[D]. [Ph.D. dissertation], National University of Defense Technology, 1995.
    [7]
    王雪松. 宽带极化信息处理的研究[D]. [博士论文], 国防科学技术大学, 1999.Wang Xue-song. Study on wideband polarization information processing[D]. [Ph.D. dissertation], National University of Defense Technology, 1999.
    [8]
    Stuhr F, Jordan R, and Werner M. SIR-C/X-SAR: a multifaceted radar[J]. IEEE Aerospace and Electronic System Magazine, 1995, 10(10): 15-24.
    [9]
    Jordan R L, Huneycutt B L, and Werner M. The SIR-C/X-SAR synthetic aperture radar system[J]. IEEE Transcations on Geoscience and Remote Sensing, 1995, 33(4): 829-839.
    [10]
    Thompson A A, Luscombe A P, et al.. New modes and techniques of the RADARSAT-2 SAR[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium, 2001: 485-487.
    [11]
    Igarashi T, Shimada M, Rosenqvist A, et al.. Preliminary study on data sets of ADEOS-II and ALOS dedicated to terrestrial carbon observation[J]. Advances in Space Research, 2003, 32(11): 2147-2152.
    [12]
    Cohen D A. A light SAR mission design study for a NASA-sponsored joint[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium, 1998: 253-255.
    [13]
    Hilland J E, Stuhr F V, Freeman A, et al.. Future NASA spaceborne SAR missions[J]. IEEE Aerospace and Electronic System Magazine, 1998(11): 9-16.
    [14]
    Werninghaus R, Balzer W, Buckreuss S, et al.. The TerraSAR-X mission[C]. EUSAR, 2004: 49-52.
    [15]
    Sharay Y and Naftaly U. TECSAR: design considerations and programme status[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(2): 117-121.
    [16]
    王涛. 弹道中段目标极化域特征提取与识别[D]. [博士论文], 国防科学技术大学, 2006.Wang Tao. Feature extraction and recognition of targets in ballistic midcourse in polarization domain[D]. [Ph.D. dissertation], National University of Defense Technology, 2006.
    [17]
    李永祯, 肖顺平, 王雪松, 等. 地基防御雷达的有源假目标极化鉴别能力[J]. 系统工程与电子技术, 2005, 27(7): 1164-1168.Li Yong-zhen, Xiao Shun-ping, Wang Xue-song, et al.. Polarization discrimination capability analysis of active multi-decoy and radar target of ground-base radar system[J]. Systems Engineering and Electronics, 2005, 27(7): 1164-1168.
    [18]
    William Z, Lemnios, and Alan A Grometstein. Overview of the Lincoln Laboratory Ballistic Missile Defense.
    [19]
    Melvin L Stone and Gerald P Banner. Radars for the detection and tracking of ballistic missiles, satellites, and planets[J]. Lincoln Laboratory Journal, 2000, 12(2): 217-244.
    [20]
    Arthur J S, Henry J C, Pettengill G H, et al.. The millstone radar in satellite and missile tracking[J]. Planetary and Space Science, 1961, 7: 81-93.
    [21]
    Freeman E C, ed. MIT Lincoln Laboratory: technology in the national interest (Lincoln Laboratory, Lexington, Mass, 1995): 83.
    [22]
    Huynen J R. Phenomenological theory of radar target[D]. [Ph.D. dissertation], Technical University Delft, 1970.
    [23]
    代大海. POLSAR图像模拟及目标检测与分类方法研究[D]. [硕士论文], 国防科学技术大学, 2003.Dai Da-hai. POLSAR image simulation, detection and classification[D]. [Master dissertation], National University of Defense Technology, 2003.
    [24]
    Zebker H A and Vanzyl J J. Imaging radar polarimetry: a review[J]. Proceedings of the IEEE, 1991, 79(11): 1583-1606.
    [25]
    Mott H著. 林昌禄, 等译. 天线和雷达中的极化[M]. 成都:电子科技大学出版社, 1989.Mott H. The Polarization in Antenna and Radar[M]. Chengdu:University of Electronic Science and Technologyof China Press, 1989.
    [26]
    Wang Xue-song, Li Yong-zhen, Dai Da-hai, et al.. Instantaneous polarization statistics of electromagnetic Waves[J]. Science in China Series F, 2004, 47(5): 623-634.
    [27]
    李永祯. 瞬态极化统计特性与处理的研究[D]. [博士论文], 国防科学技术大学, 2004.Li Yong-zhen. Study on statistical characteristics and processing of instantaneous polarization[D]. [Ph.D. dissertation], National University of Defense Technology, 2004.
    [28]
    Giuli D, Facheris L, Fossi M, et al.. Simultaneous scattering matrix measurement through signal coding[C]. Record of the IEEE 1990 International Radar Conference, Arlington, 1990: 258-262.
    [29]
    Giuli D, Fossi M, and Facheris L. Radar target scattering matrix measurement through orthogonal signals[J]. IEE Proceedings-F Radar and Signal Proceessing, 1993, 140(4): 233-242.
    [30]
    Poelman A J. Virtual polarisation adaptation: a method for increasing the detection capability of a radar system through polarization-vector processing[J]. IEE Proceedings-F Communications, Radar and Signal Processing, 1981, 128(5): 261-270.
    [31]
    Poelman A J and Guy J R F. Multinotch logic-product polarization suppression filters: a typical design example and its performance in a rain clutter environment[J]. IEE Proceedings-F Communications, Radar and Signal Processing, 1984, 131(4): 383-396.
    [32]
    Stapor D P. Optimal receive antenna polarization in the presence of interference and noise[J]. IEEE Transcations on Antennas and Propagation, 1995, 43(5): 473-477.
    [33]
    王雪松, 汪连栋, 肖顺平, 等. 自适应极化滤波器的理论性能分析[J]. 电子学报, 2004, 32(4): 1326-1329.Wang Xue-song, Wang Lian-dong, Xiao Shun-ping, et al.. Theoretical performance analysis of adaptive polarization filters[J]. Atca Electronica Sinica, 2004, 32(4): 1326-1329.
    [34]
    Wang Xue-song, Chang Yu-liang, Dai Da-hai, et al.. Band characteristics of SINR polarization filter[J]. IEEE Transcations on Antennas and Propagation, 2007, 55(4): 1148-1154.
    [35]
    Wang Xue-song, Xiao Shun-ping, Tao Hua-min, et al.. Nonlinear programming modeling and solution of radar target polarization enhancement[J]. Progress in Natural Science, 2000, 10(1): 62-67.
    [36]
    施龙飞, 王雪松, 肖顺平, 等. 干扰背景下雷达目标最佳极化的分布估计方法[J]. 自然科学进展, 2005, 15(11): 1324-1329.Shi Long-fei, Wang Xue-song, Xiao Shun-ping, et al.. The best stepped estimation of the radar targets polarization in interferer environment[J]. Progress in Natural Science, 2005, 15(11): 1324-1329.
    [37]
    徐振海. 极化敏感阵列信号处理研究[D]. [博士论文], 国防科学技术大学, 2004.Xu Zhen-hai. Signal processing based on polarization sensitive array[D]. [Ph.D. dissertation], National University of Defense Technology, 2004.
    [38]
    徐振海, 王雪松, 肖顺平, 等. 极化自适应递推滤波算法[J]. 电子学报, 2002, 30(4): 608-610. Xu Zhen-hai, Wang Xue-song, Xiao Shun-ping, et al.. Adaptive recursive-filtering in polarization domain[J]. Atca Electronica Sinica, 2002, 30(4): 608-610.
    [39]
    王雪松, 代大海, 徐振海, 等. 极化滤波器的性能评估与选择[J]. 自然科学进展, 2004, 14(4): 442-448.Wang Xue-song, Dai Da-hai, Xu Zhen-hai, et al.. The performance evaluation and selective of polarization filter[J]. Progress in Natural Science, 2004, 14(4): 442-448.
    [40]
    张国毅. 高频地波雷达极化抗干扰技术研究[D]. [博士论文], 哈尔滨工业大学, 2002.Zhang Guo-yi. Study on high frequency ground wave radar polarization of suppression interferer[D]. [Ph.D. dissertation],Harbin Institute of Technology, 2002.
    [41]
    张国毅, 刘永坦. 高频地波雷达多干扰的极化抑制[J]. 电子学报, 2001, 29(9): 1206-1209.Zhang Guo-yi and Liu Yong-tan. Polarization suppression of multidisturbance in HF ground wave radar[J]. Atca Electronica Sinica, 2001, 29(9): 1206-1209.
    [42]
    Novak L M, Sechtin M B, and Cardullo M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transcations on Aerospace and Electronic Systems, 1989, 25(2): 150-165.
    [43]
    Novak L M, Burl M C, and Irving W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transcations on Aerospace and Electronic Systems, 1993, 29(1): 234-243.
    [44]
    Maio A D. Polarimetric adaptive detection of range-distributed targets[J]. IEEE Transcations on Signal Processing, 2002, 50(9): 2152-2158.
    [45]
    Garren D A, et al.. Full-polarization matched-illumination for target detection and identification[J]. IEEE Transcations on Aerospace and Electronic Systems, 2002, 38(3): 824-835.
    [46]
    王雪松, 李永祯, 徐振海, 等. 高分辨雷达信号极化检测研究[J]. 电子学报, 2000, 28(12): 15-18.Wang Xue-song, Li Yong-zhen, Xu Zhen-hai, et al.. Study on high-resolution radar signal polarization detection[J]. Atca Electronica Sinica, 2000, 28(12): 15-18.
    [47]
    李永祯, 王雪松, 徐振海, 等. 基于强散射点径向积累的高分辨极化目标检测研究[J]. 电子学报, 2001, 29(3): 307-310.Li Yong-zhen, Wang Xue-song, Xu Zhen-hai, et al.. Study on high-resolution polarization target detection based on intense scatterer range integration[J]. Atca Electronica Sinica, 2001, 29(3): 307-310.
    [48]
    李永祯, 王雪松, 肖顺平, 等. 基于ISVS的微弱目标检测算法[J]. 电子学报, 2005, 33(6): 1028-1031.Li Yong-zhen, Wang Xue-song, Xiao Shun-ping, et al.. A new detection algorithm for delicacy target based on IPPV[J]. Atca Electronica Sinica, 2005, 33(6): 1028-1031.
    [49]
    徐振海, 王雪松, 肖顺平, 等. 极化敏感阵列信号检测: 部分极化情形[J]. 电子学报, 2004, 32(6): 938-941.Xu Zhen-hai, Wang Xue-song, Xiao Shun-ping, et al.. Partially polarized signal detection using polarization sensitive array[J]. Atca Electronica Sinica, 2004, 32(6): 938-941.
    [50]
    曾勇虎, 王雪松, 肖顺平, 等. 基于时频联合域极化滤波的高分辨极化雷达信号检测[J]. 电子学报 2005, 33(3): 524-526.Zeng Yong-hu, Wang Xue-song, Xiao Shun-ping, et al.. High-resolution polarimetric radar signal detection based on polarization filtering in time-frequency domain[J]. Atca Electronica Sinica, 2005, 33(3): 524-526.
    [51]
    Kim K T, Kim S W, and Kim H T. Two-dimensional ISAR imaging using full polarisation and super-resolution processing techniques[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(4): 240-246.
    [52]
    Dai Da-hai, Zhang Jing-ke, Wang Xue-song, et al.. Superresolution polarimetric ISAR imaging based on 2D CP-GTD model[J]. Journal of Sensors, 2015, Article ID 293141. http: //dx.doi.org/10.1155/2015/293141.
    [53]
    Dai Da-hai, Wang Xue-song, Chang Yu-liang, et al.. Fully-polarized scattering center extraction and parameter estimation: P-ESPRIT algorithm[C]. International Conference on 2006, Shanghai, China, 2006: 97-100.
    [54]
    曾勇虎. 极化雷达时频分析与目标识别的研究[D]. [博士论文], 国防科学技术大学, 2004.Zeng Yong-hu. Study on polarimetric radar time-frequency analysis and target recognition[D]. [Ph.D. dissertation], National University of Defense Technology, 2004.
    [55]
    庄钊文. 雷达目标频域极化域目标识别的研究[D]. [博士论文], 北京理工大学, 1989.Zhuang Zhao-wen. Study on radar target recognition in frequency and polarization domain[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2004.
    [56]
    何松华. 高距离分辨率毫米波雷达目标识别的理论与应用[D]. [博士论文], 国防科学技术大学, 1993.He Song-hua. Study on high resolution range file millimeter radar target recognition[D]. [Ph.D. dissertation], National University of Defense Technology, 1993.
    [57]
    肖怀铁. 宽带极化毫米波雷达目标特征信号测量与识别算法研究[D]. [博士论文], 国防科学技术大学, 2000.Xiao Huai-tie. Study on wideband polarimetric millimeter radar target characteristic signal measurement and recognition algorithm[D]. [Ph.D. dissertation], National University of Defense Technology, 2000.
    [58]
    李永祯, 王雪松, 王涛, 等. 有源诱饵的极化鉴别研究[J]. 国防科技大学学报, 2004, 26(3): 83-88.Li Yong-zhen, Wang Xue-song, Wang Tao, et al.. Polarization discrimination algorithm of active decoy and radar target[J]. Journal of National University of Defense Technology, 2004, 26(3): 83-88.
    [59]
    舍曼. 弗兰克尔著, 王菁华, 李漫红译. 用有源假目标挫败战区导弹防御雷达[J]. 863先进防御技术通讯(A类), 1997(10): 25-26.Sheman Flanker. Beated the BMD radars by active decoy[J]. 863 Advanced Defense Technology Message A, 1997(10): 25-26.
    [60]
    Lemnios W Z and Grometstein A A. Overview of the Lincoln laboratory ballistic missile defense program[J]. Lincoln Laboratory Journal, 2002, 13(1): 9-32.
    [61]
    李永祯, 王雪松, 肖顺平, 等. 基于IPPV的真假目标极化鉴别算法[J]. 现代雷达, 2004, 26(9): 38-42.Li Yong-zhen, Wang Xue-song, Xiao Shun-ping, et al.. A new polarization discrimination algorithm for active decoy and radar target based on IPPV[J]. Modern Radar, 2004, 26(9): 38-42.
    [62]
    王涛, 王雪松, 肖顺平. 随机调制单极化有源假目标的极化鉴别研究[J]. 自然科学进展, 2006, 16(5): 611-617.Wang Tao, Wang Xue-song, and Xiao Shun-ping. Random modulated single active decoys polarization discrimination[J]. Progress in Natural Science, 2006, 16(5): 611-617.
    [63]
    Fuller D F, Terzuoli A J, Collins P J, et al.. Approach to object classification using dispersive scattering centres[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(2): 85-90.
    [64]
    Emre E and Lee C P. Polarimetric classification of scattering centers using M-ary Bayesian decision rules[J]. IEEE Transcations on Aerospace and Electronic Systems, 2000, 36(3): 738-749.
    [65]
    Karnychev V, Valery A K, Leo P L, et al.. Algorithms for estimating the complete group of polarization invariants of the Scattering Matrix (SM) based on measuring all SM elements[J]. IEEE Transcations on Geoscience and Remote Sensing, 2004, 42(3): 529-539.
    [66]
    李永祯, 李棉全, 程旭, 等. 雷达极化测量体制研究综述[J]. 系统工程与电子技术, 2013, 35(9): 1873-1877.Li Yong-zhen, Li Mian-quan, Cheng Xu, et al.. Summarization of radar polarization measurement modes[J]. Systems Engineering and Electronics, 2013, 35(9): 1873-1877.
    [67]
    Barnes R M. Antenna polarization calibration using In-scene reflectors[C]. Proceedings 1986 DARPA Interservice Millimeter Wave Symposium, 1986.
    [68]
    常宇亮. 瞬态极化雷达测量、检测与抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2010.Chang Yu-liang. Study on measurement, detection and interference suppression technologies of instantanous polarimetric radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010.
    [69]
    何密. 同时极化测量体制雷达的校准方法研究[D]. [博士论文], 国防科学技术大学, 2012.He Mi. Study on calibration methods for simultaneous measurement polarimetric radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2012.
    [70]
    邢世其. 人造目标极化雷达三维成像理论与方法研究[D]. [博士论文], 国防科学技术大学, 2013.Xing Shi-qi. Study on the 3D imaging of manmade targets based on polarimetric radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2013.
    [71]
    Touzi R and Shimada M. Polarimetric PALSAR calibration[J]. IEEE Transcations on Geoscience and Remote Sensing, 2009, 47(12): 3951-3959.
    [72]
    Xing Shiqi, Dai Dahai, Liu Jin, et al.. Comment on orientation angle preserving a posteriori polarimetric SAR calibration[J]. IEEE Transcations on Geoscience and Remote Sensing, 2012, 50(6): 2417-2419.
    [73]
    Foucher S and Lpez-Martnez C. Analysis, evaluation, and comparison of polarimetric SAR speckle filtering techniques[J]. IEEE Transcations on Image Processing, 2014, 23(4): 1751-1764.
    [74]
    徐友根, 刘志文, 龚晓峰. 极化敏感阵列信号处理[M]. 北京:北京理工大学出版社, 2013.Xu You-gen, Liu Zhi-wen, and Gong Xiao-feng. Signal Processing Based on Polarization Sensitive Array[M]. Beijing: Beijing Institute of Technology Press, 2013.
    [75]
    Brichel S H. Some invariant properties of the polarization scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1070-1072.
    [76]
    Chamberlain N F, Walton E K, and Garber F D. Radar target identification of aircraft using polarization-diverse features[J]. IEEE Transcations on Aerospace and Electronic Systems, 1991, 27(1): 58-67.
    [77]
    Garren D A, et al.. Full-polarization matched-illumination for target detection and identification[J]. IEEE Transcations on Aerospace and Electronic Systems, 2002, 38(3): 824-835.
    [78]
    Xing Shiqi, Li Yongzhen, Dai Dahai, et al.. 3D reconstruction of manmade objects using polarimetric tomographic SAR[J]. IEEE Transcations on Geoscience and Remote Sensing, 2013, 51(6): 3694-3705.
    [79]
    Xing Shiqi, Dai Dahai, Li Yongzhen, et al.. Polarimetric SAR tomography using l2,1 mixed norm sparse reconstruction method[J]. Progress In Electromagnetics Research, 2012, 130(1): 105-130.
    [80]
    Boerner W M, Cloude S R, Lee Jong-Sen, et al.. Advances in extra wide-band multi-modal air/space-borne radar polarimetry, POL-IN-SAR imaging and its applications[C]. 2002 IEEE International Geoscience and Remote Sensing Symposium, 2002: 408-410.
    [81]
    Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transcations on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    [82]
    Yamaguchi Y, Yajima Y, and Yamada H. A four-component decomposition of POLSAR images based on the coherency matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 292-296.
    [83]
    戴博伟. 多极化合成孔径雷达系统与极化信息处理研究[D]. [博士论文], 中国科学院电子学研究所, 2000.Dai Bo-wei. Study on multi-polarization synthetic aperture radar system and polarization information processing[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2000.
    [84]
    王翠珍. 极化SAR数据分析与目标信息提取[D]. [博士论文], 中国科学院遥感应用研究所, 1999.Wang Cui-zhen. Study on Polarimetric SAR data analysis and targets information extraction[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 1999.
    [85]
    Zhang Lamei, Sun Liangjie, Zou Bin, et al.. Fully Polarimetric SAR image classification via sparse representation and polarimetric features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3923-3932.
    [86]
    Sacchini J J, Steadly W M, and Moses R L. Full polarization two-dimensional Prony modeling with application to radar target identification[J]. SPIE, 1960: 125-139.
    [87]
    Gerald R Benitz. High-Definition Vector Imaging[J]. Lincoln Laboratory Journal, 1997, 10(2): 147-170.
    [88]
    Duquenoy M, Ovarlez J P, Ferro-Famil L, et al.. Study of dispersive and anisotropic scatterers behavior in radar imaging using time-frequency analysis and polarimetric coherent decomposition[C]. 2006 IEEE Conference on Radar, 2006: 180-185.
    [89]
    Jong-Sen Lee, Ernst Krogager, Ainsworth T L, et al.. Polarimetric analysis of radar signature of a manmade structure[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 555-559.
    [90]
    Novak L M, Halversen S D, Owirka G J, et al.. Effects of polarization and resolution on SAR ATR[J]. IEEE Transcations on Aerospace and Electronic Systems, 1997, 33(1): 102-116.
    [91]
    Cloude S R and Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transcations on Geoscience and Remote Sensing, 1998, 36(5): 1551-1565.
    [92]
    Papathanassiou K P. Polarimetric SAR interferometry[D]. [Ph.D. dissertation], Technical University GRAZ, 1999.
    [93]
    徐牧. 极化SAR图像像人造目标提取与几何结构反演研究[D]. [博士论文], 国防科学技术大学, 2008.Xu Mu. Extraction and geometrical structure retrieval of man-made target in POLSAR imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    [94]
    Villa A, Iannini L, Giudici D, et al.. Calibration of SAR polarimetric images by means of a covariance matching approach[J]. IEEE Transcations on Geoscience and Remote Sensing, 2015, 53(2): 674-686.
    [95]
    Wang Gen-yuan, Xia Xiang-gen, and Chen V C. Radar imaging of moving targets in foliage using multifrequency multiaperture polarimetric SAR[J]. IEEE Transcations on Geoscience and Remote Sensing, 2003, 41(8): 1755-1764.
    [96]
    Yeremy M L. Velocity estimates from Fully Polarimetric SAR[C]. Proceedings of IEEE Geoscience and Remote Sensing Symposium, 2002: 2720-2722.
  • Relative Articles

    [1]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [2]WANG Mingyang, LIU Xuxu, LI Yulin, LI Suqi, WANG Bailu. Dynamic Adversarial Risk Estimation Based on Labeled Multi-Bernoulli Tracker[J]. Journal of Radars, 2024, 13(1): 270-282. doi: 10.12000/JR23207
    [3]SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081
    [4]CHEN Hui, DU Shuangyan, LIAN Feng, HAN Chongzhao. Track-MT3: A Novel Multitarget Tracking Algorithm Based on Transformer Network[J]. Journal of Radars, 2024, 13(6): 1202-1219. doi: 10.12000/JR24164
    [5]SHI Chenguang, TANG Zhicheng, DING Lintao, ZHOU Jianjiang. Joint Optimization of Transmit Power and Dwell Time for Asynchronous Multi-target Tracking in Heterogeneous Multiple Radar Networks with Imperfect Detection[J]. Journal of Radars, 2023, 12(3): 563-575. doi: 10.12000/JR23044
    [6]ZENG Yajun, WANG Jun, WEI Shaoming, SUN Jinping, LEI Peng. Review of the Method for Distributed Multi-sensor Multi-target Tracking(in English)[J]. Journal of Radars, 2023, 12(1): 197-213. doi: 10.12000/JR22111
    [7]SONG Xiaocheng, LI Zhi, REN Haiwei, YI Wei. Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars[J]. Journal of Radars, 2023, 12(3): 629-641. doi: 10.12000/JR22240
    [8]SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146
    [9]WANG Zengfu, SHAO Yi, QI Dengliang, JIN Shuling. Consistency-based Air Target Height Estimation and Location in Distributed Space-based Radar Network[J]. Journal of Radars, 2023, 12(6): 1249-1262. doi: 10.12000/JR23157
    [10]YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036
    [11]DUAN Keqing, LI Yufan, YANG Xingjia, QIU Zizhou, WANG Yongliang. Reduced Degrees of Freedom in Space-Time Adaptive Processing for Space-based Early Warning Radar[J]. Journal of Radars, 2022, 11(5): 871-883. doi: 10.12000/JR22075
    [12]XIAO Peng, YU Zhitong, CHEN Zhuoqi, CUI Xiangbin, ZHAO Bo, LANG Shinan, LI Meng, HU Luojia, HUANG Yan, LIU Min, WANG Cheng, CHEN Liang, LIU Lu, SUI Xiaohong, YUAN Chunzhu. Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(3): 479-498. doi: 10.12000/JR21196
    [13]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [14]DA Kai, YANG Ye, ZHU Yongfeng, FU Qiang. Multitarget Tracking Using Distributed Radar with Partially Overlapping Fields of Views[J]. Journal of Radars, 2022, 11(3): 459-468. doi: 10.12000/JR21183
    [15]LIU Chao, WANG Yueji. Review of Multi-Target Tracking Technology for Marine Radar[J]. Journal of Radars, 2021, 10(1): 100-115. doi: 10.12000/JR20081
    [16]Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
    [17]Wei Qiang, Liu Zhong. A Radar Multi-target Tracking Algorithm Based on Gaussian Mixture PHD Filter under Doppler Blind Zone[J]. Journal of Radars, 2017, 6(1): 34-42. doi: 10.12000/JR16125
    [18]Wang Xiangli, Yi Wei, Kong Lingjiang. Joint Beam Selection and Dwell Time Allocation for Multi-target Tracking in Phased Array Radar System[J]. Journal of Radars, 2017, 6(6): 602-610. doi: 10.12000/JR17045
    [19]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [20]Wu Wei, Yin Cheng-you. An Improved SMC-PHD Filter for Multiple Targets Tracking[J]. Journal of Radars, 2012, 1(4): 406-413. doi: 10.3724/SP.J.1300.2012.20094
  • Cited by

    Periodical cited type(5)

    1. 汪思源,曲毅,陈怡君. 基于U-Net的涡旋电磁波雷达成像方法. 空军工程大学学报. 2024(03): 77-85 .
    2. 潘浩然,马晖,胡敦法,刘宏伟. 基于涡旋电磁波新体制的雷达前视三维成像. 雷达学报. 2024(05): 1109-1122 . 本站查看
    3. 毛德庆,杨建宇,杨明杰,张永超,张寅,黄钰林. IAA-Net:一种实孔径扫描雷达迭代自适应角超分辨成像方法. 雷达学报. 2024(05): 1073-1091 . 本站查看
    4. 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 .
    5. 袁航,罗迎,陈怡君,苏令华. 基于反正弦圆环天线阵列的二维成像. 北京航空航天大学学报. 2023(06): 1487-1494 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.9 %FULLTEXT: 31.9 %META: 57.8 %META: 57.8 %PDF: 10.3 %PDF: 10.3 %FULLTEXTMETAPDF

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3439) PDF downloads(2362) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表  1  ALOS-2 PALSAR-2参数信息
      Table  1.  Parameter information of ALOS-2 PALSAR-2
      日期(2016年)垂直有效波数(rad/m)时间基线(天)距离向/方位向分辨率(m)中心入射角 (°)极化方式
      0616—0630 (BL1)0.013~0.015
      0630—0714 (BL2)0.010~0.011142.86/2.9738.99Full
      0811—0825 (BL3)0.009~0.010
      下载: 导出CSV 
      | 显示表格
    • 表  2  单基线PolInSAR模型参数解算结果
      Table  2.  Model parameter results of single baseline PolInSAR inversion
      模型参数BL1BL2BL3
      Sscene0.690.780.78
      Cscene9.8810.0811.14
      下载: 导出CSV 
      | 显示表格
    • 表  3  3个干涉对的相干特性P值以及森林高度值
      Table  3.  Coherence characteristic P-value and forest heights for three interferometric pairs
      林分样地编号BL1 P值 / 森林高度(m)BL2 P值 / 森林高度(m)BL3 P值 / 森林高度(m)多基线融合结果(m)实测森林高度(m)
      10.130 / 17.820.113 / 17.020.081 / 16.8917.8214.43
      20.116 / 14.380.104 / 15.300.091 / 16.5214.3814.20
      30.092 / 12.460.075 / 15.830.135 / 11.3411.349.80
      40.103 / 15.210.111 / 15.340.119 / 14.1914.1916.00
      50.106 / 6.860.106 / 7.240.131 / 8.318.3110.70
      60.110 / 12.980.083 / 14.670.118 / 11.8911.8913.50
      70.114 / 13.350.096 / 15.300.101 / 16.1013.3513.43
      80.079 / 14.290.106 / 16.150.117 / 16.2216.2216.95
      90.069 / 12.120.090 / 17.630.060 / 12.3017.6320.10
      100.104 / 12.330.089 / 13.670.102 / 11.7212.3315.60
      110.075 / 18.340.103 / 16.750.154 / 10.1610.1613.30
      120.113 / 9.080.134 / 9.460.106 / 12.699.4611.00
      130.086 / 13.760.096 / 9.070.109 / 16.0016.0016.40
      140.197 / 10.170.230 / 8.710.186 / 9.518.716.00
      150.103 / 14.590.064 / 19.170.128 / 15.4015.4014.70
      下载: 导出CSV 
      | 显示表格